1
|
Manogaran P, Krishnamoorthy P, Murugesan S, Vijayavarma D, Al-Ansari MM, Mari K, Vatin NI, Vijayakumar S. Biogenic synthesis and characterization of silver nanoparticles (AgNPs) from aqueous extract of Lepidagathis cristata along with their antibacterial and antineoplastic activity to combat breast cancer cells (MCF-7). LUMINESCENCE 2024; 39:e4891. [PMID: 39229976 DOI: 10.1002/bio.4891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Lepidagathis cristata (L. cristata) plant produces reducing and capping agents; this study utilized microwave-assisted biogenic synthesis to manufacture silver nanoparticles (AgNPs) using this plant. The structure, morphology, and crystallinity phases of prepared nanoparticles (NPs) were characterized by ultraviolet-visible spectroscopy (UV-viz), powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Biologically synthesized AgNPs were treated against pathogenic bacteria species including Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus) and its highest zone of inhibition 10 ± 1.45 mm, 10 ± 0.74 mm, and 6 ± 0.43 mm, respectively, at the concentration of 100 μg/mL. The cytotoxic activity of AgNPs against MCF-7 breast cancer cells revealed significant growth inhibition by inhibiting cell viability, inhibitory concentration of 50% (IC50) of NPs observed at 55.76 μg/mL concentration. Finally, our findings concluded that the L. cristata-mediated biosynthesized AgNPs proved its potential antibacterial and neoplastic properties against MCF cells by endorsing the inhibition of cell proliferation especially with low concentration.
Collapse
Affiliation(s)
- Punithavathi Manogaran
- Department of Biochemistry, Marudhar Kesari Jain College for Women, Vaniyambadi, Tamilnadu, India
| | - Prabu Krishnamoorthy
- Department of Biochemistry, Marudhar Kesari Jain College for Women, Vaniyambadi, Tamilnadu, India
| | - Sivakumar Murugesan
- Department of Environmental Science, Periyar University, Salem, Tamilnadu, India
| | - Devi Vijayavarma
- Department of Biochemistry, Bhaktavatsalam Memorial College for Women, Chennai, Tamilnadu, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kavitharani Mari
- Department of Biochemistry, Adhiparasakthi College of Arts and Science College, Nagar, India
| | - Nikolai Ivanovich Vatin
- Centre of Research Impact and Outcome, Citkara University, Rajpura, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Sabari Vijayakumar
- Department of Biochemistry, Marudhar Kesari Jain College for Women, Vaniyambadi, Tamilnadu, India
| |
Collapse
|
2
|
Jeevanandam J, Rodrigues J. Sustainable synthesis of bionanomaterials using non-native plant extracts for maintaining ecological balance: A computational bibliography analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120892. [DOI: https:/doi.org/10.1016/j.jenvman.2024.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
|
3
|
Jeevanandam J, Rodrigues J. Sustainable synthesis of bionanomaterials using non-native plant extracts for maintaining ecological balance: A computational bibliography analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120892. [PMID: 38663082 DOI: 10.1016/j.jenvman.2024.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Biological approaches via biomolecular extracts of bacteria, fungi, or plants have recently been introduced as an alternative approach to synthesizing less or nontoxic nanomaterials, compared to conventional physical and chemical approaches. Among these biological methods, plant-mediated approaches (phytosynthesis) are reported to be highly beneficial for large-scale, nontoxic nanomaterial synthesis. However, plant-mediated synthesis of nanomaterials using native plant extract can lead to bioprospecting issues and deforestation challenges. On the other hand, non-native or invasive plants are non-indigenous to a particular geographic location that can grow and spread rapidly, ultimately disrupting the local and endogenous plant communities or ecosystems. Thus, controlling or eradicating these non-native plants before they damage the ecosystem is necessary. Even though mechanical, chemical, and biological approaches are available to control non-native plants, all these methods possess certain limitations, such as environmental toxicity, disturbance in the nutrient cycle, and loss of genetic integrity. Therefore, non-native plants were recently proposed as a novel sustainable source of phytochemicals for preparing nanomaterials via green chemistry, mainly metallic nanoparticles, as an alternative to native, agriculture-based, or medicinal plants. This work aims to cover a literature gap on plant-mediated bionanomaterial synthesis with an overview and bibliography analysis of non-native plants via novel data mining and advanced visualization tools. In addition, the potential of non-native plants as a sustainable, green chemistry-based alternative for bionanomaterial preparation for maintaining ecological balance, the mechanism of formation via phytochemicals, and their possible applications to promote their control and spread were also discussed. The bibliography analysis revealed that only an average of 4 articles have been published in the last 10 years (2013-2023) on non-native/invasive plants for nanomaterial synthesis, which shows the significance of this article.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| |
Collapse
|
4
|
Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interface Sci 2024; 323:103053. [PMID: 38056226 DOI: 10.1016/j.cis.2023.103053] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.
Collapse
Affiliation(s)
- Xianyun Gong
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Nilesh D Jadhav
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India
| | - Vishal V Lonikar
- Department of Physics, MET's Bhujbal Academy of Science and Commerce, Nashik 422003 (M.S.), India
| | - Anil N Kulkarni
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India.
| | - Hongkun Zhang
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010 (M.S.), India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Habib M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune 411 007, India.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiping Lin
- College of Materials Science and Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | | | - Zhe Wang
- Chemistry Department, Oakland University, Rochester 48309, USA.
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
5
|
Noga M, Milan J, Frydrych A, Jurowski K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int J Mol Sci 2023; 24:ijms24065133. [PMID: 36982206 PMCID: PMC10049346 DOI: 10.3390/ijms24065133] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, research on silver nanoparticles (AgNPs) has attracted considerable interest among scientists because of, among other things, their alternative application to well-known medical agents with antibacterial properties. The size of the silver nanoparticles ranges from 1 to 100 nm. In this paper, we review the progress of research on AgNPs with respect to the synthesis, applications, and toxicological safety of AgNPs, and the issue of in vivo and in vitro research on silver nanoparticles. AgNPs’ synthesis methods include physical, chemical, and biological routes, as well as “green synthesis”. The content of this article covers issues related to the disadvantages of physical and chemical methods, which are expensive and can also have toxicity. This review pays special attention to AgNP biosafety concerns, such as potential toxicity to cells, tissues, and organs.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Justyna Milan
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: or
| |
Collapse
|
6
|
Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159278. [PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Chinnathambi A, Ali Alharbi S, Lavarti R, Jhanani GK, On-Uma R, Jutamas K, Anupong W. Larvicidal and pupicidal activity of phyto-synthesized zinc oxide nanoparticles against dengue vector aedes aegypti. ENVIRONMENTAL RESEARCH 2023; 216:114574. [PMID: 36270535 DOI: 10.1016/j.envres.2022.114574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to assess the phyto-synthesizing potential of Tarenna asiatica methanol leaf extract as well as its larvicidal and pupicidal potential against Aedes aegypti larvae. According to the findings of this study, the methanol leaf extract of T. asiatica has the potential to synthesize zinc oxide nanoparticles from zinc acetate dehydrate. Standard analytical techniques such as UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, X-ray Diffraction analysis, Scanning Electron Microscope, and Energy Dispersive X-Ray were used to characterize the phyto-synthesized nanoparticles. The zinc oxide nanoparticles synthesized ranged in size from 22.35 to 31.27 nm and was spherical in shape. These nanoparticles demonstrated excellent larvicidal activity against Aedes aegypti larvae in the second, third, and fourth in stars, as well as significant pupicidal activity. These findings suggest that the methanol leaf extract of T. asiatica synthesized zinc oxide nanoparticles, which could be used to develop mosquito repellents.
Collapse
Affiliation(s)
- Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rupa Lavarti
- Department of Oral Biology, University of Louisville, Kentucky, USA
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumchai Jutamas
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Gökalp F. The curative effect of some natural active compounds for liver cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:57. [PMID: 36550238 DOI: 10.1007/s12032-022-01933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a disease that has become widespread recently and has been studied extensively. It is of great importance to find an active and effective treatment quickly due to the emergence of the disease and its spread to many tissues in the organism by metastasis. In this study, it is aimed to detect active and active substances that are highly effective on cancer cells in a short time by using docking scores, the accuracy of which has been proven by many studies. Today, many medicinal plants are being studied for therapeutic purposes. In this study, the activities of the prominent active substances in these medicinal plants were compared with the docking scores and the molecules with the highest inhibition effect on liver cancer receptors were determined. The data obtained in this study are of great importance in terms of guiding experimental studies by detecting active substances effective on liver cancer by preventing time and material loss. Considering the results obtained from this study, it can be concluded that Cucurbitacin I and Cucurbitacin E, Thymol, Piperine, and Carvacrol are very effective for the inhibition of liver cancer cell receptors.
Collapse
Affiliation(s)
- Faik Gökalp
- Department Of Mathematics and Science Education, Science Education Division, Kırıkkale University, Education Faculty, 71450, Yahşihan, Kırıkkale, Turkey.
| |
Collapse
|
9
|
An overview of a sustainable approach to the biosynthesis of AgNPs for electrochemical sensors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
10
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Fabrication and Characterization of pH-Mediated Labeo rohita Fish Scale Extract Capped Silver Nanoparticles and its Antibacterial Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Biochemical Characterization of Different Chemical Components of Parthenium hysterophorus and Their Therapeutic Potential against HIV-1 RT and Microbial Growth. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3892352. [PMID: 35528165 PMCID: PMC9071890 DOI: 10.1155/2022/3892352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Parthenium hysterophorus possesses certain allelochemicals responsible for their medicinal effects. The presence of oils, polyphenols, alkaloids, terpenes, pseudoguaianolides, and histamines in P. hysterophorus has been shown to exhibit medicinal properties. However, the systematic biomedical properties of this plant are still unexplored. The extracts of leaves, stem, and flower of P. hysterophorus, both at low and high temperatures (equivalent to boiling points of different solvents) were prepared. The extracts prepared in hexane, ethylacetate, methanol, and water were analyzed spectrophotometrically and colorimetrically and resolved on TLC for the presence of phytochemicals. The analyses of the free radical quenching potential of plant extracts were done by DPPH assay. The total antioxidant capacity was determined by phosphomolybdate assay and the ferric reducing antioxidant power (FRAP) assay was used to determine the reduction potential of the extracts. The spectrophotometric and qualitative analysis of plant extracts demonstrated the presence of alkaloids, terpenoids, carbohydrates, and cardiac glycosides. The occurrence of more than one Rf values for extracts determined by TLC indicated the presence of more than one phytochemical compound. The P. hysterophorus extracts contained strong antioxidant activity. These extracts exhibited strong antimicrobial activity against Staphylococcus epidermis, Salmonela typhi, Neisseria gonococci or gonococci, Citrobacter, and Shigella flexineri. The evaluation of the antimicrobial potential of P. hysterophorus extracts was done by the disc diffusion method. These extracts also showed significant inhibition against HIV-1 RT activity. The anti-HIV-1 RT activity was done using Roche Kit. The P. hysterophorus extracts displayed the presence of many phytochemicals with strong antioxidant, antimicrobial, and anti-HIV-1 RT properties.
Collapse
|
13
|
Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Younas M, Rizwan M, Zubair M, Inam A, Ali S. Biological synthesis, characterization of three metal-based nanoparticles and their anticancer activities against hepatocellular carcinoma HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112575. [PMID: 34352575 DOI: 10.1016/j.ecoenv.2021.112575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Treatment of liver cancer has always been a challenge for clinicians and development of appropriate drug against hepatocellular carcinoma is the major focus for researchers working in the field. The synthesis of metal-based nanoparticles (NPs) by green method for pharmacological uses has attained considerable attention recently. In current study three different NPs (AgO2, CeO2, CuO2) were synthesized by using Trianthima portulacastrum and Chinopodium quinoa leaf extracts. These biogenic NPs were analyzed by High-tech. approaches including Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) spectroscope, SEM-EDS spot analysis, elemental mapping and X-ray diffraction (XRD). The anticancer potential of these nanoparticles was estimated using MTT assay, against hepatic cancer cell line (HepG2). SEM secondary electron images presented the nano size of prepared particles in agglomerated form with few porous forms. Average size of Ag-, Ce-, and CuNPs was observed 19-24 nm, 8-12 nm, 13-15 nm respectively. Elemental mapping and EDS-spot analysis ratifies the formation of AgNPs, CeNPs, and CuNPs. These NPs have shown good anticancer activity at different concentrations against HepG2 cell line. Further studies are however needed to identify the molecular mechanisms of these anticancer activities.
Collapse
Affiliation(s)
- Madiha Younas
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000 Faisalabad, Pakistan.
| | - Aqil Inam
- Department of Metallurgy and Materials Engineering, University of Punjab, Lahore, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000 Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
15
|
Antibacterial potential of biosynthesized silver nanoparticles using phycocyanin of freshwater cyanobacterium Oscillatoria pseudogeminata. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01973-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sampath G, Govarthanan M, Rameshkumar N, Vo DVN, Krishnan M, Sivasankar P, Kayalvizhi N. Eco-friendly biosynthesis metallic silver nanoparticles using Aegle marmelos (Indian bael) and its clinical and environmental applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01883-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Aiswariya KS, Jose V. Photo-Mediated Facile Synthesis of Silver Nanoparticles Using Curcuma zanthorrhiza Rhizome Extract and Their In Vitro Antimicrobial and Anticancer Activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01951-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Kaabipour S, Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:102-136. [PMID: 33564607 PMCID: PMC7849236 DOI: 10.3762/bjnano.12.9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
The significance of silver nanostructures has been growing considerably, thanks to their ubiquitous presence in numerous applications, including but not limited to renewable energy, electronics, biosensors, wastewater treatment, medicine, and clinical equipment. The properties of silver nanostructures, such as size, size distribution, and morphology, are strongly dependent on synthesis process conditions such as the process type, equipment type, reagent type, precursor concentration, temperature, process duration, and pH. Physical and chemical methods have been among the most common methods to synthesize silver nanostructures; however, they possess substantial disadvantages and short-comings, especially compared to green synthesis methods. On the contrary, the number of green synthesis techniques has been increasing during the last decade and they have emerged as alternative routes towards facile and effective synthesis of silver nanostructures with different morphologies. In this review, we have initially outlined the most common and popular chemical and physical methodologies and reviewed their advantages and disadvantages. Green synthesis methodologies are then discussed in detail and their advantages over chemical and physical methods have been noted. Recent studies are then reviewed in detail and the effects of essential reaction parameters, such as temperature, pH, precursor, and reagent concentration, on silver nanostructure size and morphology are discussed. Also, green synthesis techniques used for the synthesis of one-dimensional (1D) silver nanostructures have been reviewed, and the potential of alternative green reagents for their synthesis has been discussed. Furthermore, current challenges regarding the green synthesis of 1D silver nanostructures and future direction are outlined. To sum up, we aim to show the real potential of green nanotechnology towards the synthesis of silver nanostructures with various morphologies (especially 1D ones) and the possibility of altering current techniques towards more environmentally friendly, more energy-efficient, less hazardous, simpler, and cheaper procedures.
Collapse
Affiliation(s)
- Sina Kaabipour
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Shohreh Hemmati
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
19
|
Characterization of biogenically synthesized silver nanoparticles for therapeutic applications and enzyme nanocomplex generation. 3 Biotech 2020; 10:462. [PMID: 33088659 DOI: 10.1007/s13205-020-02450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
The present study describes green synthesis of silver nanoparticles (AgNPs) and inulin hydrolyzing enzyme nanocomplexes (ENC) using Azadirachta indica (Ai) and Punica granatum (Pg) leaf extracts. Surface topology and physico-chemical characteristics of AgNPs were studied using surface plasmon resonance (SPR), FTIR, SEM, AFM and EDX analyses. Particle size analysis using dynamic light scattering and AFM studies revealed that Ai-AgNPs (76.4 nm) were spherical in shape having central bigger nano-regime with smaller surroundings while Pg-AgNPs (72.1 nm) and ENCs (Inulinase-Pg-AgNPs ~ 145 nm) were spherical particles having smooth surfaces. Pg-AgNPs exhibited significant photocatalysis of a thiazine dye, methylene blue. Both Ai- and Pg-AgNPs showed selective antibacterial action by inhibiting pathogenic Bacillus cereus, while the probiotic Lactobacillus strains remained unaffected. Ai-AgNPs showed potential anti-biofilm effect (30% viability) on B. cereus biofilms. Pg-AgNPs showed anti-cancer effect against human colon cancer cell lines (Caco-2) resulting in 40% cell death in 48 h. Enzymes (inulinase, L-asparaginase and glucose oxidase) were successfully immobilized onto nanoparticles together with the biogenic synthesis of AgNPs and recyclability of the Inulinase-Pg-AgNPs complex was demonstrated. The study elaborates characteristics of green synthesized nanoparticles and their potential applications as anti-cancer, antibacterial and antioxidant nano drugs that could be used in food and nutraceutical industries. Enzyme immobilization on AgNPs without any toxic cross-linker opens up newer possibilites in enzyme-nanocomplex research.
Collapse
|