1
|
Elshof J, Oppersma E, Wisse JJ, Bladder G, Meijer PM, Torres A, Wijkstra PJ, Duiverman ML. Deventilation Syndrome in Patients with Chronic Obstructive Pulmonary Disease Using Nocturnal Noninvasive Ventilation: What Are the Underlying Mechanisms? Respiration 2024:1-10. [PMID: 39137747 DOI: 10.1159/000540780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) commonly experience severe dyspnea after discontinuation of nocturnal noninvasive ventilation (NIV), known as deventilation syndrome (DVS), which negatively affects quality of life. Despite various hypotheses, the precise mechanisms of DVS remain unknown. METHODS An observational pilot study was performed monitoring 16 stable COPD patients before, during, and after an afternoon nap on NIV. Seven patients experienced DVS (Borg Dyspnea Scale ≥5), while nine served as controls (Borg Dyspnea Scale ≤2). Hyperinflation was evaluated through inspiratory capacity (IC) measurements and end-expiratory lung impedance (EELI) via electrical impedance tomography. Respiratory muscle activity was assessed by diaphragmatic surface electromyography (sEMG). RESULTS Post-NIV dyspnea scores were significantly higher in the DVS group (5 [3-7] vs. 0 [0-1.5], p < 0.001). IC values were lower in the DVS group compared to controls, both pre-NIV (54 [41-63] vs. 88 [72-94] %pred., p = 0.006) and post-NIV (45 [40-59] vs. 76 [65-82] %pred., p = 0.005), while no intergroup difference was seen in IC changes pre- and post-NIV. EELI values after NIV indicated a tendency towards lower values in controls and higher values in DVS patients. sEMG amplitudes were higher in the DVS group within the first 5-min post-NIV (221 [112-294] vs. 100 [58-177]% of baseline, p = 0.030). CONCLUSION This study suggests that it is unlikely that DVS originates from the inability to create diaphragmatic muscle activity after NIV. Instead, NIV-induced hyperinflation in individuals with static hyperinflation may play a significant role. Addressing hyperinflation holds promise in preventing DVS symptoms in COPD patients.
Collapse
Affiliation(s)
- Judith Elshof
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Eline Oppersma
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Jantine J Wisse
- Department of Adult Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerrie Bladder
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Petra M Meijer
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Abel Torres
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST) and Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain
| | - Peter J Wijkstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Marieke L Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Elshof J, Steenstra C, Niezink A, Wijkstra P, Wijsman R, Duiverman M. Continuous and bilevel positive airway pressure may improve radiotherapy delivery in patients with intra-thoracic tumors. Clin Transl Radiat Oncol 2024; 47:100784. [PMID: 38706725 PMCID: PMC11063599 DOI: 10.1016/j.ctro.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Background Minimizing tumor motion in radiotherapy for intra-thoracic tumors reduces side-effects by limiting radiation exposure to healthy tissue. Continuous or Bilevel Positive Airway Pressure (CPAP/BiPAP) could achieve this, since it could increase lung inflation and decrease tidal volume variability. We aim to identify the better CPAP/BiPAP setting for minimizing tumor motion. Methods In 10 patients (5 with lung cancer, 5 with other intra-thoracic tumors), CPAP/BiPAP was tested with the following settings for 10 min each: CPAP 5, 10 and 15 cmH2O and BiPAP 14/10 cmH2O with a lower (7 breaths/min) and higher back-up respiratory rate (BURR initially 1 breath/min above the spontaneous breathing frequency, with the option to adjust if the patient continued to initiate breaths). Electrical impedance tomography was used to analyse end-expiratory lung impedance (EELI) as an estimate of end-expiratory lung volume and tidal impedance variation (TIV) as an estimate of tidal volume. Results Nine out of ten patients tolerated all settings; one patient could not sustain CPAP-15. A significant difference in EELI was observed between settings (χ2 22.960, p < 0.001), with most increase during CPAP-15 (median (IQR) 1.03 (1.00 - 1.06), normalized to the EELI during spontaneous breathing). No significant differences in TIV and breathing variability were found between settings. Conclusions This study shows that the application of different settings of CPAP/BiPAP in patients with intra-thoracic tumors is feasible and tolerable. BiPAP with a higher BURR may offer the greatest potential for mitigating tumor motion among the applied settings, although further research investigating tumor motion should be conducted.
Collapse
Affiliation(s)
- J. Elshof
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - C.M. Steenstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - A.G.H. Niezink
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P.J. Wijkstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - R. Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M.L. Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Brabant O, Karpievitch YV, Gwatimba A, Ditcham W, Ho HY, Raisis A, Mosing M. Thoracic electrical impedance tomography identifies heterogeneity in lungs associated with respiratory disease in cattle. A pilot study. Front Vet Sci 2024; 10:1275013. [PMID: 38239750 PMCID: PMC10795053 DOI: 10.3389/fvets.2023.1275013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024] Open
Abstract
Respiratory disease in cattle is a significant global concern, yet current diagnostic methods are limited, and there is a lack of crush-side tests for detecting active disease. To address this gap, we propose utilizing electrical impedance tomography (EIT), a non-invasive imaging technique that provides real-time visualization of lung ventilation dynamics. The study included adult cattle from farms in Western Australia. The cattle were restrained in a crush. A standardized respiratory scoring system, which combined visual, auscultation, and clinical scores, was conducted by two non-conferring clinicians for each animal. The scores were blinded and averaged. During assessment, an EIT electrode belt was placed around the thorax. EIT recordings of ten suitable breaths were taken for analysis before the cattle were released back to the herd. Based on the combined examination scoring, the cattle were categorized as having healthy or diseased lungs. To allow visual interpretation of each breath and enable the creation of the quartile ventilation ratio (VQR), Flow/Tidal Impedance Variation curves (F/TIV) were generated for each breath. The analysis focused on two EIT variables: The novel VQR over time during inhalation and exhalation and global expiratory impedance (TIVEXP) adjusted by breath length. A mixed effects model was used to compare these variables between healthy and diseased cattle. Ten adult cattle of mixed ages were used in the current analysis. Five cattle were scored as healthy and five as diseased. There was a significant difference in the examination scores between the healthy and diseased group (P = 0.03). A significant difference in VQR during inhalation (P = 0.03) was observed between the healthy and diseased groups. No difference was seen in VQR over time during exhalation (P = 0.3). The TIVEXP was not different between groups (P = 0.36). In this study, EIT was able to detect differences in inhalation mechanics when comparing healthy and diseased cattle as defined via clinical examination, highlighting the clinical utility of EIT.
Collapse
Affiliation(s)
- Olivia Brabant
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Yuliya V. Karpievitch
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Alphons Gwatimba
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - William Ditcham
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Ho Yin Ho
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Anthea Raisis
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Martina Mosing
- Anesthesiology and Perioperative Intensive Care, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Heines SJH, Becher TH, van der Horst ICC, Bergmans DCJJ. Clinical Applicability of Electrical Impedance Tomography in Patient-Tailored Ventilation: A Narrative Review. Tomography 2023; 9:1903-1932. [PMID: 37888742 PMCID: PMC10611090 DOI: 10.3390/tomography9050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that provides real-time lung ventilation information on critically ill patients. EIT can potentially become a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of ventilation distribution and lung aeration, which can help tailor ventilatory strategies according to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical practice. This may, in part, be due to the challenges associated with its implementation, including the need for specialised equipment and trained personnel and further validation of its usefulness in clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and clinical outcomes in critically ill patients.
Collapse
Affiliation(s)
- Serge J. H. Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
| | - Tobias H. Becher
- Department of Anesthesiology and Intensive Care Medicine, Campus Kiel, University Medical Centre Schleswig-Holstein, 24118 Kiel, Germany;
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Dennis C. J. J. Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Benites MH, Torres D, Poblete F, Labbe F, Bachmann MC, Regueira TE, Soto L, Ferre A, Dreyse J, Retamal J. Effects of changes in trunk inclination on ventilatory efficiency in ARDS patients: quasi-experimental study. Intensive Care Med Exp 2023; 11:65. [PMID: 37755538 PMCID: PMC10533449 DOI: 10.1186/s40635-023-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Trunk inclination from semirecumbent head-upright to supine-flat positioning reduces driving pressure and increases respiratory system compliance in patients with acute respiratory distress syndrome (ARDS). These effects are associated with an improved ventilatory ratio and reduction in the partial pressure of carbon dioxide (PaCO2). However, these physiological effects have not been completely studied, and their mechanisms have not yet been elucidated. Therefore, this study aimed to evaluate the effects of a change in trunk inclination from semirecumbent (45°) to supine-flat (10°) on physiological dead space and ventilation distribution in different lung regions. RESULTS Twenty-two ARDS patients on pressure-controlled ventilation underwent three 60-min steps in which trunk inclination was changed from 45° (baseline) to 10° (intervention) and back to 45° (control) in the last step. Tunk inclination from a semirecumbent (45°) to a supine-flat (10°) position resulted in a higher tidal volume [371 (± 76) vs. 433 (± 84) mL (P < 0.001)] and respiratory system compliance [34 (± 10) to 41 (± 12) mL/cmH2O (P < 0.001)]. The CO2 exhaled per minute improved from 191 mL/min (± 34) to 227 mL/min (± 38) (P < 0.001). Accordingly, Bohr's dead space ratio decreased from 0.49 (± 0.07) to 0.41 (± 0.06) (p < 0.001), and PaCO2 decreased from 43 (± 5) to 36 (± 4) mmHg (p < 0.001). In addition, the impedance ratio, which divides the ventilation activity of the ventral region by the dorsal region ventilation activity in tidal images, dropped from 1.27 (0.83-1.78) to 0.86 (0.51-1.33) (p < 0.001). These results, calculated from functional EIT images, indicated further ventilation activity in the dorsal lung regions. These effects rapidly reversed once the patient was repositioned at 45°. CONCLUSIONS A change in trunk inclination from a semirecumbent (45 degrees) to a supine-flat position (10 degrees) improved Bohr's dead space ratio and reduced PaCO2 in patients with ARDS. This effect is associated with an increase in tidal volume and respiratory system compliance, along with further favourable impedance ventilation distribution toward the dorsal lung regions. This study highlights the importance of considering trunk inclination as a modifiable determinant of physiological parameters. The angle of trunk inclination is essential information that must be reported in ARDS patients.
Collapse
Affiliation(s)
- Martín H Benites
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
- Departamento de Epidemiología y Estudios en Salud, Magíster en Epidemiología, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Santiago, Chile
- Estudiante del Programa Doctorado en Ciencias Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile
| | - David Torres
- Departamento de Epidemiología y Estudios en Salud, Magíster en Epidemiología, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Santiago, Chile
| | - Fabian Poblete
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
| | - Francisco Labbe
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
| | - María C Bachmann
- Estudiante del Programa Doctorado en Ciencias Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
- Departamento de Medicina Intensiva, Hospital Clínico Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile
| | - Tomas E Regueira
- Unidad de Pacientes Críticos, Clínica Santa María, Bellavista 415, Santiago, Chile
| | - Leonardo Soto
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile
- Unidad de Pacientes Críticos, Clínica Santa María, Bellavista 415, Santiago, Chile
| | - Andrés Ferre
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile
| | - Jorge Dreyse
- Unidad de Pacientes Críticos, Clínica Las Condes, Estoril 450, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Hospital Clínico Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile.
| |
Collapse
|
6
|
Byrne DP, Keeshan B, Hosgood G, Adler A, Mosing M. Comparison of electrical impedance tomography and spirometry-based measures of airflow in healthy adult horses. Front Physiol 2023; 14:1164646. [PMID: 37476683 PMCID: PMC10354512 DOI: 10.3389/fphys.2023.1164646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Electrical impedance tomography (EIT) is a non-invasive diagnostic tool for evaluating lung function. The objective of this study was to compare respiratory flow variables calculated from thoracic EIT measurements with corresponding spirometry variables. Ten healthy research horses were sedated and instrumented with spirometry via facemask and a single-plane EIT electrode belt around the thorax. Horses were exposed to sequentially increasing volumes of apparatus dead space between 1,000 and 8,500 mL, in 5-7 steps, to induce carbon dioxide rebreathing, until clinical hyperpnea or a tidal volume of 150% baseline was reached. A 2-min stabilization period followed by 2 minutes of data collection occurred at each timepoint. Peak inspiratory and expiratory flow, inspiratory and expiratory time, and expiratory nadir flow, defined as the lowest expiratory flow between the deceleration of flow of the first passive phase of expiration and the acceleration of flow of the second active phase of expiration were evaluated with EIT and spirometry. Breathing pattern was assessed based on the total impedance curve. Bland-Altman analysis was used to evaluate the agreement where perfect agreement was indicated by a ratio of EIT:spirometry of 1.0. The mean ratio (bias; expressed as a percentage difference from perfect agreement) and the 95% confidence interval of the bias are reported. There was good agreement between EIT-derived and spirometry-derived peak inspiratory [-15% (-46-32)] and expiratory [10% (-32-20)] flows and inspiratory [-6% (-25-18)] and expiratory [5% (-9-20)] times. Agreement for nadir flows was poor [-22% (-87-369)]. Sedated horses intermittently exhibited Cheyne-Stokes variant respiration, and a breath pattern with incomplete expiration in between breaths (crown-like breaths). Electrical impedance tomography can quantify airflow changes over increasing tidal volumes and changing breathing pattern when compared with spirometry in standing sedated horses.
Collapse
Affiliation(s)
- David P. Byrne
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Ben Keeshan
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Giselle Hosgood
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Martina Mosing
- Anaesthesiology and Perioperative Intensive Care, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Real-Time Measurements of Relative Tidal Volume and Stroke Volume Using Electrical Impedance Tomography with Spatial Filters: A Feasibility Study in a Swine Model Under Normal and Reduced Ventilation. Ann Biomed Eng 2023; 51:394-409. [PMID: 35960417 DOI: 10.1007/s10439-022-03040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/28/2022] [Indexed: 01/25/2023]
Abstract
Continuous monitoring of both hemodynamic and respiratory parameters would be beneficial to patients, e.g., those in intensive care unit. The objective of this exploratory animal study was to test the feasibility of simultaneous measurements of relative tidal volume (rTV) and relative stroke volume (rSV) using an electrical impedance tomography (EIT) device equipped with a new real-time source separation algorithm implemented as two spatial filters. Five pigs were anesthetized and mechanically ventilated. The supplied tidal volume from a mechanical ventilator was reduced to 70, 50 and 30% from the 100% normal volume to simulate hypoventilation. The respiratory volume signal and cardiac volume signal were generated by applying the spatial filters to the acquired EIT data, from which values of rTV and rSV were extracted. The measured rTV values were compared with the TV values from the mechanical ventilator using the four-quadrant concordance analysis method. For changes in TV, the concordance rate in each animal ranged from 81.8% to 100%, while it was 92.5% when the data from all five animals were pooled together. When the measured rTV values for each animal were scaled to the absolute TVEIT values in mL using the TVVent data from the mechanical ventilator, the smallest 95% limits of agreement (LoA) were - 6.04 and 7.44 mL for the 70% ventilation level, and the largest 95% LoA were - 18.1 and 19.4 mL for the 50% ventilation level. The percentage error between TVEIT and TVVent was 10.3%. Although similar statistical analyses on rSV data could not be performed due to limited intra-animal variability, changes in rSV values measured by the EIT device were comparable to those measured by an invasive hemodynamic monitor. In this animal study, we were able to demonstrate the feasibility of an EIT device for noninvasive and simultaneous measurements of rTV and rSV in real time. However, the performance of the real-time source separation method needs to be further validated on animals and human subjects, particularly over a wide range of SV values. Future clinical studies are needed to assess the potential usefulness of the new method in dynamic cardiopulmonary monitoring and explore other clinical applications.
Collapse
|
8
|
Ellenberger C, Pelosi P, de Abreu MG, Wrigge H, Diaper J, Hagerman A, Adam Y, Schultz MJ, Licker M. Distribution of ventilation and oxygenation in surgical obese patients ventilated with high versus low positive end-expiratory pressure: A substudy of a randomised controlled trial. Eur J Anaesthesiol 2022; 39:875-884. [PMID: 36093886 PMCID: PMC9553219 DOI: 10.1097/eja.0000000000001741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Intra-operative ventilation using low/physiological tidal volume and positive end-expiratory pressure (PEEP) with periodic alveolar recruitment manoeuvres (ARMs) is recommended in obese surgery patients. OBJECTIVES To investigate the effects of PEEP levels and ARMs on ventilation distribution, oxygenation, haemodynamic parameters and cerebral oximetry. DESIGN A substudy of a randomised controlled trial. SETTING Tertiary medical centre in Geneva, Switzerland, between 2015 and 2018. PATIENTS One hundred and sixty-two patients with a BMI at least 35 kg per square metre undergoing elective open or laparoscopic surgery lasting at least 120 min. INTERVENTION Patients were randomised to PEEP of 4 cmH 2 O ( n = 79) or PEEP of 12 cmH 2 O with hourly ARMs ( n = 83). MAIN OUTCOME MEASURES The primary endpoint was the fraction of ventilation in the dependent lung as measured by electrical impedance tomography. Secondary endpoints were the oxygen saturation index (SaO 2 /FIO 2 ratio), respiratory and haemodynamic parameters, and cerebral tissue oximetry. RESULTS Compared with low PEEP, high PEEP was associated with smaller intra-operative decreases in dependent lung ventilation [-11.2%; 95% confidence interval (CI) -8.7 to -13.7 vs. -13.9%; 95% CI -11.7 to -16.5; P = 0.029], oxygen saturation index (-49.6%; 95% CI -48.0 to -51.3 vs. -51.3%; 95% CI -49.6 to -53.1; P < 0.001) and a lower driving pressure (-6.3 cmH 2 O; 95% CI -5.7 to -7.0). Haemodynamic parameters did not differ between the groups, except at the end of ARMs when arterial pressure and cardiac index decreased on average by -13.7 mmHg (95% CI -12.5 to -14.9) and by -0.54 l min -1 m -2 (95% CI -0.49 to -0.59) along with increased cerebral tissue oximetry (3.0 and 3.2% on left and right front brain, respectively). CONCLUSION In obese patients undergoing abdominal surgery, intra-operative PEEP of 12 cmH 2 O with periodic ARMs, compared with intra-operative PEEP of 4 cmH 2 O without ARMs, slightly redistributed ventilation to dependent lung zones with minor improvements in peripheral and cerebral oxygenation. TRIAL REGISTRATION NCT02148692, https://clinicaltrials.gov/ct2.
Collapse
Affiliation(s)
- Christoph Ellenberger
- From the Department of Anaesthesia, Pharmacology, Intensive Care and Emergency Medicine, University Hospital of Geneva, rue Gabriel-Perret-Gentil (CE, JD, AH, YA, ML), Faculty of Medicine, University of Geneva, Geneva, Switzerland (CE, ML), Department of Surgical Sciences and Integrated Diagnostics, University of Genoa (PP), Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (PP), Pulmonary Engineering Group, Department of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Dresden, Germany (MGdA), Department of Outcomes Research (MGdA), Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio, USA (MGdA), Department of Anaesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital (HW), Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany (HW), Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands (MJS)
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brabant O, Loroesch S, Adler A, Waldmann AD, Raisis A, Mosing M. Performance evaluation of electrode design and material for a large animal electrical impedance tomography belt. Vet Rec 2022; 191:e2184. [PMID: 36197754 DOI: 10.1002/vetr.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Electrical impedance tomography (EIT) produces lung ventilation images via a thoracic electrode belt. Robust electrode design and material, providing low electrode skin contact impedance (SCI), is needed in veterinary medicine. The aim of this study was to compare three EIT electrode designs and materials. METHODS Simulations of cylindrical, rectangular and spiked electrode designs were used to evaluate electrode SCI as a function of electrode size, where skin contact was uneven. Gold-plated washers (EGW ), zinc-plated rivets (EZR ) and zinc-galvanised spikes (EZS ) were assigned randomly on two interconnected EIT belts. Gel was applied to the cranial or caudal belt and placed on 17 standing cattle. SCI was recorded at baseline and 3, 5, 7, 9 and 11 minutes later. RESULTS Simulations that involved electrodes with a greater skin contact area had lower and more uniform SCI. In cattle, SCI decreased with all electrodes over time (p < 0.01). Without gel, no difference was found between EGW and EZS , while SCI was higher for EZR (p < 0.03). With gel, SCI was lower in EGW and EZR (p < 0.026), with the SCI in EGW being the lowest (p < 0.01). LIMITATIONS Low numbers of animals and static electrode position may affect SCI. CONCLUSIONS Electrode design is important for EIT measurement, with larger electrode designs able to compensate for the use of less conductive materials. Gel is not necessary to achieve acceptable SCI in large animals.
Collapse
Affiliation(s)
- Olivia Brabant
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Sarah Loroesch
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Andreas D Waldmann
- Department of Anaesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Anthea Raisis
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Martina Mosing
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
10
|
Heines SJH, de Jongh SAM, Strauch U, van der Horst ICC, van de Poll MCG, Bergmans DCJJ. The global inhomogeneity index assessed by electrical impedance tomography overestimates PEEP requirement in patients with ARDS: an observational study. BMC Anesthesiol 2022; 22:258. [PMID: 35971060 PMCID: PMC9377133 DOI: 10.1186/s12871-022-01801-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Electrical impedance tomography (EIT) visualises alveolar overdistension and alveolar collapse and enables optimisation of ventilator settings by using the best balance between alveolar overdistension and collapse (ODCL). Besides, the global inhomogeneity index (GI), measured by EIT, may also be of added value in determining PEEP. Optimal PEEP is often determined based on the best dynamic compliance without EIT at the bedside. This study aimed to assess the effect of a PEEP trial on ODCL, GI and dynamic compliance in patients with and without ARDS. Secondly, PEEP levels from “optimal PEEP” approaches by ODCL, GI and dynamic compliance are compared. Methods In 2015–2016, we included patients with ARDS using postoperative cardiothoracic surgery patients as a reference group. A PEEP trial was performed with four consecutive incremental followed by four decremental PEEP steps of 2 cmH2O. Primary outcomes at each step were GI, ODCL and best dynamic compliance. In addition, the agreement between ODCL, GI, and dynamic compliance was determined for the individual patient. Results Twenty-eight ARDS and 17 postoperative cardiothoracic surgery patients were included. The mean optimal PEEP, according to best compliance, was 10.3 (±2.9) cmH2O in ARDS compared to 9.8 (±2.5) cmH2O in cardiothoracic surgery patients. Optimal PEEP according to ODCL was 10.9 (±2.5) in ARDS and 9.6 (±1.6) in cardiothoracic surgery patients. Optimal PEEP according to GI was 17.1 (±3.9) in ARDS compared to 14.2 (±3.4) in cardiothoracic surgery patients. Conclusions Currently, no golden standard to titrate PEEP is available. We showed that when using the GI, PEEP requirements are higher compared to ODCL and best dynamic compliance during a PEEP trial in patients with and without ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01801-7.
Collapse
Affiliation(s)
- Serge J H Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.
| | - Sebastiaan A M de Jongh
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - Ulrich Strauch
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marcel C G van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre+, P. Debyelaan 25, 6229HX, Maastricht, the Netherlands.,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Dennis C J J Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
11
|
Moreno-Martinez F, Byrne D, Raisis A, Waldmann AD, Hosgood G, Mosing M. Comparison of Effects of an Endotracheal Tube or Facemask on Breathing Pattern and Distribution of Ventilation in Anesthetized Horses. Front Vet Sci 2022; 9:895268. [PMID: 35836499 PMCID: PMC9275410 DOI: 10.3389/fvets.2022.895268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Equine respiratory physiology might be influenced by the presence of an endotracheal tube (ETT). This experimental, randomized cross-over study aimed to compare breathing pattern (BrP) and ventilation distribution in anesthetized horses spontaneously breathing room air via ETT or facemask (MASK). Six healthy adult horses were anesthetized with total intravenous anesthesia (TIVA; xylazine, ketamine, guaiphenesin), breathing spontaneously in right lateral recumbency, and randomly assigned to ETT or MASK for 30 min, followed by the other treatment for an additional 30 min. During a second anesthesia 1 month later, the treatment order was inversed. Electrical impedance tomography (EIT) using a thoracic electrode belt, spirometry, volumetric capnography, esophageal pressure difference (ΔPoes), venous admixture, and laryngoscopy data were recorded over 2 min every 15 min. Breaths were classified as normal or alternate (sigh or crown-like) according to the EIT impedance curve. A mixed linear model was used to test the effect of treatment on continuous outcomes. Cochran-Mantel-Haenszel analysis was used to test for associations between global BrP and treatment. Global BrP was associated with treatment (p = 0.012) with more alternate breaths during ETT. The center of ventilation right-to-left (CoVRL) showed more ventilation in the non-dependent lung during ETT (p = 0.025). The I:E ratio (p = 0.017) and ΔPoes (p < 0.001) were smaller, and peak expiratory flow (p = 0.009) and physiologic dead space (p = 0.034) were larger with ETT. The presence of an ETT alters BrP and shifts ventilation toward the non-dependent lung in spontaneously breathing horses anesthetized with TIVA.
Collapse
Affiliation(s)
| | - David Byrne
- College of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Anthea Raisis
- College of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Andreas D. Waldmann
- Department of Anaesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Giselle Hosgood
- College of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Martina Mosing
- College of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| |
Collapse
|
12
|
Bito K, Shono A, Kimura S, Maruta K, Omoto T, Aoki A, Oe K, Kotani T. Clinical Implications of Determining Individualized Positive End-Expiratory Pressure Using Electrical Impedance Tomography in Post-Cardiac Surgery Patients: A Prospective, Non-Randomized Interventional Study. J Clin Med 2022; 11:jcm11113022. [PMID: 35683410 PMCID: PMC9181720 DOI: 10.3390/jcm11113022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Optimal positive end-expiratory pressure (PEEP) can induce sustained lung function improvement. This prospective, non-randomized interventional study aimed to investigate the effect of individualized PEEP determined using electrical impedance tomography (EIT) in post-cardiac surgery patients (n = 35). Decremental PEEP trials were performed from 20 to 4 cmH2O in steps of 2 cmH2O, guided by EIT. PEEP levels preventing ventilation loss in dependent lung regions (PEEPONLINE) were set. Ventilation distributions and oxygenation before the PEEP trial, and 5 min and 1 h after the PEEPONLINE setting were examined. Furthermore, we analyzed the saved impedance data offline to determine the PEEP levels that provided the best compromise between overdistended and collapsed lung (PEEPODCL). Ventilation distributions of dependent regions increased at 5 min after the PEEPONLINE setting compared with those before the PEEP trial (mean ± standard deviation, 41.3 ± 8.5% vs. 49.1 ± 9.3%; p < 0.001), and were maintained at 1 h thereafter (48.7 ± 9.4%, p < 0.001). Oxygenation also showed sustained improvement. Rescue oxygen therapy (high-flow nasal cannula, noninvasive ventilation) after extubation was less frequent in patients with PEEPONLINE ≥ PEEPODCL than in those with PEEPONLINE < PEEPODCL (1/19 vs. 6/16; p = 0.018). EIT-guided individualized PEEP stabilized the improvement in ventilation distribution and oxygenation. Individual PEEP varies with EIT measures, and may differentially affect oxygenation after cardiac surgery.
Collapse
Affiliation(s)
- Kiyoko Bito
- Department of Anesthesiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (S.K.); (K.O.)
- Correspondence: ; Tel.: +81-3-3784-8575
| | - Atsuko Shono
- Department of Intensive Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (A.S.); (T.K.)
| | - Shinya Kimura
- Department of Anesthesiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (S.K.); (K.O.)
| | - Kazuto Maruta
- Department of Cardiovascular Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (K.M.); (T.O.); (A.A.)
| | - Tadashi Omoto
- Department of Cardiovascular Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (K.M.); (T.O.); (A.A.)
| | - Atsushi Aoki
- Department of Cardiovascular Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (K.M.); (T.O.); (A.A.)
| | - Katsunori Oe
- Department of Anesthesiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (S.K.); (K.O.)
| | - Toru Kotani
- Department of Intensive Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (A.S.); (T.K.)
| |
Collapse
|
13
|
Zhao Z, Chen TF, Teng HC, Wang YC, Chang MY, Chang HT, Frerichs I, Fu F, Moeller K. Is there a need for individualized adjustment of electrode belt position during EIT-guided titration of positive end-expiratory pressure? Physiol Meas 2022; 43. [PMID: 35617942 DOI: 10.1088/1361-6579/ac73d6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the variation of tidal volume-to-impedance ratio (VT/ZT) during positive end-expiratory pressure (PEEP) titration with electrical impedance tomography (EIT) measurement. APPROACH Forty-two patients with acute respiratory distress syndrome were retrospectively analyzed. An incremental and subsequently a decremental PEEP trial were performed with steps of 2 cmH2O and duration of 2 minutes per step during volume-controlled ventilation with decelerating flow. EIT measurement was conducted in the 5th intercostal space and VT was recorded simultaneously. The variation of VT/ZT (RatioV) was defined as the changes in percentage to average ratio per cmH2O PEEP change. A z-score>1 was considered as a significant variation and an implication that the measurement plane was inadequate. MAIN RESULTS The RatioV of 42 patients was 1.29±0.80 %∙cmH2O-1. A z-score of 1 corresponded to the variation of 2.09 %∙cmH2O-1. Seven patients (16.7%) had a z-score>1 and showed either positive or negative correlation between the volume-to-impedance ratio and PEEP. SIGNIFICANCE Electrode placement at 5th intercostal space might not be ideal for every individual during EIT measurement. Evaluation of volume-to-impedance ratio variation is necessary for patients undergoing maneuvers with wide alteration in absolute lung volume.
Collapse
Affiliation(s)
- Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Changle Rd. 167, Xi'an, 710032, CHINA
| | - Tsai-Fen Chen
- Far Eastern Memorial Hospital, x, New Taipei City, New Taipei City, x, TAIWAN
| | - Hui-Chen Teng
- Far Eastern Memorial Hospital, x, New Taipei City, New Taipei City, x, TAIWAN
| | - Yi-Chun Wang
- Far Eastern Memorial Hospital, x, New Taipei City, New Taipei City, x, TAIWAN
| | - Mei-Yun Chang
- Far Eastern Memorial Hospital, x, New Taipei City, New Taipei City, x, TAIWAN
| | - Hou-Tai Chang
- Far Eastern Memorial Hospital, z, New Taipei City, New Taipei City, x, TAIWAN
| | - Inez Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Kiel, x, Kiel, x, GERMANY
| | - Feng Fu
- Department of Biomedical Engineering, Fourth Military Medical University, x, Xi'an, x, CHINA
| | - Knut Moeller
- Institute of Technical Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, D-78054, GERMANY
| |
Collapse
|
14
|
Ren H, Xie L, Wang Z, Tang X, Ning B, Teng T, Qian J, Wang Y, Fu L, Zhao Z, Xiang L. Comparison of Global and Regional Compliance-Guided Positive End-Expiratory Pressure Titration on Regional Lung Ventilation in Moderate-to-Severe Pediatric Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2022; 9:805680. [PMID: 35677825 PMCID: PMC9167956 DOI: 10.3389/fmed.2022.805680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo investigate the difference in the positive end-expiratory pressure (PEEP) selected with chest electrical impedance tomography (EIT) and with global dynamic respiratory system compliance (Crs) in moderate-to-severe pediatric acute respiratory distress syndrome (pARDS).MethodsPatients with moderate-to-severe pARDS (PaO2/FiO2 < 200 mmHg) were retrospectively included. On the day of pARDS diagnosis, two PEEP levels were determined during the decremental PEEP titration for each individual using the best compliance (PEEPC) and EIT-based regional compliance (PEEPEIT) methods. The differences of global and regional compliance (for both gravity-dependent and non-dependent regions) under the two PEEP conditions were compared. In addition, the EIT-based global inhomogeneity index (GI), the center of ventilation (CoV), and standard deviation of regional delayed ventilation (RVDSD) were also calculated and compared.ResultsA total of 12 children with pARDS (5 with severe and 7 with moderate pARDS) were included. PEEPC and PEEPEIT were identical in 6 patients. In others, the differences were only ± 2 cm H2O (one PEEP step). There were no statistical differences in global compliance at PEEPC and PEEPEIT [28.7 (2.84–33.15) vs. 29.74 (2.84–33.47) ml/cm H2O median (IQR), p = 0.028 (the significant level after adjusted for multiple comparison was 0.017)]. Furthermore, no differences were found in regional compliances and other EIT-based parameters measuring spatial and temporal ventilation distributions.ConclusionAlthough EIT provided information on ventilation distribution, PEEP selected with the best Crs might be non-inferior to EIT-guided regional ventilation in moderate-to-severe pARDS. Further study with a large sample size is required to confirm the finding.
Collapse
Affiliation(s)
- Hong Ren
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xie
- Clinical Research Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhulin Wang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliao Tang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Botao Ning
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Teng Teng
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Qian
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun Fu
- Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Lijun Fu,
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- Zhanqi Zhao,
| | - Long Xiang
- Department of Critical Care Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Neonatal, Second People’s Hospital of Kashgar, Xinjiang, China
- Long Xiang,
| |
Collapse
|
15
|
Mosing M, Cheong JM, Müller B, Böhm S, Hosgood G, Raisis A. Determination of tidal volume by electrical impedance tomography (EIT) after indirect two-point calibration. Physiol Meas 2022; 43. [PMID: 35322796 DOI: 10.1088/1361-6579/ac604a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/23/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A linear relationship between impedance change (△Z) measured by thoracic electrical impedance tomography (EIT) and tidal volume (VT) has been demonstrated. This study evaluated the agreement between the displayed VT calculated by the EIT software (VTEIT) and spirometry (VTSPIRO) after an indirect two-point calibration. APPROACH The EIT software was programmed to execute a bedside two-point calibration from the subject-specific, linear equation defining the relationship between △Z and VTSPIROand displaying VTEITbreath-by-breath in 20 neutered male, juvenile pigs. After EIT calibration VTs of 8, 12, 16 and 20 mL kg-1were applied to the lungs. VTEITand VTSPIROwere recorded and analysed using Bland-Altman plot for multiple subject measurements. Volumetric capnography (VCap) and spirometry data were explored as components of variance using multiple regression. MAIN RESULTS A mean relative difference (bias) of 0.7% with 95% confidence interval (CI) of -10.4 - 10.7% were found between VTEITand VTSPIROfor the analysed data set. The variance in VTEITcould not be explained by any of the measured VCap or spirometry variables. SIGNIFICANCE The narrow CI estimated in this study allows the conclusion that EIT and its software can be used to measure and accurately convert △Z into mililitre VT at the bedside after applying an indirect two-point calibration.
Collapse
Affiliation(s)
- Martina Mosing
- School of Veterinary and Life Science, Murdoch University, 90 South Street, Perth, 6150, AUSTRALIA
| | | | - Beat Müller
- SenTec AG, Kantonsstrasse 14, Therwil, Basel-Landschaft, 7302, SWITZERLAND
| | - Stephan Böhm
- Rostock University Medical Center, Schillingallee 35, Rostock, Mecklenburg-Vorpommern, 18057, GERMANY
| | - Giselle Hosgood
- Murdoch University, 90 South Street, Murdoch, 6150, AUSTRALIA
| | - Anthea Raisis
- Murdoch University, 90 South Street, Murdoch, 6150, AUSTRALIA
| |
Collapse
|
16
|
Dimas C, Alimisis V, Uzunoglu N, Sotiriadis PP. A Point-Matching Method of Moment with Sparse Bayesian Learning Applied and Evaluated in Dynamic Lung Electrical Impedance Tomography. Bioengineering (Basel) 2021; 8:191. [PMID: 34940344 PMCID: PMC8698777 DOI: 10.3390/bioengineering8120191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dynamic lung imaging is a major application of Electrical Impedance Tomography (EIT) due to EIT's exceptional temporal resolution, low cost and absence of radiation. EIT however lacks in spatial resolution and the image reconstruction is very sensitive to mismatches between the actual object's and the reconstruction domain's geometries, as well as to the signal noise. The non-linear nature of the reconstruction problem may also be a concern, since the lungs' significant conductivity changes due to inhalation and exhalation. In this paper, a recently introduced method of moment is combined with a sparse Bayesian learning approach to address the non-linearity issue, provide robustness to the reconstruction problem and reduce image artefacts. To evaluate the proposed methodology, we construct three CT-based time-variant 3D thoracic structures including the basic thoracic tissues and considering 5 different breath states from end-expiration to end-inspiration. The Graz consensus reconstruction algorithm for EIT (GREIT), the correlation coefficient (CC), the root mean square error (RMSE) and the full-reference (FR) metrics are applied for the image quality assessment. Qualitative and quantitative comparison with traditional and more advanced reconstruction techniques reveals that the proposed method shows improved performance in the majority of cases and metrics. Finally, the approach is applied to single-breath online in-vivo data to qualitatively verify its applicability.
Collapse
Affiliation(s)
- Christos Dimas
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Vassilis Alimisis
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Nikolaos Uzunoglu
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Paul P. Sotiriadis
- Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
17
|
Bleul U, Wey C, Meira C, Waldmann A, Mosing M. Assessment of Postnatal Pulmonary Adaption in Bovine Neonates Using Electric Impedance Tomography (EIT). Animals (Basel) 2021; 11:3216. [PMID: 34827949 PMCID: PMC8614262 DOI: 10.3390/ani11113216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
Several aspects of postnatal pulmonary adaption in the bovine neonate remain unclear, particularly the dynamics and regional ventilation of the lungs. We used electric impedance tomography (EIT) to measure changes in ventilation in the first 3 weeks of life in 20 non-sedated neonatal calves born without difficulty in sternal recumbency. Arterial blood gas variables were determined in the first 24 h after birth. Immediately after birth, dorsal parts of the lungs had 4.53% ± 2.82% nondependent silent spaces (NSS), and ventral parts had 5.23% ± 2.66% dependent silent spaces (DSS). The latter increased in the first hour, presumably because of gravity-driven ventral movement of residual amniotic fluid. The remaining lung regions had good ventilation immediately after birth, and the percentage of lung regions with high ventilation increased significantly during the study period. The centre of ventilation was always dorsal to and on the right of the theoretical centre of ventilation. The right lung was responsible for a significantly larger proportion of ventilation (63.84% ± 12.74%, p < 0.00001) compared with the left lung. In the right lung, the centrodorsal lung area was the most ventilated, whereas, in the left lung, it was the centroventral area. Tidal impedance changes, serving as a surrogate for tidal volume, increased in the first 3 weeks of life (p < 0.00001). This study shows the dynamic changes in lung ventilation in the bovine neonate according to EIT measurements. The findings form a basis for the recognition of structural and functional lung disorders in neonatal calves.
Collapse
Affiliation(s)
- Ulrich Bleul
- Department of Farm Animals, Clinic of Reproductive Medicine, Vetsuisse-Faculty University Zurich, 8057 Zurich, Switzerland;
| | - Corina Wey
- Department of Farm Animals, Clinic of Reproductive Medicine, Vetsuisse-Faculty University Zurich, 8057 Zurich, Switzerland;
| | - Carolina Meira
- Department of Clinical Diagnostics and Services, Section Anaesthesiology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland;
| | - Andreas Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, 39071 Rostock, Germany;
| | - Martina Mosing
- Department of Veterinary Anaesthesia and Analgesia, School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Australia;
| |
Collapse
|
18
|
Use of Electrical Impedance Tomography (EIT) to Estimate Tidal Volume in Anaesthetized Horses Undergoing Elective Surgery. Animals (Basel) 2021; 11:ani11051350. [PMID: 34068514 PMCID: PMC8151473 DOI: 10.3390/ani11051350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The aim of this study was to explore the usefulness of electrical impedance tomography (EIT), a novel monitoring tool measuring impedance change, to estimate tidal volume (volume of gas in litres moved in and out the airways and lungs with each breath) in anaesthetised horses. The results of this study, performed in clinical cases, demonstrated that there was a positive linear relationship between tidal volume measurements obtained with spirometry and impedance changes measured by EIT within each subject and this individual relationship could be used to estimate tidal volume that showed acceptable agreement with a measured tidal volume in each horse. Thus, EIT can be used to observe changes in tidal volume by the means of impedance changes. However, absolute measurement of tidal volume is only possible after establishment of the individual relationship. Abstract This study explores the application of electric impedance tomography (EIT) to estimate tidal volume (VT) by measuring impedance change per breath (∆Zbreath). Seventeen healthy horses were anaesthetised and mechanically ventilated for elective procedures requiring dorsal recumbency. Spirometric VT (VTSPIRO) and ∆Zbreath were recorded periodically; up to six times throughout anaesthesia. Part 1 assessed these variables at incremental delivered VT of 10, 12 and 15 mL/kg. Part 2 estimated VT (VTEIT) in litres from ∆Zbreath at three additional measurement points using a line of best fit obtained from Part 1. During part 2, VT was adjusted to maintain end-tidal carbon dioxide between 45–55 mmHg. Linear regression determined the correlation between VTSPIRO and ∆Zbreath (part 1). Estimated VTEIT was assessed for agreement with measured VTSPIRO using Bland Altman analysis (part 2). Marked variability in slope and intercepts was observed across horses. Strong positive correlation between ∆Zbreath and VTSPIRO was found in each horse (R2 0.9–0.99). The agreement between VTEIT and VTSPIRO was good with bias (LOA) of 0.26 (−0.36–0.88) L. These results suggest that, in anaesthetised horses, EIT can be used to monitor and estimate VT after establishing the individual relationship between these variables.
Collapse
|