1
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Palladino G, Burgsdorf I, Sizikov S, Steindler L, Webster NS, Thomas T. Functional characterization and taxonomic classification of novel gammaproteobacterial diversity in sponges. Syst Appl Microbiol 2023; 46:126401. [PMID: 36774720 DOI: 10.1016/j.syapm.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Cawthron Institute, Nelson, New Zealand
| | - Giorgia Palladino
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Gauff RPM, Lejeusne C, Greff S, Loisel S, Bohner O, Davoult D. Impact of in Situ Simulated Climate Change on Communities and Non-Indigenous Species: Two Climates, Two Responses. J Chem Ecol 2022; 48:761-771. [PMID: 36100819 DOI: 10.1007/s10886-022-01380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Climate change constitutes a major challenge for marine urban ecosystems and ocean warming will likely strongly affect local communities. Non-Indigenous Species (NIS) have been shown to often have higher heat resistance than natives, but studies investigating how forthcoming global warming might affect them in marine urban environments remain scarce, especially in Situ studies. Here we used an in Situ warming experiment in a NW Mediterranean (warm temperate) and a NE Atlantic (cold temperate) marina to see how global warming might affect recruited communities in the near future. In both marinas, warming resulted in significantly different community structure, lower biomass, and more empty space compared to control. However, while in the warm temperate marina, NIS showed an increased surface cover, it was reduced in the cold temperate one. Metabolomic analyses on Bugula neritina in the Atlantic marina revealed potential heat stress experienced by this introduced bryozoan and a potential link between heat stress and the expression of a halogenated alkaloid, Caelestine A. The present results might indicate that the effects of global warming on the prevalence of NIS may differ between geographical provinces, which could be investigated by larger scale studies.
Collapse
Affiliation(s)
- Robin P M Gauff
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| | - Christophe Lejeusne
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, UMR 7263, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007, Marseille, France
| | - Stephane Greff
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, UMR 7263, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007, Marseille, France
| | - Stephane Loisel
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Olivier Bohner
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Dominique Davoult
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France
| |
Collapse
|
3
|
Gauff RPM, Davoult D, Greff S, Bohner O, Coudret J, Jacquet S, Loisel S, Rondeau S, Sevin L, Wafo E, Lejeusne C. Pollution gradient leads to local adaptation and small-scale spatial variability of communities and functions in an urban marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155911. [PMID: 35577087 DOI: 10.1016/j.scitotenv.2022.155911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Urbanization of coastal habitats, of which harbors and marinas are the paragon, has led to various ecological paradigms about their functioning. Harbor infrastructures offer new hard substrata that are colonized by a wide variety of organisms (biofouling) including many introduced species. These structures also modify hydrodynamism and contaminant dispersal, leading to strong disturbance gradients within them. Differences in sessile community structure have previously been correlated to these gradients at small spatial scale (<100 m). Local adaptation might be involved to explain such results, but as correlation is not causation, the present study aims to understand the causal link between the environmental gradients and community structure through a reciprocal transplant experiment among three sites of a marina (inner, middle, entrance). Our results highlighted strong small-scale spatial variations of contaminants (trace metals, PCB, pesticides, and PAH) in sediments and animal samples which have been causally linked to changes in community composition after transplant. But historical contingency and colonization succession also play an important role. Our results provided strong evidence for local adaptation since community structure, respiration, and pollutant uptake in Bugula neritina, as well as the metabolomes of B. neritina and Ciona intestinalis were impacted by the transplant with a disadvantage for individuals transplanted from the entrance to the inner location. The here observed results may thus indicate that the disturbance gradient in marinas might constitute a staple for selecting pollutant-resistant species and populations, causing local adaptation. This highlights the importance of conducting further studies into small scale local adaptation.
Collapse
Affiliation(s)
- Robin P M Gauff
- Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Stéphane Greff
- Aix Marseille Univ, CNRS, IRD, Avignon Univ, IMBE, UMR 7263, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France
| | - Olivier Bohner
- Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Jérôme Coudret
- Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Stéphanie Jacquet
- Aix Marseille Univ, CNRS/INSU, Université Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288, Marseille, France
| | - Stéphane Loisel
- Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Simon Rondeau
- Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Laure Sevin
- Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Emmanuel Wafo
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Christophe Lejeusne
- Aix Marseille Univ, CNRS, IRD, Avignon Univ, IMBE, UMR 7263, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France
| |
Collapse
|
4
|
Koutsouveli V, Balgoma D, Checa A, Hedeland M, Riesgo A, Cárdenas P. Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767). Sci Rep 2022; 12:6317. [PMID: 35428825 PMCID: PMC9012834 DOI: 10.1038/s41598-022-10058-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Sponges contain an astounding diversity of lipids that serve in several biological functions, including yolk formation in their oocytes and embryos. The study of lipid metabolism during reproduction can provide information on food-web dynamics and energetic needs of the populations in their habitats, however, there are no studies focusing on the lipid metabolism of sponges during their seasonal reproduction. In this study, we used histology, lipidome profiling (UHPLC-MS), and transcriptomic analysis (RNA-seq) on the deep-sea sponge Phakellia ventilabrum (Demospongiae, Bubarida), a key species of North-Atlantic sponge grounds, with the goal to (i) assess the reproductive strategy and seasonality of this species, (ii) examine the relative changes in the lipidome signal and the gene expression patterns of the enzymes participating in lipid metabolism during oogenesis. Phakellia ventilabrum is an oviparous and most certainly gonochoristic species, reproducing in May and September in the different studied areas. Half of the specimens were reproducing, generating two to five oocytes per mm2. Oocytes accumulated lipid droplets and as oogenesis progressed, the signal of most of the unsaturated and monounsaturated triacylglycerides increased, as well as of a few other phospholipids. In parallel, we detected upregulation of genes in female tissues related to triacylglyceride biosynthesis and others related to fatty acid beta-oxidation. Triacylglycerides are likely the main type of lipid forming the yolk in P. ventilabrum since this lipid category has the most marked changes. In parallel, other lipid categories were engaged in fatty acid beta-oxidation to cover the energy requirements of female individuals during oogenesis. In this study, the reproductive activity of the sponge P. ventilabrum was studied for the first time uncovering their seasonality and revealing 759 lipids, including 155 triacylglycerides. Our study has ecological and evolutionary implications providing essential information for understanding the molecular basis of reproduction and the origins and formation of lipid yolk in early-branching metazoans.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK.
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husargatan 3, 751 24, Uppsala, Sweden.
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC, Husargatan 3, 751 23, Uppsala, Sweden
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Calle de José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husargatan 3, 751 24, Uppsala, Sweden
| |
Collapse
|
5
|
Zhang S, Song W, Nothias LF, Couvillion SP, Webster N, Thomas T. Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. MICROBIOME 2022; 10:22. [PMID: 35105377 PMCID: PMC8805237 DOI: 10.1186/s40168-021-01220-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species. RESULTS Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3'-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms. CONCLUSIONS This study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts. Video abstract.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| | - Louis-Félix Nothias
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
6
|
Bayona LM, Kim MS, Swierts T, Hwang GS, de Voogd NJ, Choi YH. Metabolic variation in Caribbean giant barrel sponges: Influence of age and sea-depth. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105503. [PMID: 34673313 DOI: 10.1016/j.marenvres.2021.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The biochemical differentiation of widely distributed long-living marine organisms according to their age or the depth of waters in which they grow is an intriguing topic in marine biology. Especially sessile life forms, such as sponges, could be expected to actively regulate biological processes and interactions with their environment through chemical signals in a multidimensional manner. In recent years, the development of chemical profiling methods such as metabolomics provided an approach that has encouraged the investigation of the chemical interactions of these organisms. In this study, LC-MS based metabolomics followed by Feature-based molecular networking (FBMN) was used to explore the effects of both biotic and environmental factors on the metabolome of giant barrel sponges, chosen as model organisms as they are distributed throughout a wide range of sea-depths. This allowed the identification of differences in the metabolic composition of the sponges related to their age and depth.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands.
| | - Min-Sun Kim
- Food Analysis Research Center, Korea Food Research Institute, Wanju, South Korea
| | - Thomas Swierts
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands; Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 130, Seoul, South Korea
| |
Collapse
|
7
|
Ruiz-Torres V, Rodríguez-Pérez C, Herranz-López M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Barrajón-Catalán E, Micol V. Marine Invertebrate Extracts Induce Colon Cancer Cell Death via ROS-Mediated DNA Oxidative Damage and Mitochondrial Impairment. Biomolecules 2019; 9:biom9120771. [PMID: 31771155 PMCID: PMC6995635 DOI: 10.3390/biom9120771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Marine compounds are a potential source of new anticancer drugs. In this study, the antiproliferative effects of 20 invertebrate marine extracts on three colon cancer cell models (HGUE-C-1, HT-29, and SW-480) were evaluated. Extracts from two nudibranchs (Phyllidia varicosa, NA and Dolabella auricularia, NB), a holothurian (Pseudocol ochirus violaceus, PS), and a soft coral (Carotalcyon sp., CR) were selected due to their potent cytotoxic capacities. The four marine extracts exhibited strong antiproliferative effects and induced cell cycle arrest at the G2/M transition, which evolved into early apoptosis in the case of the CR, NA, and NB extracts and necrotic cell death in the case of the PS extract. All the extracts induced, to some extent, intracellular ROS accumulation, mitochondrial depolarization, caspase activation, and DNA damage. The compositions of the four extracts were fully characterized via HPLC-ESI-TOF-MS analysis, which identified up to 98 compounds. We propose that, among the most abundant compounds identified in each extract, diterpenes, steroids, and sesqui- and seterterpenes (CR); cembranolides (PS); diterpenes, polyketides, and indole terpenes (NA); and porphyrin, drimenyl cyclohexanone, and polar steroids (NB) might be candidates for the observed activity. We postulate that reactive oxygen species (ROS) accumulation is responsible for the subsequent DNA damage, mitochondrial depolarization, and cell cycle arrest, ultimately inducing cell death by either apoptosis or necrosis.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Celia Rodríguez-Pérez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Ana-María Gómez-Caravaca
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- Correspondence: ; Tel.: +34-965-222-586
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain
| |
Collapse
|
8
|
Reverter M, Tribalat MA, Pérez T, Thomas OP. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: specificity, time, and space. Metabolomics 2018; 14:114. [PMID: 30830434 DOI: 10.1007/s11306-018-1401-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The study of natural variation of metabolites brings valuable information on the physiological state of the organisms as well as their phenotypic traits. In marine organisms, metabolome variability has mostly been addressed through targeted studies on metabolites of ecological or pharmaceutical interest. However, comparative metabolomics has demonstrated its potential to address the overall and complex metabolic variability of organisms. OBJECTIVES In this study, the intraspecific (temporal and spatial) variability of two Mediterranean Haliclona sponges (H. fulva and H. mucosa) was investigated through an untargeted and then targeted metabolomics approach and further compared to their interspecific variability. METHODS Samples of both species were collected monthly during 1 year in the coralligenous habitat of the Northwestern Mediterranean sae at Marseille and Nice. Their metabolomic profiles were obtained by UHPLC-QqToF analyses. RESULTS Marked variations were noticed in April and May for both species including a decrease in Shannon's diversity and concentration in specialized metabolites together with an increase in fatty acids and lyso-PAF like molecules. Spatial variations across different sampling sites could also be observed for both species, however in a lesser extent. CONCLUSIONS Synchronous metabolic changes possibly triggered by physiological factors like reproduction and/or environmental factors like an increase in the water temperature were highlighted for both Mediterranean Haliclona species inhabiting close habitats but displaying different biosynthetic pathways. Despite significative intraspecific variations, metabolomic variability remains minor when compared to interspecific variations for these congenerous species, therefore suggesting the predominance of genetic information of the holobiont in the observed metabolome.
Collapse
Affiliation(s)
- Miriam Reverter
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland
| | - Marie-Aude Tribalat
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France
| | - Thierry Pérez
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), CNRS, IRD, Aix Marseille Université, Université Avignon, Station Marine d'Endoume, Rue de la Batterie des Lions, Marseille, France
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland.
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France.
| |
Collapse
|
9
|
Ternon E, Perino E, Manconi R, Pronzato R, Thomas OP. How Environmental Factors Affect the Production of Guanidine Alkaloids by the Mediterranean Sponge Crambe crambe. Mar Drugs 2017. [PMID: 28621725 PMCID: PMC5484131 DOI: 10.3390/md15060181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most marine sponges are known to produce a large array of low molecular-weight metabolites which have applications in the pharmaceutical industry. The production of so-called specialized metabolites may be closely related to environmental factors. In this context, assessing the contribution of factors like temperature, nutrients or light to the metabolomes of sponges provides relevant insights into their chemical ecology as well as the supply issue of natural sponge products. The sponge Crambe crambe was chosen as a model due to its high content of specialized metabolites belonging to polycyclic guanidine alkaloids (PGA). First results were obtained with field data of both wild and farmed specimens collected in two seasons and geographic areas of the North-Western Mediterranean. Then, further insights into factors responsible for changes in the metabolism were gained with sponges cultivated under controlled conditions in an aquarium. Comparative metabolomics showed a clear influence of the seasons and to a lesser extent of the geography while no effect of depth or farming was observed. Interestingly, sponge farming did not limit the production of PGA, while ex situ experiments did not show significant effects of several abiotic factors on the specialized metabolome at a one-month time scale. Some hypotheses were finally proposed to explain the very limited variations of PGA in C. crambe placed under different environmental conditions.
Collapse
Affiliation(s)
- Eva Ternon
- Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560 Valbonne, France.
| | - Erica Perino
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genoa, Italy.
| | - Renata Manconi
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Muroni 25, 07100 Sassari, Italy.
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genoa, Italy.
| | - Olivier P Thomas
- Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560 Valbonne, France.
- Marine Biodiscovery, School of Chemistry, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland.
| |
Collapse
|
10
|
Quinn RA, Vermeij MJA, Hartmann AC, Galtier d'Auriac I, Benler S, Haas A, Quistad SD, Lim YW, Little M, Sandin S, Smith JE, Dorrestein PC, Rohwer F. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc Biol Sci 2017; 283:rspb.2016.0469. [PMID: 27122568 PMCID: PMC4855392 DOI: 10.1098/rspb.2016.0469] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Holobionts are assemblages of microbial symbionts and their macrobial host. As extant representatives of some of the oldest macro-organisms, corals and algae are important for understanding how holobionts develop and interact with one another. Using untargeted metabolomics, we show that non-self interactions altered the coral metabolome more than self-interactions (i.e. different or same genus, respectively). Platelet activating factor (PAF) and Lyso-PAF, central inflammatory modulators in mammals, were major lipid components of the coral holobionts. When corals were damaged during competitive interactions with algae, PAF increased along with expression of the gene encoding Lyso-PAF acetyltransferase; the protein responsible for converting Lyso-PAF to PAF. This shows that self and non-self recognition among some of the oldest extant holobionts involve bioactive lipids identical to those in highly derived taxa like humans. This further strengthens the hypothesis that major players of the immune response evolved during the pre-Cambrian.
Collapse
Affiliation(s)
- Robert A Quinn
- Biology Department, San Diego State University, San Diego, CA, USA Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Mark J A Vermeij
- Carmabi Foundation, Piscaderabaai, Willemstad, Curaçao Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Aaron C Hartmann
- Biology Department, San Diego State University, San Diego, CA, USA National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Sean Benler
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Andreas Haas
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Steven D Quistad
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Yan Wei Lim
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Mark Little
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Stuart Sandin
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Jennifer E Smith
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Forest Rohwer
- Biology Department, San Diego State University, San Diego, CA, USA
| |
Collapse
|
11
|
Kwon IS, Kwak JH, Pyo S, Lee HW, Kim A, Schmitz FJ. Oscarellin, an Anthranilic Acid Derivative from a Philippine Sponge, Oscarella stillans, as an Inhibitor of Inflammatory Cytokines in Macrophages. JOURNAL OF NATURAL PRODUCTS 2017; 80:149-155. [PMID: 28093915 DOI: 10.1021/acs.jnatprod.6b00787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new anthranilic acid derivative (1) was isolated from a Philippine sponge, Oscarella stillans (Bergquist and Kelly). The structure of compound 1, named oscarellin, was determined as 2-amino-3-(3'-aminopropoxy)benzoic acid from spectroscopic data and confirmed by synthesis. We examined the immunomodulating effect of compound 1 and its mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Our data indicated that the expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were significantly reduced by the pretreatment of 1 (0.1-10 μM) for 2 h. In addition, compound 1 suppressed activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2-termimal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. Compound 1 abrogated LPS-induced nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activities, whereas the induction of activating transcription factor-3 (ATF-3) was increased. Taken together, our results suggest that compound 1 attenuates pro-inflammatory cytokines via the suppression of JNK, ERK, AP-1, and NF-κB and the activation of the ATF-3 signaling pathway.
Collapse
Affiliation(s)
- Ii-Seul Kwon
- School of Pharmacy, Sungkyunkwan University , Suwon 16419, Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University , Suwon 16419, Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University , Suwon 16419, Korea
| | - Hee-Weon Lee
- School of Pharmacy, Sungkyunkwan University , Suwon 16419, Korea
| | - AeRyon Kim
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Francis J Schmitz
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Secondary Metabolome Variability and Inducible Chemical Defenses in the Mediterranean Sponge Aplysina cavernicola. J Chem Ecol 2016; 42:60-70. [PMID: 26757731 DOI: 10.1007/s10886-015-0664-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/22/2015] [Accepted: 12/15/2015] [Indexed: 01/21/2023]
Abstract
Secondary metabolites play a crucial role in marine invertebrate chemical ecology. Thus, it is of great importance to understand factors regulating their production and sources of variability. This work aimed to study the variability of the bromotyrosine derivatives in the Mediterranean sponge Aplysina cavernicola, and also to better understand how biotic (reproductive state) and abiotic factors (seawater temperature) could partly explain this variability. Results showed that the A. cavernicola reproductive cycle has little effect on the variability of the sponges' secondary metabolism, whereas water temperature has a significant influence on the production level of secondary metabolites. Temporal variability analysis of the sponge methanolic extracts showed that bioactivity variability was related to the presence of the minor secondary metabolite dienone, which accounted for 50 % of the bioactivity observed. Further bioassays coupled to HPLC extract fractionation confirmed that dienone was the only compound from Aplysina alkaloids to display a strong bioactivity. Both dienone production and bioactivity showed a notable increase in October 2008, after a late-summer warming episode, indicating that A. cavernicola might be able to induce chemical changes to cope with environmental stressors.
Collapse
|
13
|
Klose J, Aistleitner K, Horn M, Krenn L, Dirsch V, Zehl M, Bright M. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth. PLoS One 2016; 11:e0146446. [PMID: 26730960 PMCID: PMC4701499 DOI: 10.1371/journal.pone.0146446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022] Open
Abstract
The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm's trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains.
Collapse
Affiliation(s)
- Julia Klose
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Karin Aistleitner
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Verena Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Monika Bright
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Lysophospholipids from the Guangxi Sponge Spirastrella purpurea. Lipids 2015; 50:697-703. [DOI: 10.1007/s11745-015-4028-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
|
15
|
Cachet N, Genta-Jouve G, Ivanisevic J, Chevaldonné P, Sinniger F, Culioli G, Pérez T, Thomas OP. Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae. Sci Rep 2015; 5:8282. [PMID: 25655432 PMCID: PMC4319174 DOI: 10.1038/srep08282] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/08/2015] [Indexed: 11/09/2022] Open
Abstract
Metabolomics has recently proven its usefulness as complementary tool to traditional morphological and genetic analyses for the classification of marine invertebrates. Among the metabolite-rich cnidarian order Zoantharia, Parazoanthus is a polyphyletic genus whose systematics and phylogeny remain controversial. Within this genus, one of the most studied species, Parazoanthus axinellae is prominent in rocky shallow waters of the Mediterranean Sea and the NE Atlantic Ocean. Although different morphotypes can easily be distinguished, only one species is recognized to date. Here, a metabolomic profiling approach has been used to assess the chemical diversity of two main Mediterranean morphotypes, the "slender" and "stocky" forms of P. axinellae. Targeted profiling of their major secondary metabolites revealed a significant chemical divergence between the morphotypes. While zoanthoxanthin alkaloids and ecdysteroids are abundant in both morphs, the "slender" morphotype is characterized by the presence of additional and bioactive 3,5-disubstituted hydantoin derivatives named parazoanthines. The absence of these specific compounds in the "stocky" morphotype was confirmed by spatial and temporal monitoring over an annual cycle. Moreover, specimens of the "slender" morphotype are also the only ones found as epibionts of several sponge species, particularly Cymbaxinella damicornis thus suggesting a putative ecological link.
Collapse
Affiliation(s)
- Nadja Cachet
- Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Grégory Genta-Jouve
- 1] Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France [2] Laboratoire de Pharmacognosie et de Chimie des Substances Naturelles, UMR CNRS 8638 COMETE, Université Paris Descartes, 4 Avenue de l'Observatoire 75006 Paris, France
| | - Julijana Ivanisevic
- 1] Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France [2] Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263 CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d'Endoume, Rue Batterie des Lions, 13007 Marseille, France
| | - Pierre Chevaldonné
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263 CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d'Endoume, Rue Batterie des Lions, 13007 Marseille, France
| | - Frédéric Sinniger
- 1] Japan Agency for Marine-Earth Science and Technology, 224-3 Aza-Toyohara, Nago City, Okinawa 905-2172, Japan [2] Tropical Biosphere Reseach Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Gérald Culioli
- 1] Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France [2] MAPIEM, EA 4323 Université de Toulon, 83957 La Garde, France
| | - Thierry Pérez
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263 CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d'Endoume, Rue Batterie des Lions, 13007 Marseille, France
| | - Olivier P Thomas
- 1] Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France [2] Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263 CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d'Endoume, Rue Batterie des Lions, 13007 Marseille, France
| |
Collapse
|
16
|
De Caralt S, Bry D, Bontemps N, Turon X, Uriz MJ, Banaigs B. Sources of secondary metabolite variation in Dysidea avara (Porifera: Demospongiae): the importance of having good neighbors. Mar Drugs 2013; 11:489-503. [PMID: 23429282 PMCID: PMC3640394 DOI: 10.3390/md11020489] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/04/2013] [Accepted: 01/24/2013] [Indexed: 11/22/2022] Open
Abstract
Several studies report temporal, geographical, and intra-individual variation in sponge metabolite yields. However, the internal and/or external factors that regulate the metabolite production remain poorly understood. Dysidea avara is a demosponge that produces sesquiterpenoids (avarol and derivatives) with interesting medical properties, which has prompted addressed studies to obtain enough amounts of these metabolites for research on drug discovery. Within this framework, specimens of Dysidea avara from apopulation of the Northwest Mediterranean were sampled and their secondary metabolites quantified to assess their variability and the possible relationship with external (seasonality, interactions with neighbors) and internal (reproductive stages) factors. The results show a variation of the amount of both avarol and its monoacetate derivative with time, with no clear relationship with seawater temperature. A trade-off with sponge reproduction was not found either. However, our results showed for the first time that sponges are able to increase production or accumulation of secondary metabolites in their peripheral zone depending on the nature of their neighbors. This finding could explain part of the high variability in the amount of secondary metabolites usually found in chemical ecology studies on sponges and opens new biotechnological approaches to enhance the metabolite yield in sponge cultures.
Collapse
Affiliation(s)
- Sonia De Caralt
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a la Cala St Francesc 14, 17300 Blanes, Girona, Spain; E-Mails: (X.T.); (M.-J.U.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-972-336-101; Fax: +34-972-337-806
| | - Delphine Bry
- Environmental and Biomolecular Chemistry Laboratory, University of Perpignan Via Domita, 52 Paul Alduy Ave., Perpignan Cedex 66860, France; E-Mails: (D.B.); (N.B.); (B.B.)
| | - Nataly Bontemps
- Environmental and Biomolecular Chemistry Laboratory, University of Perpignan Via Domita, 52 Paul Alduy Ave., Perpignan Cedex 66860, France; E-Mails: (D.B.); (N.B.); (B.B.)
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a la Cala St Francesc 14, 17300 Blanes, Girona, Spain; E-Mails: (X.T.); (M.-J.U.)
| | - Maria-Jesus Uriz
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a la Cala St Francesc 14, 17300 Blanes, Girona, Spain; E-Mails: (X.T.); (M.-J.U.)
| | - Bernard Banaigs
- Environmental and Biomolecular Chemistry Laboratory, University of Perpignan Via Domita, 52 Paul Alduy Ave., Perpignan Cedex 66860, France; E-Mails: (D.B.); (N.B.); (B.B.)
| |
Collapse
|
17
|
Cárdenas P, Pérez T, Boury-Esnault N. Sponge systematics facing new challenges. ADVANCES IN MARINE BIOLOGY 2012; 61:79-209. [PMID: 22560778 DOI: 10.1016/b978-0-12-387787-1.00010-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species (potential new species revealed by molecular studies) is raised, and we show how they could be dealt with. Finally, we present a general strategy to help us succeed in building a Porifera tree along with the corresponding revised Porifera classification.
Collapse
Affiliation(s)
- P Cárdenas
- Département Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, UMR 7208 "BOrEA", Paris, France
| | | | | |
Collapse
|
18
|
Genta-Jouve G, Thomas OP. Sponge chemical diversity: from biosynthetic pathways to ecological roles. ADVANCES IN MARINE BIOLOGY 2012; 62:183-230. [PMID: 22664123 DOI: 10.1016/b978-0-12-394283-8.00004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since more than 50 years, sponges have raised the interest of natural product chemists due to the presence of structurally original secondary metabolites. While the main objective were first to discover new drugs from the Sea, a large number of interrogations arose along with the isolation and structure elucidations of a wide array of original architectures and new families of natural products not found in the terrestrial environment. In this chapter, we focus on the results obtained during this period on the following questions. A preliminary but still unresolved issue to be addressed will be linked to the role of the microbiota into the biosynthesis of these low-weight compounds. Our knowledge on the biosynthetic pathways leading to plant secondary metabolites is now well established, and this background will influence our comprehension of the biosynthetic events occurring in a sponge. But is the level of similarity between both metabolisms so important? We clearly need more experimental data to better assess this issue. This question is of fundamental interest because sponges have a long evolutionary history, and this will allow a better understanding on the transfer of the genetic information corresponding to the biosynthesis of secondary metabolites. After the how, the why! The question of the ecological role of these metabolites is also of high importance first not only because they can serve as synapomorphic characters but also because they may represent chemical cues in the water environment. Even if most of these compounds are considered as defensive weapons for these sessile invertebrates, they may also be linked to physiological characters as the reproduction. Finally, a metabolomic approach can appear as a complementary tool to give additional information on the sponge fitness. All the new developments in molecular biology and bioanalytical tools will open the way for a better comprehension on the complex field of sponge secondary metabolites.
Collapse
|
19
|
Ivanisevic J, Thomas OP, Pedel L, Pénez N, Ereskovsky AV, Culioli G, Pérez T. Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS One 2011; 6:e28059. [PMID: 22132209 PMCID: PMC3223221 DOI: 10.1371/journal.pone.0028059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 10/31/2011] [Indexed: 12/31/2022] Open
Abstract
Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay) and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction) and abiotic (temperature) factors.
Collapse
Affiliation(s)
- Julijana Ivanisevic
- Université de la Méditerranée, Centre d'Océanologie de Marseille, Aix-Marseille Université, CNRS UMR 6540 DIMAR, Station Marine d'Endoume, Marseille, France
| | | | | | | | | | | | | |
Collapse
|