1
|
Muchoney ND, Watanabe AM, Teglas MB, Smilanich AM. Dose-dependent dynamics of densovirus infection in two nymphalid butterfly species utilizing native or exotic host plants. J Invertebr Pathol 2024; 206:108176. [PMID: 39159850 DOI: 10.1016/j.jip.2024.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
Insects are attacked by a diverse range of microbial pathogens in the wild. In herbivorous species, larval host plants frequently play a critical role in mediating susceptibility to infection. Characterizing such plant-mediated effects on herbivore-pathogen interactions can provide insight into patterns of infection across wild populations. In this study, we investigated the effects of host plant use by two North American butterflies, Euphydryas phaeton (Nymphalidae) and Anartia jatrophae (Nymphalidae), on entomopathogen infection across a range of three doses. Both of these herbivores recently incorporated the same exotic plant, Plantago lanceolata (Plantaginaceae), into their host range and are naturally infected by the same entomopathogen, Junonia coenia densovirus (Parvoviridae), in wild populations. We performed two factorial experiments in which E. phaeton and A. jatrophae were reared on either P. lanceolata or a native host plant [Chelone glabra (Plantaginaceae) for E. phaeton; Bacopa monnieri (Plantaginaceae) for A. jatrophae] and inoculated with either a low, medium, or high dose of the virus. In E. phaeton, the outcomes of infection were highly dose-dependent, with inoculation with higher viral doses resulting in faster time to death and greater mortality. However, neither survival nor postmortem viral burdens varied depending upon the host plant that was consumed. In contrast, host plant use had a strong effect on viral burdens in A. jatrophae, with consumption of the exotic plant appearing to enhance host resistance to infection. Together, these results illustrate the variable influences of host plant use on herbivore resistance to infection, highlighting the importance of investigating plant-herbivore relationships within a tritrophic framework.
Collapse
Affiliation(s)
- Nadya D Muchoney
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA; Department of Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA.
| | - Amy M Watanabe
- Department of Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA.
| | - Mike B Teglas
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA; Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia Street MS 0202, Reno, NV, 89557, USA.
| | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA; Department of Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Kirschman LJ, Eastman HM, Irovic FJ, Nix NA, Bui LTK, Blackmon SL, Greenlee JS, Lamichhane R, Mabuce JD, McAllister HK, Nevill LF, Redinger P, Rivers NI, Sprague JL. An improved method to assess the encapsulation response in arthropods. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104670. [PMID: 38945435 DOI: 10.1016/j.jinsphys.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ecoimmunology explores how ecological factors and evolutionary processes influence immune responses across various taxa and how immune responses trade-off with other traits. Studying immune responses requires biologically meaningful immunoassays applicable to a broad range of taxa and are sensitive enough to detect changes in the immune response. Useful immunoassays should also correlate with immunocompetence and fitness. The encapsulation response, a complex immune mechanism in arthropods, serves as a robust method for ecoimmunological investigations. However, traditional methods to test the encapsulation response can require long training. This study introduces an innovative, cost-effective method for assessing the encapsulation immune response in arthropods, which simplifies the procedure by reducing the training time and skill required. Our modified device utilizes a pen and syringe assembly for inserting monofilaments into arthropod larvae. We compared our device against traditional methods. Despite the new method being 22% faster, it did not compromise the accuracy or effectiveness of the encapsulation response when compared with traditional techniques, demonstrating similar degrees of melanization and encapsulation. Our method allowed for more accessible participation by less experienced researchers, such as undergraduates, facilitating their involvement in ecoimmunological research.
Collapse
Affiliation(s)
- Lucas J Kirschman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA.
| | - Hannah M Eastman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Frank J Irovic
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Nathaniel A Nix
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Ly Tuan Kiet Bui
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Sydney L Blackmon
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Jaylen S Greenlee
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Rubina Lamichhane
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Jack D Mabuce
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Hannah K McAllister
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Lilly F Nevill
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Peyton Redinger
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Nia I Rivers
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Jackson L Sprague
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
| |
Collapse
|
3
|
Hoogshagen M, Hastings AP, Chavez J, Duckett M, Pettit R, Pahnke AP, Agrawal AA, de Roode JC. Mixtures of Milkweed Cardenolides Protect Monarch Butterflies against Parasites. J Chem Ecol 2024; 50:52-62. [PMID: 37932621 DOI: 10.1007/s10886-023-01461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Plants have evolved a diverse arsenal of defensive secondary metabolites in their evolutionary arms race with insect herbivores. In addition to the bottom-up forces created by plant chemicals, herbivores face top-down pressure from natural enemies, such as predators, parasitoids and parasites. This has led to the evolution of specialist herbivores that do not only tolerate plant secondary metabolites but even use them to fight natural enemies. Monarch butterflies (Danaus plexippus) are known for their use of milkweed chemicals (cardenolides) as protection against vertebrate predators. Recent studies have shown that milkweeds with high cardenolide concentrations can also provide protection against a virulent protozoan parasite. However, whether cardenolides are directly responsible for these effects, and whether individual cardenolides or mixtures of these chemicals are needed to reduce infection, remains unknown. We fed monarch larvae the four most abundant cardenolides found in the anti-parasitic-milkweed Asclepias curassavica at varying concentrations and compositions to determine which provided the highest resistance to parasite infection. Measuring infection rates and infection intensities, we found that resistance is dependent on both concentration and composition of cardenolides, with mixtures of cardenolides performing significantly better than individual compounds, even when mixtures included lower concentrations of individual compounds. These results suggest that cardenolides function synergistically to provide resistance against parasite infection and help explain why only milkweed species that produce diverse cardenolide compounds provide measurable parasite resistance. More broadly, our results suggest that herbivores can benefit from consuming plants with diverse defensive chemical compounds through release from parasitism.
Collapse
Affiliation(s)
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
4
|
Michielini JP, Yi X, Brown LM, Gao SM, Orians C, Crone EE. Novel host plant use by a specialist insect depends on geographic variation in both the host and herbivore species. Oecologia 2024; 204:95-105. [PMID: 38123786 PMCID: PMC10830605 DOI: 10.1007/s00442-023-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore, Euphydryas phaeton. In parts of its range, E. phaeton uses only a native host, Chelone glabra, while in others, it also uses an introduced host, Plantago lanceolata. We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth.
Collapse
Affiliation(s)
- James P Michielini
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| | - Xianfeng Yi
- College of Life Science, Qufu Normal University, Qufu, China
| | - Leone M Brown
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Biology Department, James Madison University, Harrisonburg, VA, 22807, USA
| | - Shan Ming Gao
- Biology Department, Pomona College, Claremont, CA, 91711, USA
| | - Colin Orians
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Elizabeth E Crone
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Mason CJ, Peiffer M, Hoover K, Felton G. Tomato Chemical Defenses Intensify Corn Earworm (Helicoverpa zea) Mortality from Opportunistic Bacterial Pathogens. J Chem Ecol 2023; 49:313-324. [PMID: 36964896 DOI: 10.1007/s10886-023-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
Insect herbivores face multiple challenges to their ability to grow and reproduce. Plants can produce a series of defenses that disrupt and damage the herbivore digestive system, which are heightened upon injury by insect feeding. Additionally, insects face threats from virulent microorganisms that can incur their own set of potential costs to hosts. Microorganisms that invade through the digestive system may function in concert with defenses generated by plants, creating combined assailments on host insects. In our study, we evaluated how tomato defenses interact with an enteric bacterial isolate, Serratia marcescens, in the corn earworm (Helicoverpa zea). We performed bioassays using different tomato cultivars that were induced by methyl jasmonate and larvae orally inoculated with a S. marcescens isolate. Untreated corn earworm larval mortality was low on constitutive tomato, while larvae inoculated with S. marcescens exhibited > 50% mortality within 5 days. Induction treatments elevated both control mortality (~ 45%) and in combination with S. marcescens (> 95%). Larvae also died faster when encountering induced defenses and Serratia. Using a tomato mutant, foliar polyphenol oxidase activity likely had stronger impacts on S. marcescens-mediated larval mortality. Induction treatments also elevated the number of bacterial colony-forming units in the hemolymph of larvae inoculated with Serratia. Larval mortality by S. marcescens was low (< 10%) on artificial diets. Our results demonstrate that plant chemical defenses enhance larval mortality from an opportunistic gut microbe. We propose that the combined damage from both the plant and microbial agent overwhelm the herbivore to increase mortality rates and expedite host death.
Collapse
Affiliation(s)
- Charles J Mason
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA.
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Michelle Peiffer
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Kelli Hoover
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Gary Felton
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| |
Collapse
|
6
|
Giacomini JJ, Adler LS, Reading BJ, Irwin RE. Differential bumble bee gene expression associated with pathogen infection and pollen diet. BMC Genomics 2023; 24:157. [PMID: 36991318 DOI: 10.1186/s12864-023-09143-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/18/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Diet and parasitism can have powerful effects on host gene expression. However, how specific dietary components affect host gene expression that could feed back to affect parasitism is relatively unexplored in many wild species. Recently, it was discovered that consumption of sunflower (Helianthus annuus) pollen reduced severity of gut protozoan pathogen Crithidia bombi infection in Bombus impatiens bumble bees. Despite the dramatic and consistent medicinal effect of sunflower pollen, very little is known about the mechanism(s) underlying this effect. However, sunflower pollen extract increases rather than suppresses C. bombi growth in vitro, suggesting that sunflower pollen reduces C. bombi infection indirectly via changes in the host. Here, we analyzed whole transcriptomes of B. impatiens workers to characterize the physiological response to sunflower pollen consumption and C. bombi infection to isolate the mechanisms underlying the medicinal effect. B. impatiens workers were inoculated with either C. bombi cells (infected) or a sham control (un-infected) and fed either sunflower or wildflower pollen ad libitum. Whole abdominal gene expression profiles were then sequenced with Illumina NextSeq 500 technology. RESULTS Among infected bees, sunflower pollen upregulated immune transcripts, including the anti-microbial peptide hymenoptaecin, Toll receptors and serine proteases. In both infected and un-infected bees, sunflower pollen upregulated putative detoxification transcripts and transcripts associated with the repair and maintenance of gut epithelial cells. Among wildflower-fed bees, infected bees downregulated immune transcripts associated with phagocytosis and the phenoloxidase cascade. CONCLUSIONS Taken together, these results indicate dissimilar immune responses between sunflower- and wildflower-fed bumble bees infected with C. bombi, a response to physical damage to gut epithelial cells caused by sunflower pollen, and a strong detoxification response to sunflower pollen consumption. Identifying host responses that drive the medicinal effect of sunflower pollen in infected bumble bees may broaden our understanding of plant-pollinator interactions and provide opportunities for effective management of bee pathogens.
Collapse
Affiliation(s)
- Jonathan J Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
7
|
Muchoney ND, Bowers MD, Carper AL, Mason PA, Teglas MB, Smilanich AM. Use of an exotic host plant shifts immunity, chemical defense, and viral burden in wild populations of a specialist insect herbivore. Ecol Evol 2022; 12:e8723. [PMID: 35342612 PMCID: PMC8928866 DOI: 10.1002/ece3.8723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field-collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the "vulnerable host" hypothesis) from a field-based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus-infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.
Collapse
Affiliation(s)
- Nadya D. Muchoney
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - M. Deane Bowers
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Adrian L. Carper
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Peri A. Mason
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Mike B. Teglas
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of Agriculture, Veterinary and Rangeland SciencesUniversity of NevadaRenoNevadaUSA
| | - Angela M. Smilanich
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
8
|
Karlsson Green K. The effects of host plant species and larval density on immune function in the polyphagous moth Spodoptera littoralis. Ecol Evol 2021; 11:10090-10097. [PMID: 34367561 PMCID: PMC8328413 DOI: 10.1002/ece3.7802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/09/2021] [Accepted: 05/18/2021] [Indexed: 11/07/2022] Open
Abstract
Immune functions are costly, and immune investment is usually dependent on the individual's condition and resource availability. For phytophagous insects, host plant quality has large effects on performance, for example growth and survival, and may also affect their immune function. Polyphagous insects often experience a large variation in quality among different host plant species, and their immune investment may thus vary depending on which host plant species they develop on. Larvae of the polyphagous moth Spodoptera littoralis have previously been found to exhibit density-dependent prophylaxis as they invest more in certain immune responses in high population densities. In addition, the immune response of S. littoralis has been shown to depend on nutrient quality in experiments with artificial diet. Here, I studied the effects of natural host plant diet and larval density on a number of immune responses to understand how host plant species affects immune investment in generalist insects, and whether the density-dependent prophylaxis could be mediated by host plant species. While host plant species in general did not mediate the density-dependent immune expression, particular host plant species was found to increase larval investment in certain functions of the immune system. Interestingly, these results indicate that different host plants may provide a polyphagous species with protection against different kinds of antagonisms. This insight may contribute to our understanding of the relationship between preference and performance in generalists, as well as having applied consequences for sustainable pest management.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
9
|
Kikuchi DW, Herberstein ME, Barfield M, Holt RD, Mappes J. Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol Rev Camb Philos Soc 2021; 96:2446-2460. [PMID: 34128583 DOI: 10.1111/brv.12760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. Here, we explore factors likely to determine the prevalence of warning signals in prey assemblages. These factors include the nature of prey defences and any constraints upon them, the behavioural interactions of predators with different prey defences, the numerical responses of predators governed by movement and reproduction, the diversity and abundance of undefended alternative prey and Batesian mimics in the community, and variability in other ecological circumstances. We also discuss the macroevolution of warning signals. Our review finds that we have a basic understanding of how many species in some taxonomic groups have warning signals, but very little information on the interrelationships among population abundances across prey communities, the diversity of signal phenotypes, and prey defences. We also have detailed knowledge of how a few generalist predator species forage in artificial laboratory environments, but we know much less about how predators forage in complex natural communities with variable prey defences. We describe how empirical work to address each of these knowledge gaps can test specific hypotheses for why warning signals exhibit their particular patterns of distribution. This will help us to understand how behavioural interactions shape ecological communities.
Collapse
Affiliation(s)
- David W Kikuchi
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Evolutionary Biology, Universität Bielefeld, Konsequez 45, Bielefeld, 33615, Germany
| | - Marie E Herberstein
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Johanna Mappes
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
10
|
Garvey M, Bredlau J, Kester K, Creighton C, Kaplan I. Toxin or medication? Immunotherapeutic effects of nicotine on a specialist caterpillar. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Michael Garvey
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
- Department of Entomology Purdue University West Lafayette IN USA
| | - Justin Bredlau
- Department of Entomology University of Kentucky Lexington KY USA
- Department of Biology Virginia Commonwealth University Richmond VA USA
| | - Karen Kester
- Department of Biology Virginia Commonwealth University Richmond VA USA
| | - Curtis Creighton
- Department of Biological Sciences Purdue University Northwest Hammond IN USA
| | - Ian Kaplan
- Department of Entomology Purdue University West Lafayette IN USA
| |
Collapse
|
11
|
Tan W, Acevedo T, Harris EV, Alcaide TY, Walters JR, Hunter MD, Gerardo NM, Roode JC. Transcriptomics of monarch butterflies (
Danaus plexippus
) reveals that toxic host plants alter expression of detoxification genes and down‐regulate a small number of immune genes. Mol Ecol 2019; 28:4845-4863. [DOI: 10.1111/mec.15219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wen‐Hao Tan
- Department of Biology Emory University Atlanta GA USA
| | - Tarik Acevedo
- Department of Biology Emory University Atlanta GA USA
- Department of Ecosystem Science and Management Pennsylvania State University State College PA USA
| | | | - Tiffanie Y. Alcaide
- Department of Biology Emory University Atlanta GA USA
- Department of Ecosystem Science and Management Pennsylvania State University State College PA USA
| | - James R. Walters
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS USA
| | - Mark D. Hunter
- Department of Ecology & Evolutionary Biology University of Michigan Ann Arbor MI USA
| | | | | |
Collapse
|
12
|
Lindstedt C, Murphy L, Mappes J. Antipredator strategies of pupae: how to avoid predation in an immobile life stage? Philos Trans R Soc Lond B Biol Sci 2019; 374:20190069. [PMID: 31438812 DOI: 10.1098/rstb.2019.0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antipredator strategies of the pupal stage in insects have received little attention in comparison to larval or adult stages. This is despite the fact that predation risk can be high during the pupal stage, making it a critical stage for subsequent fitness. The immobile pupae are not, however, defenceless; a wide range of antipredator strategies have evolved against invertebrate and vertebrate predators. The most common strategy seems to be 'avoiding encounters with predators' by actively hiding in vegetation and soil or via cryptic coloration and masquerade. Pupae have also evolved behavioural and secondary defences such as defensive toxins, physical defences or deimatic movements and sounds. Interestingly, warning coloration used to advertise unprofitability has evolved very rarely, even though the pupal stage often contains defensive toxins in chemically defended species. In some species, pupae gain protection from conspecifics or mimic chemical and auditory signals and thereby manipulate other species to protect them. Our literature survey highlights the importance of studying selection pressures across an individual's life stages to predict how ontogenetic variation in selective environments shapes individual fitness and population dynamics in insects. Finally, we also suggest interesting avenues for future research to pursue. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Carita Lindstedt
- Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| | - Liam Murphy
- Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
13
|
Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. J Chem Ecol 2018; 44:947-956. [PMID: 29980959 DOI: 10.1007/s10886-018-0987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Plants can influence the effectiveness of microbial insecticides through numerous mechanisms. One of these mechanisms is the oxidation of plant phenolics by plant enzymes, such as polyphenol oxidases (PPO) and peroxidases (POD). These reactions generate a variety of products and intermediates that play important roles in resistance against herbivores. Oxidation of the catecholic phenolic compound chlorogenic acid by PPO enhances the lethality of the insect-killing bacterial pathogen, Bacillus thuringiensis var. kurstaki (Bt) to the polyphagous caterpillar, Helicoverpa zea. Since herbivore feeding damage often triggers the induction of higher activities of oxidative enzymes in plant tissues, here we hypothesized that the induction of plant defenses would enhance the lethality of Bt on those plants. We found that the lethality of a commercial formulation of Bt (Dipel® PRO DF) on tomato plants was higher if it was applied to plants that were induced by H. zea feeding or induced by the phytohormone jasmonic acid. Higher proportions of H. zea larvae killed by Bt were strongly correlated with higher levels of PPO activity in the leaflet tissue. Higher POD activity was only weakly associated with higher levels of Bt-induced mortality. While plant-mediated variation in entomopathogen lethality is well known, our findings demonstrate that plants can induce defensive responses that work in concert with a microbial insecticide/entomopathogen to protect against insect herbivores.
Collapse
|
14
|
Rosa E, Woestmann L, Biere A, Saastamoinen M. A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore. OIKOS 2018. [DOI: 10.1111/oik.05437] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Rosa
- Organismal and Evolutionary Biology Research Programme; Univ. of Helsinki; PO Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Luisa Woestmann
- Organismal and Evolutionary Biology Research Programme; Univ. of Helsinki; PO Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Arjen Biere
- Netherlands Inst. of Ecology (NIOO-KNAW); Wageningen the Netherlands
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme; Univ. of Helsinki; PO Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| |
Collapse
|
15
|
Woestmann L, Gibbs M, Hesketh H, Saastamoinen M. Viral exposure effects on life-history, flight-related traits, and wing melanisation in the Glanville fritillary butterfly. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:136-143. [PMID: 29627352 PMCID: PMC5971209 DOI: 10.1016/j.jinsphys.2018.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Infections represent a constant threat for organisms and can lead to substantial fitness losses. Understanding how individuals, especially from natural populations, respond towards infections is thus of great importance. Little is known about immunity in the Glanville fritillary butterfly (Melitaea cinxia). As the larvae live gregariously in family groups, vertical and horizontal transmission of infections could have tremendous effects on individuals and consequently impact population dynamics in nature. We used the Alphabaculovirus type strain Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and demonstrated that positive concentration-dependent baculovirus exposure leads to prolonged developmental time and decreased survival during larval and pupal development, with no sex specific differences. Viral exposure did not influence relative thorax mass or wing morphometric traits often related to flight ability, yet melanisation of the wings increased with viral exposure, potentially influencing disease resistance or flight capacity via thermal regulation. Further research is needed to explore effects under sub-optimal conditions, determine effects on fitness-related traits, and investigate a potential adaptive response of increased melanisation in the wings due to baculovirus exposure.
Collapse
Affiliation(s)
- Luisa Woestmann
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, Viikinkaari 1, 00014 University of Helsinki, Finland.
| | - Melanie Gibbs
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom.
| | - Helen Hesketh
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom.
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, Viikinkaari 1, 00014 University of Helsinki, Finland.
| |
Collapse
|
16
|
Quintero C, Bowers MD. Plant and herbivore ontogeny interact to shape the preference, performance and chemical defense of a specialist herbivore. Oecologia 2018; 187:401-412. [DOI: 10.1007/s00442-018-4068-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
17
|
Habtemariam S. Iridoids and Other Monoterpenes in the Alzheimer's Brain: Recent Development and Future Prospects. Molecules 2018; 23:molecules23010117. [PMID: 29316661 PMCID: PMC6017424 DOI: 10.3390/molecules23010117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Iridoids are a class of monoterpenoid compounds constructed from 10-carbon skeleton of isoprene building units. These compounds in their aglycones and glycosylated forms exist in nature to contribute to mechanisms related to plant defenses and diverse plant-animal interactions. Recent studies have also shown that iridoids and other structurally related monoterpenes display a vast array of pharmacological effects that make them potential modulators of the Alzheimer’s disease (AD). This review critically evaluates the therapeutic potential of these natural products by assessing key in vitro and in vivo data published in the scientific literature. Mechanistic approach of scrutiny addressing their effects in the Alzheimer’s brain including the τ-protein phosphorylation signaling, amyloid beta (Aβ) formation, aggregation, toxicity and clearance along with various effects from antioxidant to antiinflammatory mechanisms are discussed. The drug likeness of these compounds and future prospects to consider in their development as potential leads are addressed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
18
|
Rosa E, van Nouhuys S, Saastamoinen M. The more the merrier: Conspecific density improves performance of gregarious larvae and reduces susceptibility to a pupal parasitoid. Ecol Evol 2017; 7:10710-10720. [PMID: 29299251 PMCID: PMC5743493 DOI: 10.1002/ece3.3571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Aggregation can confer advantages in animal foraging, defense, and thermoregulation. There is a tight connection between the evolution of insect sociality and a highly effective immune system, presumably to inhibit rapid disease spread in a crowded environment. This connection is less evident for animals that spend only part of their life cycle in a social environment, such as noneusocial gregarious insects. Our aim was to elucidate the effects of group living by the gregarious larvae of the Glanville fritillary butterfly with respect to individual performance, immunity, and susceptibility to a parasitoid. We were also interested in the role of family relative to common postdiapause environment in shaping life‐history traits. Larvae were reared at high or low density and then exposed to the pupal parasitoid wasp Pteromalus apum, either in presence or absence of a previous immune challenge that was used to measure the encapsulation immune response. Surviving adult butterflies were further tested for immunity. The wasp offspring from successfully parasitized butterfly pupae were counted and their brood sex ratios assessed. Larvae reared at high density grew larger and faster than those at low density. Despite high mortality due to parasitism, survival was greater among individuals with high pupal immunity in both density treatments. Moreover, butterfly pupae reared at high density were able to kill a larger fraction of individuals in the parasitoid broods, although this did not increase survival of the host. Finally, a larger proportion of variation observed in most of the traits was explained by butterfly family than by common postdiapause rearing environment, except for adult survival and immunity, for which this pattern was reversed. This gregarious butterfly clearly benefits from high conspecific density in terms of developmental performance and its ability to fight a parasitoid. These positive effects may be driven by cooperative interactions during feeding.
Collapse
Affiliation(s)
- Elena Rosa
- Department of Biosciences Metapopulation Research Centre University of Helsinki Helsinki Finland
| | - Saskya van Nouhuys
- Department of Biosciences Metapopulation Research Centre University of Helsinki Helsinki Finland.,Department of Entomology Cornell University Ithaca NY USA
| | - Marjo Saastamoinen
- Department of Biosciences Metapopulation Research Centre University of Helsinki Helsinki Finland
| |
Collapse
|
19
|
Lindstedt C, Boncoraglio G, Cotter S, Gilbert J, Kilner RM. Aposematism in the burying beetle? Dual function of anal fluid in parental care and chemical defense. Behav Ecol 2017. [DOI: 10.1093/beheco/arx100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
McKay AF, Ezenwa VO, Altizer S. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies. Physiol Biochem Zool 2016; 89:389-401. [DOI: 10.1086/687989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Bandoly M, Grichnik R, Hilker M, Steppuhn A. Priming of anti-herbivore defence in Nicotiana attenuata by insect oviposition: herbivore-specific effects. PLANT, CELL & ENVIRONMENT 2016; 39:848-59. [PMID: 26566692 DOI: 10.1111/pce.12677] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 05/28/2023]
Abstract
Oviposition by Spodoptera exigua on Nicotiana attenuata primes plant defence against its larvae that consequently suffer reduced performance. To reveal whether this is a general response of tobacco to insect oviposition or species-specific, we investigated whether also Manduca sexta oviposition primes N. attenuata's anti-herbivore defence. The plant response to M. sexta and S. exigua oviposition overlapped in the egg-primed feeding-induced production of the phenylpropanoid caffeoylputrescine. While M. sexta larvae were unaffected in their performance, they showed a novel response to the oviposition-mediated plant changes: a reduced antimicrobial activity in their haemolymph. In a cross-resistance experiment, S. exigua larvae suffered reduced performance on M. sexta-oviposited plants like they did on S. exigua-oviposited plants. The M. sexta oviposition-mediated plant effects on the S. exigua larval performance and on M. sexta larval immunity required expression of the NaMyb8 transcription factor that is governing biosynthesis of phenylpropanoids such as caffeoylputrescine. Thus, NaMyb8-dependent defence traits mediate the effects that oviposition by both lepidopteran species exerts on the plant's anti-herbivore defence. These results suggest that oviposition by lepidopteran species on N. attenuata leaves may generally prime the feeding-induced production of certain plant defence compounds but that different herbivore species show different susceptibility to egg-primed plant effects.
Collapse
Affiliation(s)
- Michele Bandoly
- Molecular Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie Universität (FU) Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Roland Grichnik
- Molecular Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie Universität (FU) Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, DCPS, Institute of Biology, FU Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie Universität (FU) Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| |
Collapse
|
22
|
Ode PJ, Johnson SN, Moore BD. Atmospheric change and induced plant secondary metabolites - are we reshaping the building blocks of multi-trophic interactions? CURRENT OPINION IN INSECT SCIENCE 2014; 5:57-65. [PMID: 32846743 DOI: 10.1016/j.cois.2014.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/10/2014] [Indexed: 06/11/2023]
Abstract
At least for the foreseeable future, atmospheric concentrations of greenhouse gases - particularly carbon dioxide (CO2) and ozone (O3) - are projected to rise inexorably. Recent studies have begun to unveil the complex nature of how these gases modulate the expression of plant signaling hormones, the defensive chemistries produced, and the responses of the myriad trophic interactions involving plant pathogens as well as insect herbivores and their natural enemies. Given the ubiquity of complex trophic interactions in both natural and managed systems, it is crucial that we understand how CO2 and O3 interact with defense signaling hormones of plants and their consequences for their trophic associates if we are to adapt to, and even mitigate, the effects of climate change.
Collapse
Affiliation(s)
- Paul J Ode
- Bioagricultural Sciences & Pest Management and The Graduate Degree Program in Ecology, Colorado State University, CO, USA.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| |
Collapse
|
23
|
Reduced plant nutrition under elevated CO₂ depresses the immunocompetence of cotton bollworm against its endoparasite. Sci Rep 2014; 4:4538. [PMID: 24687002 PMCID: PMC3971403 DOI: 10.1038/srep04538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/14/2014] [Indexed: 11/25/2022] Open
Abstract
Estimating the immunocompetence of herbivore insects under elevated CO2 is an important step in understanding the effects of elevated CO2 on crop-herbivore-natural enemy interactions. Current study determined the effect of elevated CO2 on the immune response of Helicoverpa armigera against its parasitoid Microplitis mediator. H. armigera were reared in growth chambers with ambient or elevated CO2, and fed wheat grown in the concentration of CO2 corresponding to their treatment levels. Our results showed that elevated CO2 decreases the nutritional quality of wheat, and reduces the total hemocyte counts and impairs the capacity of hemocyte spreading of hemolymph of cotton bollworm larvae, fed wheat grown in the elevated CO2, against its parasitoid; however, this effect was insufficient to change the development and parasitism traits of M. mediator. Our results suggested that lower plant nutritional quality under elevated CO2 could decrease the immune response of herbivorous insects against their parasitoid natural enemies.
Collapse
|
24
|
Saastamoinen M, Rantala MJ. Influence of developmental conditions on immune function and dispersal-related traits in the Glanville fritillary (Melitaea cinxia) butterfly. PLoS One 2013; 8:e81289. [PMID: 24278412 PMCID: PMC3838396 DOI: 10.1371/journal.pone.0081289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022] Open
Abstract
Organisms in the wild are constantly faced with a wide range of environmental variability, such as fluctuation in food availability. Poor nutritional conditions influence life-histories via individual resource allocation patterns, and trade-offs between competing traits. In this study, we assessed the influence of food restriction during development on the energetically expensive traits flight metabolic rate (proxy of dispersal ability), encapsulation rate (proxy of immune defence), and lifespan using the Glanville fritillary butterfly, Melitaea cinxia, as a model organism. Additionally, we examined the direct costs of flight on individual immune function, and whether those costs increase under restricted environmental conditions. We found that nutritional restriction during development enhanced adult encapsulations rate, but reduced both resting and flight metabolic rates. However, at the individual level metabolic rates were not associated with encapsulation rate. Interestingly, individuals that were forced to fly prior to the immune assays had higher encapsulation rates than individuals that had not flown, suggesting that flying itself enhances immune response. Finally, in the control group encapsulation rate correlated positively with lifespan, whereas in the nutritional restriction group there was no relationship between these traits, suggesting that the association between encapsulation rate on adult lifespan was condition-dependent. Thus stressful events during both larval development (food limitation) and adulthood (forced flight) induce increased immune response in the adult butterflies, which may allow individuals to cope with stressful events later on in life.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biological Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| | | |
Collapse
|
25
|
Luo S, Shu C, Xu C, Wang R. Molecular cloning and expression in vitro of a carboxylesterase gene from the Glanville fritillary butterfly (Melitaea cinxia). Gene 2013; 524:275-81. [PMID: 23603019 DOI: 10.1016/j.gene.2013.03.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/04/2013] [Accepted: 03/29/2013] [Indexed: 10/26/2022]
Abstract
Carboxylesterase (EC 3.1.1.1) is a member of the carboxyl/cholinesterase (CCE) superfamily, which is widely distributed in animals, plants and microorganisms. This enzyme has been known to be associated with insecticide resistance and detoxification. Although CCEs have been extensively studied in insects, including lepidopterans, the research on butterflies, a major subgroup in Lepidoptera, is still poor. In the present study, we cloned a CCE gene (McCCE1) from the Glanville fritillary butterfly (Melitaea cinxia, Lepidoptera: Nymphalidae). The full-length cDNA encoding McCCE1 was 1786 bp, containing a 1641 bp open reading frame encoding 546 amino acids, a 38 bp 5'-untranslated region (5'-UTR), and a 107 bp 3'-UTR with a poly(A) tail. The functionally conserved amino acids in McCCE1 shared the 55% identity with the cytoplasmic esterase CCE017a in Helicoverpa armigera (Lepidoptera: Noctuidae), which has been associated with detoxification. Assays in vitro showed that the recombinant McCCE1 could hydrolyze α- and β-naphthyl acetate. Thus, the present study adds to the body of knowledge concerning the detoxification of pesticides by lepidopterans.
Collapse
Affiliation(s)
- Shiqi Luo
- College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
26
|
Low C, Ellner SP, Holden MH. Optimal control and cold war dynamics between plant and herbivore. Am Nat 2013; 182:E25-39. [PMID: 23852361 DOI: 10.1086/670810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Herbivores eat the leaves that a plant needs for photosynthesis. However, the degree of antagonism between plant and herbivore may depend critically on the timing of their interactions and the intrinsic value of a leaf. We present a model that investigates whether and when the timing of plant defense and herbivore feeding activity can be optimized by evolution so that their interactions can move from antagonistic to neutral. We assume that temporal changes in environmental conditions will affect intrinsic leaf value, measured as potential carbon gain. Using optimal-control theory, we model herbivore evolution, first in response to fixed plant strategies and then under coevolutionary dynamics in which the plant also evolves in response to the herbivore. In the latter case, we solve for the evolutionarily stable strategies of plant defense induction and herbivore hatching rate under different ecological conditions. Our results suggest that the optimal strategies for both plant and herbivore are to avoid direct conflict. As long as the plant has the capability for moderately lethal defense, the herbivore will modify its hatching rate to avoid plant defenses, and the plant will never have to use them. Insights from this model offer a possible solution to the paradox of sublethal defenses and provide a mechanism for stable plant-herbivore interactions without the need for natural enemy control.
Collapse
Affiliation(s)
- Candace Low
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
27
|
van Nouhuys S, Niemikapee S, Hanski I. Variation in a Host-Parasitoid Interaction across Independent Populations. INSECTS 2012; 3:1236-56. [PMID: 26466737 PMCID: PMC4553574 DOI: 10.3390/insects3041236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 01/10/2023]
Abstract
Antagonistic relationships between parasitoids and their insect hosts involve multiple traits and are shaped by their ecological and evolutionary context. The parasitoid wasp Cotesia melitaearum and its host butterfly Melitaea cinxia occur in several locations around the Baltic sea, with differences in landscape structure, population sizes and the histories of the populations. We compared the virulence of the parasitoid and the susceptibility of the host from five populations in a reciprocal transplant-style experiment using the progeny of five independent host and parasitoid individuals from each population. The host populations showed significant differences in the rate of encapsulation and parasitoid development rate. The parasitoid populations differed in brood size, development rate, pupal size and adult longevity. Some trait differences depended on specific host-parasitoid combinations, but neither species performed systematically better or worse in experiments involving local versus non-local populations of the other species. Furthermore, individuals from host populations with the most recent common ancestry did not perform alike, and there was no negative effect due to a history of inbreeding in the parasitoid. The complex pattern of variation in the traits related to the vulnerability of the host and the ability of the parasitoid to exploit the host may reflect multiple functions of the traits that would hinder simple local adaptation.
Collapse
Affiliation(s)
- Saskya van Nouhuys
- Department of Biosciences, PO Box 65 (Viikinkaari 1), University of Helsinki, FI 00014, Finland.
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Suvi Niemikapee
- Department of Biosciences, PO Box 65 (Viikinkaari 1), University of Helsinki, FI 00014, Finland.
| | - Ilkka Hanski
- Department of Biosciences, PO Box 65 (Viikinkaari 1), University of Helsinki, FI 00014, Finland.
| |
Collapse
|
28
|
Zhang J, Friman VP, Laakso J, Mappes J. Interactive effects between diet and genotypes of host and pathogen define the severity of infection. Ecol Evol 2012; 2:2347-56. [PMID: 23139892 PMCID: PMC3488684 DOI: 10.1002/ece3.356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/18/2012] [Accepted: 07/22/2012] [Indexed: 01/07/2023] Open
Abstract
Host resistance and parasite virulence are influenced by multiple interacting factors in complex natural communities. Yet, these interactive effects are seldom studied concurrently, resulting in poor understanding of host-pathogen-environment dynamics. Here, we investigated how the level of opportunist pathogen virulence, strength of host immunity and the host condition manipulated via diet affect the survival of wood tiger moth Parasemia plantaginis (Arctidae). Larvae from "low cuticular melanin" and "high cuticular melanin" (considered as low and high pathogen resistance, respectively) selection lines were infected with moderately and highly virulent bacteria strains of Serratia marcescens, while simultaneously manipulating host diet (with or without antibacterial compounds). We measured host survival and food preference before and after infection to test whether the larvae "self-medicate" by choosing an anti-infection diet (Plantago major, i.e., plantain leaf) over lettuce (Lactuca sativa). "High melanin" larvae were more resistant than "low melanin" larvae to the less virulent strain that had slower growth and colonization rate compared with the more virulent strain. Cuticular melanin did not enhance survival when the larvae were infected with the highly virulent strain. Anti-infection diet enhanced survival of the "high melanin" but not the "low melanin" hosts. Survival was dependent on family origin even within the melanin selection lines. Despite the intrinsic preference for lettuce, no evidence of self-medication was found. These results demonstrate that the relative benefit of host cuticular melanin depends on both diet and pathogen virulence: plantain diet only boosted the immunity of already resistant "high melanin" hosts, and cuticular melanin increased host survival only when infected with moderately virulent pathogen. Moreover, there was considerable variation in host survival between families within both melanin lines suggesting genetic basis for resistance. These results indicate that although melanin is an important predictor of insect immunity, its effect on disease outcomes greatly depends on other interacting factors.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä P.O. Box 35, 40014, Jyväskylä, Finland ; Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Helsinki P.O. Box 65, 00014, Helsinki, Finland
| | | | | | | |
Collapse
|
29
|
Direct and trans-generational responses to food deprivation during development in the Glanville fritillary butterfly. Oecologia 2012; 171:93-104. [PMID: 22814878 DOI: 10.1007/s00442-012-2412-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Life history characteristics and resulting fitness consequences manifest not only in an individual experiencing environmental conditions but also in its offspring via trans-generational effects. We conducted a set of experiments to assess the direct and trans-generational effects of food deprivation in the Glanville fritillary butterfly Melitaea cinxia. Food availability was manipulated during the final stages of larval development and performance was assessed during two generations. Direct responses to food deprivation were relatively minor. Food-deprived individuals compensated, via increased development time, to reach a similar mass as adults from the control group. Delayed costs of compensatory growth were observed, as food-deprived individuals had either reduced fecundity or lifespan depending on the type of feeding treatment they had experienced (intermittent vs. continuous). Female food deprivation did not directly affect her offspring's developmental trajectory, but the way the offspring coped with food deprivation. Offspring of mothers from control or intermittent starvation treatments reached the size of those in the control group via increased development time when being starved. In contrast, offspring of mothers that had experienced 2 days of continuous food deprivation grew even larger than control animals, when deprived of food themselves. Offspring of food-deprived Glanville fritillary initially showed poor immune response to parasitism, but not later on in development.
Collapse
|
30
|
Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores. INSECTS 2012; 3:573-92. [PMID: 26466545 PMCID: PMC4553612 DOI: 10.3390/insects3020573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/25/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
Specialist and generalist insect herbivore species often differ in how they respond to host plant traits, particularly defensive traits, and these responses can include weakened or strengthened immune responses to pathogens and parasites. Accurate methods to measure immune response in the presence and absence of pathogens and parasites are necessary to determine whether susceptibility to these natural enemies is reduced or increased by host plant traits. Plant chemical traits are particularly important in that host plant metabolites may function as antioxidants beneficial to the immune response, or interfere with the immune response of both specialist and generalist herbivores. Specialist herbivores that are adapted to process and sometimes accumulate specific plant compounds may experience high metabolic demands that may decrease immune response, whereas the metabolic demands of generalist species differ due to more broad-substrate enzyme systems. However, the direct deleterious effects of plant compounds on generalist herbivores may weaken their immune responses. Further research in this area is important given that the ecological relevance of plant traits to herbivore immune responses is equally important in natural systems and agroecosystems, due to potential incompatibility of some host plant species and cultivars with biological control agents of herbivorous pests.
Collapse
|
31
|
Reudler JH, Biere A, Harvey JA, van Nouhuys S. Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J Chem Ecol 2011; 37:765-78. [PMID: 21691810 PMCID: PMC3125503 DOI: 10.1007/s10886-011-9983-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 11/04/2022]
Abstract
The ability to cope with plant defense chemicals differs between specialist and generalist species. In this study, we examined the effects of the concentration of the two main iridoid glycosides (IGs) in Plantago lanceolata, aucubin and catalpol, on the performance of a specialist and two generalist herbivores and their respective endoparasitoids. Development of the specialist herbivore Melitaea cinxia was unaffected by the total leaf IG concentration in its host plant. By contrast, the generalist herbivores Spodoptera exigua and Chrysodeixis chalcites showed delayed larval and pupal development on plant genotypes with high leaf IG concentrations, respectively. This result is in line with the idea that specialist herbivores are better adapted to allelochemicals in host plants on which they are specialized. Melitaea cinxia experienced less post-diapause larval and pupal mortality on its local Finnish P. lanceolata than on Dutch genotypes. This could not be explained by differences in IG profiles, suggesting that M. cinxia has adapted in response to attributes of its local host plants other than to IG chemistry. Development of the specialist parasitoid Cotesia melitaearum was unaffected by IG variation in the diet of its host M. cinxia, a response that was concordant with that of its host. By contrast, the development time responses of the generalist parasitoids Hyposoter didymator and Cotesia marginiventris differed from those of their generalist hosts, S. exigua and C. chalcites. While their hosts developed slowly on high-IG genotypes, development time of H. didymator was unaffected. Cotesia marginiventris actually developed faster on hosts fed high-IG genotypes, although they then had short adult longevity. The faster development of C. marginiventris on hosts that ate high-IG genotypes is in line with the “immunocompromized host” hypothesis, emphasizing the potential negative effects of toxic allelochemicals on the host’s immune response.
Collapse
Affiliation(s)
- Joanneke H Reudler
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|