1
|
Segaran TC, Azra MN, Mohd Noor MI, Danish-Daniel M, Burlakovs J, Lananan F, Xu J, Kari ZA, Wei LS. Knowledge mapping analysis of the global seaweed research using CiteSpace. Heliyon 2024; 10:e28418. [PMID: 38560172 PMCID: PMC10981124 DOI: 10.1016/j.heliyon.2024.e28418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Seaweed research has gained substantial momentum in recent years, attracting the attention of researchers, academic institutions, industries, policymakers, and philanthropists to explore its potential applications and benefits. Despite the growing body of literature, there is a paucity of comprehensive scientometric analyses, highlighting the need for an in-depth investigation. In this study, we utilized CiteSpace to examine the global seaweed research landscape through the Web of Science Core Collection database, assessing publication trends, collaboration patterns, network structures, and co-citation analyses across 48,278 original works published since 1975. Our results demonstrate a diverse and active research community, with a multitude of authors and journals contributing to the advancement of seaweed science. Thematic co-citation cluster analysis identified three primary research areas: "Coral reef," "Solar radiation," and "Mycosporine-like amino acid," emphasizing the multidisciplinary nature of seaweed research. The increasing prominence of "Chemical composition" and "Antioxidant" keywords indicates a burgeoning interest in characterizing the nutritional value and health-promoting properties of seaweed. Timeline co-citation analysis unveils that recent research priorities have emerged around the themes of coral reefs, ocean acidification, and antioxidants, underlining the evolving focus and interdisciplinary approach of the field. Moreover, our analysis highlights the potential of seaweed as a functional food product, poised to contribute significantly to addressing global food security and sustainability challenges. This study underscores the importance of bibliometric analysis in elucidating the global seaweed research landscape and emphasizes the need for sustained knowledge exchange and collaboration to drive the field forward. By revealing key findings and emerging trends, our research offers valuable insights for academics and stakeholders, fostering a more profound understanding of seaweed's potential and informing future research endeavors in this promising domain.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, 83352, Indonesia
| | - Mohd Iqbal Mohd Noor
- Faculty of Business Management, Universiti Teknologi MARA (UiTM) (Pahang), 27600, Raub, Pahang, Malaysia
- Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
| | - Fathurrahman Lananan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, 21300, Malaysia
| | - Juntian Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, No. 59 Cangwu Road, Haizhou District, Lianyungang City, Jiangsu, China
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| |
Collapse
|
2
|
Adouane E, Mercier C, Mamelle J, Willocquet E, Intertaglia L, Burgunter-Delamare B, Leblanc C, Rousvoal S, Lami R, Prado S. Importance of quorum sensing crosstalk in the brown alga Saccharina latissima epimicrobiome. iScience 2024; 27:109176. [PMID: 38433891 PMCID: PMC10906538 DOI: 10.1016/j.isci.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Brown macroalgae are colonized by diverse microorganisms influencing the physiology of their host. However, cell-cell interactions within the surface microbiome (epimicrobiome) are largely unexplored, despite the significance of specific chemical mediators in maintaining host-microbiome homeostasis. In this study, by combining liquid chromatography coupled to mass spectrometry (LC-MS) analysis and bioassays, we demonstrated that the widely diverse fungal epimicrobiota of the brown alga Saccharina latissima can affect quorum sensing (QS), a type of cell-cell interaction, as well as bacterial biofilm formation. We also showed the ability of the bacterial epimicrobiota to form and inhibit biofilm growth, as well as to activate or inhibit QS pathways. Overall, we demonstrate that QS and anti-QS compounds produced by the epimicrobiota are key metabolites in these brown algal epimicrobiota communities and highlight the importance of exploring this epimicrobiome for the discovery of new bioactive compounds, including potentially anti-QS molecules with antifouling properties.
Collapse
Affiliation(s)
- Emilie Adouane
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Camille Mercier
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Jeanne Mamelle
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emma Willocquet
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, Bio2Mar, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Bertille Burgunter-Delamare
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sylvie Rousvoal
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Soizic Prado
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
3
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Hudson J, Egan S. Marine diseases and the Anthropocene: Understanding microbial pathogenesis in a rapidly changing world. Microb Biotechnol 2024; 17:e14397. [PMID: 38217393 PMCID: PMC10832532 DOI: 10.1111/1751-7915.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
Healthy marine ecosystems are paramount for Earth's biodiversity and are key to sustaining the global economy and human health. The effects of anthropogenic activity represent a pervasive threat to the productivity of marine ecosystems, with intensifying environmental stressors such as climate change and pollution driving the occurrence and severity of microbial diseases that can devastate marine ecosystems and jeopardise food security. Despite the potentially catastrophic outcomes of marine diseases, our understanding of host-pathogen interactions remains an understudied aspect of both microbiology and environmental research, especially when compared to the depth of information available for human and agricultural systems. Here, we identify three avenues of research in which we can advance our understanding of marine disease in the context of global change, and make positive steps towards safeguarding marine communities for future generations.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Li J, Weinberger F, de Nys R, Thomas T, Egan S. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 2023; 41:545-556. [PMID: 36089422 DOI: 10.1016/j.tibtech.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, Tasmania 7190, Australia and College of Science and Engineering, James Cook University, Townsville 4810, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
6
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
7
|
Bonthond G, Neu A, Bayer T, Krueger‐Hadfield SA, Künzel S, Weinberger F. Non-native hosts of an invasive seaweed holobiont have more stable microbial communities compared to native hosts in response to thermal stress. Ecol Evol 2023; 13:e9753. [PMID: 36713485 PMCID: PMC9873590 DOI: 10.1002/ece3.9753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Seaweeds are colonized by a microbial community, which can be directly linked to their performance. This community is shaped by an interplay of stochastic and deterministic processes, including mechanisms which the holobiont host deploys to manipulate its associated microbiota. The Anna Karenina principle predicts that when a holobiont is exposed to suboptimal or stressful conditions, these host mechanisms may be compromised. This leads to a relative increase of stochastic processes that may potentially result in the succession of a microbial community harmful to the host. Based on this principle, we used the variability in microbial communities (i.e., beta diversity) as a proxy for stability within the invasive holobiont Gracilaria vermiculophylla during a simulated invasion in a common garden experiment. Independent of host range, host performance declined at elevated temperature (22°C) and disease incidence and beta diversity increased. Under thermally stressful conditions, beta diversity increased more in epibiota from native populations, suggesting that epibiota from non-native holobionts are thermally more stable. This pattern reflects an increase in deterministic processes acting on epibiota associated with non-native hosts, which in the setting of a common garden can be assumed to originate from the host itself. Therefore, these experimental data suggest that the invasion process may have selected for hosts better able to maintain stable microbiota during stress. Future studies are needed to identify the underlying host mechanisms.
Collapse
Affiliation(s)
- Guido Bonthond
- Institute for Chemistry and Biology of the Marine environment (ICBM)Carl‐von‐Ossietzky University OldenburgWilhelmshavenGermany
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | | | - Till Bayer
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | | | - Sven Künzel
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | |
Collapse
|
8
|
Li H, Li JJ, Gao TH, Bi YX, Liu ZY. The Influence of Host Specificity and Temperature on Bacterial Communities Associated with Sargassum (Phaeophyceae) Species. JOURNAL OF PHYCOLOGY 2022; 58:815-828. [PMID: 36308470 DOI: 10.1111/jpy.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Host-related microbiota are critically important for the adaptation/acclimation of hosts to changing environments, but how environmental factors and host characteristics shape the microbial communities remains largely unknown. We investigated the effects of temperature on habitat-forming macroalgae and their associated bacterial communities. Three Sargassum species (S. horneri, S. fusiforme, and S. thunbergii) and seawater samples were sampled in Gouqi Island, China, and these macroalgal samples were incubated at different temperatures (10, 20, and 27°C) for 7 d. Bacterial communities were identified from the 16S rRNA gene V3-V4 regions. The algae-associated bacterial communities of the field samples were significantly different from seawater, implying host specificity. During laboratory incubation, decreased physiological status (photosynthetic rate and oxidative stress response) was detected for all the species at 10°C, especially with regard to S. horneri and S. fusiforme. For each host, associated bacterial communities at 20 and 27°C clustered closely, and these were separated from samples at 10°C based on constrained PCoA analyses. Permutational multivariate analysis of variance revealed that algae-associated bacterial communities were more affected by host species (23.3%) than by temperature (2.48%) during laboratory incubation. The changes in bacterial community composition may be influenced by algae metabolites, which should be tested in a future study. These results further contribute to our understanding of algal microbiome changes in response to environmental changes.
Collapse
Affiliation(s)
- Huan Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Jing-Jing Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Tian-Heng Gao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yuan-Xin Bi
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
9
|
Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1015592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Collapse
|
10
|
Modelling Antifouling compounds of Macroalgal Holobionts in Current and Future pH Conditions. J Chem Ecol 2022; 48:455-473. [DOI: 10.1007/s10886-021-01340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
|
11
|
Bacterial controlled mitigation of dysbiosis in a seaweed disease. THE ISME JOURNAL 2022; 16:378-387. [PMID: 34341505 PMCID: PMC8776837 DOI: 10.1038/s41396-021-01070-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Disease in the marine environment is predicted to increase with anthropogenic stressors and already affects major habitat-formers, such as corals and seaweeds. Solutions to address this issue are urgently needed. The seaweed Delisea pulchra is prone to a bleaching disease, which is caused by opportunistic pathogens and involves bacterial dysbiosis. Bacteria that can inhibit these pathogens and/or counteract dysbiosis are therefore hypothesised to reduce disease. This study aimed to identify such disease-protective bacteria and investigate their protective action. One strain, Phaeobacter sp. BS52, isolated from healthy D. pulchra, was antagonistic towards bleaching pathogens and significantly increased the proportion of healthy individuals when applied before the pathogen challenge (pathogen-only vs. BS52 + pathogen: 41-80%), and to a level similar to the control. However, no significant negative correlations between the relative abundances of pathogens and BS52 on D. pulchra were detected. Instead, inoculation of BS52 mitigated pathogen-induced changes in the epibacterial community. These observations suggest that the protective activity of BS52 was due to its ability to prevent dysbiosis, rather than direct pathogen inhibition. This study demonstrates the feasibility of manipulating bacterial communities in seaweeds to reduce disease and that mitigation of dysbiosis can have positive health outcomes.
Collapse
|
12
|
Paix B, Potin P, Schires G, Le Poupon C, Misson B, Leblanc C, Culioli G, Briand JF. Synergistic effects of temperature and light affect the relationship between Taonia atomaria and its epibacterial community: a controlled conditions study. Environ Microbiol 2021; 23:6777-6797. [PMID: 34490980 DOI: 10.1111/1462-2920.15758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
In the context of global warming, this study aimed to assess the effect of temperature and irradiance on the macroalgal Taonia atomaria holobiont dynamics. We developed an experimental set-up using aquaria supplied by natural seawater with three temperatures combined with three irradiances. The holobiont response was monitored over 14 days using a multi-omics approach coupling algal surface metabolomics and metabarcoding. Both temperature and irradiance appeared to shape the microbiota and the surface metabolome, but with a distinct temporality. Epibacterial community first changed according to temperature, and later in relation to irradiance, while the opposite occurred for the surface metabolome. An increased temperature revealed a decreasing richness of the epiphytic community together with an increase of several bacterial taxa. Irradiance changes appeared to quickly impact surface metabolites production linked with the algal host photosynthesis (e.g. mannitol, fucoxanthin, dimethylsulfoniopropionate), which was hypothesized to explain modifications of the structure of the epiphytic community. Algal host may also directly adapt its surface metabolome to changing temperature with time (e.g. lipids content) and also in response to changing microbiota (e.g. chemical defences). Finally, this study brought new insights highlighting complex direct and indirect responses of seaweeds and their associated microbiota under changing environments.
Collapse
Affiliation(s)
- Benoit Paix
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | - Philippe Potin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gaëtan Schires
- Sorbonne Université, CNRS, Center for Biological Marine Resources (CRBM), FR 2424, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | | |
Collapse
|
13
|
Yang F, Xiao Z, Wei Z, Long L. Bacterial Communities Associated With Healthy and Bleached Crustose Coralline Alga Porolithon onkodes. Front Microbiol 2021; 12:646143. [PMID: 34177828 PMCID: PMC8219876 DOI: 10.3389/fmicb.2021.646143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Crustose coralline algae (CCA) play vital roles in producing and stabilizing reef structures and inducing the settlement and metamorphosis of invertebrate larvae in coral reef ecosystems. However, little is known about the bacterial communities associated with healthy and bleached CCA and their interactions with coral larval settlement. We collected samples of healthy, middle semi-bleached, and bleached CCA Porolithon onkodes from Sanya Bay in the South China Sea and investigated their influences on the larval settlement and metamorphosis of the reef-building coral Pocillopora damicornis. The larval settlement/metamorphosis rates all exceeded 70% when exposed to healthy, middle semi-bleached, and bleached algae. Furthermore, the compositions of bacterial community using amplicon pyrosequencing of the V3–V4 region of 16S rRNA were investigated. There were no obvious changes in bacterial community structure among healthy, middle semi-bleached, and bleached algae. Alphaproteobacteria, Bacteroidetes, and Gammaproteobacteria were dominant in all samples, which may contribute to coral larval settlement. However, the relative abundances of several bacterial communities varied among groups. The relative abundances of Mesoflavibacter, Ruegeria, Nautella, and Alteromonas in bleached samples were more than double those in the healthy samples, whereas Fodinicurvata and unclassified Rhodobacteraceae were significantly lower in the bleached samples. Additionally, others at the genus level increased significantly from 8.5% in the healthy samples to 22.93% in the bleached samples, which may be related to algal bleaching. These results revealed that the microbial community structure associated with P. onkodes generally displayed a degree of stability. Furthermore, bleached alga was still able to induce larval settlement and metamorphosis.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiliang Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Dittami SM, Arboleda E, Auguet JC, Bigalke A, Briand E, Cárdenas P, Cardini U, Decelle J, Engelen AH, Eveillard D, Gachon CMM, Griffiths SM, Harder T, Kayal E, Kazamia E, Lallier FH, Medina M, Marzinelli EM, Morganti TM, Núñez Pons L, Prado S, Pintado J, Saha M, Selosse MA, Skillings D, Stock W, Sunagawa S, Toulza E, Vorobev A, Leblanc C, Not F. A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ 2021; 9:e10911. [PMID: 33665032 PMCID: PMC7916533 DOI: 10.7717/peerj.10911] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.
Collapse
Affiliation(s)
- Simon M Dittami
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Enrique Arboleda
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - Arite Bigalke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Enora Briand
- Laboratoire Phycotoxines, Ifremer, Nantes, France
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulisse Cardini
- Integrative Marine Ecology Dept, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Johan Decelle
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, Grenoble, France
| | | | - Damien Eveillard
- Laboratoire des Sciences Numériques de Nantes (LS2N), Université de Nantes, CNRS, Nantes, France
| | - Claire M M Gachon
- Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
| | - Sarah M Griffiths
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Ehsan Kayal
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - François H Lallier
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Ezequiel M Marzinelli
- Ecology and Environment Research Centre, The University of Sydney, Sydney, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Sydney Institute of Marine Science, Mosman, Australia
| | | | - Laura Núñez Pons
- Section Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Soizic Prado
- Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of Natural History, CNRS, Paris, France
| | - José Pintado
- Instituto de Investigaciones Marinas, CSIC, Vigo, Spain
| | - Mahasweta Saha
- Benthic Ecology, Helmholtz Center for Ocean Research, Kiel, Germany.,Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Marc-André Selosse
- National Museum of Natural History, Département Systématique et Evolution, Paris, France.,Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Derek Skillings
- Philosophy Department, University of Pennsylvania, Philadelphia, United States of America
| | - Willem Stock
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinichi Sunagawa
- Dept. of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
| | - Eve Toulza
- IHPE, Univ. de Montpellier, CNRS, IFREMER, UPDV, Perpignan, France
| | - Alexey Vorobev
- CEA - Institut de Biologie François Jacob, Genoscope, Evry, France
| | - Catherine Leblanc
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Fabrice Not
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| |
Collapse
|
15
|
The role of host promiscuity in the invasion process of a seaweed holobiont. ISME JOURNAL 2021; 15:1668-1679. [PMID: 33479490 PMCID: PMC8163768 DOI: 10.1038/s41396-020-00878-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar -or more common- microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.
Collapse
|
16
|
Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 2020; 18:1221-1233. [PMID: 32749905 DOI: 10.1080/14787210.2020.1794815] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Numerous bacterial behaviors are regulated by a cell-density dependent mechanism known as Quorum Sensing (QS). QS relies on communication between bacterial cells using diffusible signaling molecules known as autoinducers. QS regulates physiological processes such as metabolism, virulence, and biofilm formation. Quorum Quenching (QQ) is the inhibition of QS using chemical or enzymatic means to counteract behaviors regulated by QS. AREAS COVERED We examine the main, diverse QS mechanisms present in bacterial species, with a special emphasis on AHL-mediated QS. We also discuss key in vitro and in vivo systems in which interference in QS was investigated. Additionally, we highlight promising developments, such as the substrate preference of the used enzymatic quencher, in the application of interference in QS to counter bacterial virulence. EXPERT OPINION Enabled via the recent isolation of highly stable quorum quenching enzymes and/or molecular engineering efforts, the effects of the interference in QS were recently evaluated outside of the traditional model of single species culture. Signal disruption in complex microbial communities was shown to result in the disruption of complex microbial behaviors, and changes in population structures. These new findings, and future studies, may result in significant changes in the traditional views about QS.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| |
Collapse
|
17
|
Dong SH, Nhu-Lam M, Nagarajan R, Nair SK. Structure-Guided Biochemical Analysis of Quorum Signal Synthase Specificities. ACS Chem Biol 2020; 15:1497-1504. [PMID: 32356962 DOI: 10.1021/acschembio.0c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many bacteria use membrane-diffusible small molecule quorum signals to coordinate gene transcription in response to changes in cell density, known as quorum sensing (QS). Among these, acyl-homoserine lactones (AHL) are widely distributed in Proteobacteria and are involved in controlling the expression of virulence genes and biofilm formation in pathogens, such as Pseudomonas aeruginosa. AHL molecules are specifically biosynthesized by the cognate LuxI type AHL synthases using S-adenosylmethionine (SAM) and either acyl carrier protein (ACP)- or CoA-coupled fatty acids through a two-step reaction. Here, we characterize a CoA-dependent LuxI synthase from Rhodopseudomonas palustris that utilizes an aryl-CoA substrate that is environmentally derived, specifically p-coumaric acid. We leverage structures of this aryl-CoA-dependent synthase, along with our prior studies of an acyl-CoA-dependent synthase, to identify residues that confer substrate chain specificity in these enzymes. We test our predictions by carrying out biochemical, kinetic, and structural characterization of representative AHL signal synthases. Our studies provide an understanding of various AHL synthases that may be deployed in synthetic biological applications and inform on the design of specific small molecule therapeutics that can restrict virulence by targeting quorum signaling.
Collapse
Affiliation(s)
| | - Mila Nhu-Lam
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, United States
| | - Rajesh Nagarajan
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, United States
| | | |
Collapse
|
18
|
Bonthond G, Bayer T, Krueger-Hadfield SA, Barboza FR, Nakaoka M, Valero M, Wang G, Künzel S, Weinberger F. How do microbiota associated with an invasive seaweed vary across scales? Mol Ecol 2020; 29:2094-2108. [PMID: 32408381 DOI: 10.1111/mec.15470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 01/13/2023]
Abstract
Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro- and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analysed scale (i.e., native and non-native ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that cointroduction of specific microbiota may have additionally promoted the invasion process.
Collapse
Affiliation(s)
- Guido Bonthond
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Till Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Japan
| | - Myriam Valero
- UMI EBEA 3614, CNRS, UCCh, UACH, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
19
|
Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 2020; 17:371-382. [PMID: 30944413 DOI: 10.1038/s41579-019-0186-5] [Citation(s) in RCA: 612] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quorum sensing is a process of bacterial cell-to-cell chemical communication that relies on the production, detection and response to extracellular signalling molecules called autoinducers. Quorum sensing allows groups of bacteria to synchronously alter behaviour in response to changes in the population density and species composition of the vicinal community. Quorum-sensing-mediated communication is now understood to be the norm in the bacterial world. Elegant research has defined quorum-sensing components and their interactions, for the most part, under ideal and highly controlled conditions. Indeed, these seminal studies laid the foundations for the field. In this Review, we highlight new findings concerning how bacteria deploy quorum sensing in realistic scenarios that mimic nature. We focus on how quorums are detected and how quorum sensing controls group behaviours in complex and dynamically changing environments such as multi-species bacterial communities, in the presence of flow, in 3D non-uniform biofilms and in hosts during infection.
Collapse
Affiliation(s)
- Sampriti Mukherjee
- Princeton University, Department of Molecular Biology, Princeton, NJ, USA
| | - Bonnie L Bassler
- Princeton University, Department of Molecular Biology, Princeton, NJ, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
20
|
Paix B, Othmani A, Debroas D, Culioli G, Briand JF. Temporal covariation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria. Environ Microbiol 2019; 21:3346-3363. [PMID: 30945796 DOI: 10.1111/1462-2920.14617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022]
Abstract
An integrative multi-omics approach allowed monthly variations for a year of the surface metabolome and the epibacterial community of the Mediterranean Phaeophyceae Taonia atomaria to be investigated. The LC-MS-based metabolomics and 16S rDNA metabarcoding data sets were integrated in a multivariate meta-omics analysis (multi-block PLS-DA from the MixOmic DIABLO analysis) showing a strong seasonal covariation (Mantel test: p < 0.01). A network based on positive and negative correlations between the two data sets revealed two clusters of variables, one relative to the 'spring period' and a second to the 'summer period'. The 'spring period' cluster was mainly characterized by dipeptides positively correlated with a single bacterial taxon of the Alteromonadaceae family (BD1-7 clade). Moreover, 'summer' dominant epibacterial taxa from the second cluster (including Erythrobacteraceae, Rhodospirillaceae, Oceanospirillaceae and Flammeovirgaceae) showed positive correlations with few metabolites known as macroalgal antifouling defences [e.g. dimethylsulphoniopropionate (DMSP) and proline] which exhibited a key role within the correlation network. Despite a core community that represents a significant part of the total epibacteria, changes in the microbiota structure associated with surface metabolome variations suggested that both environment and algal host shape the bacterial surface microbiota.
Collapse
Affiliation(s)
- Benoît Paix
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | - Ahlem Othmani
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, UMR 6023, Clermont-Ferrand, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
| | | |
Collapse
|
21
|
Tourneroche A, Lami R, Hubas C, Blanchet E, Vallet M, Escoubeyrou K, Paris A, Prado S. Bacterial-Fungal Interactions in the Kelp Endomicrobiota Drive Autoinducer-2 Quorum Sensing. Front Microbiol 2019; 10:1693. [PMID: 31417510 PMCID: PMC6685064 DOI: 10.3389/fmicb.2019.01693] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Brown macroalgae are an essential component of temperate coastal ecosystems and a growing economic sector. They harbor diverse microbial communities that regulate algal development and health. This algal holobiont is dynamic and achieves equilibrium via a complex network of microbial and host interactions. We now report that bacterial and fungal endophytes associated with four brown algae (Ascophyllum nodosum, Pelvetia canaliculata, Laminaria digitata, and Saccharina latissima) produce metabolites that interfere with bacterial autoinducer-2 quorum sensing, a signaling system implicated in virulence and host colonization. Additionally, we performed co-culture experiments combined to a metabolomic approach and demonstrated that microbial interactions influence production of metabolites, including metabolites involved in quorum sensing. Collectively, the data highlight autoinducer-2 quorum sensing as a key metabolite in the complex network of interactions within the algal holobiont.
Collapse
Affiliation(s)
- Anne Tourneroche
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| | - Raphaël Lami
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), USR3579, Observatoire Océanologique de Banyuls, Sorbonne Université, Banyuls-sur-Mer, France
| | - Cédric Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA 7208 MNHN-Sorbonne Université-CNRS-UCN-UA-IRD, Station Marine de Concarneau, Paris, France
| | - Elodie Blanchet
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), USR3579, Observatoire Océanologique de Banyuls, Sorbonne Université, Banyuls-sur-Mer, France
| | - Marine Vallet
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| | - Karine Escoubeyrou
- CNRS, Observatoire Océanologique de Banyuls, Sorbonne Université, FR3724, Banyuls-sur-Mer, France
| | - Alain Paris
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| | - Soizic Prado
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, Paris, France
| |
Collapse
|
22
|
Role of Chemical Mediators in Aquatic Interactions across the Prokaryote-Eukaryote Boundary. J Chem Ecol 2018; 44:1008-1021. [PMID: 30105643 DOI: 10.1007/s10886-018-1004-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
There is worldwide growing interest in the occurrence and diversity of metabolites used as chemical mediators in cross-kingdom interactions within aquatic systems. Bacteria produce metabolites to protect and influence the growth and life cycle of their eukaryotic hosts. In turn, the host provides a nutrient-enriched environment for the bacteria. Here, we discuss the role of waterborne chemical mediators that are responsible for such interactions in aquatic multi-partner systems, including algae or invertebrates and their associated bacteria. In particular, this review highlights recent advances in the chemical ecology of aquatic systems that support the overall ecological significance of signaling molecules across the prokaryote-eukaryote boundary (cross-kingdom interactions) for growth, development and morphogenesis of the host. We emphasize the value of establishing well-characterized model systems that provide the basis for the development of ecological principles that represent the natural lifestyle and dynamics of aquatic microbial communities and enable a better understanding of the consequences of environmental change and the most effective means of managing community interactions.
Collapse
|
23
|
Hudson J, Gardiner M, Deshpande N, Egan S. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction. Mol Ecol 2017; 27:1820-1832. [PMID: 29215165 DOI: 10.1111/mec.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022]
Abstract
Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae.
Collapse
Affiliation(s)
- Jennifer Hudson
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Melissa Gardiner
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc Natl Acad Sci U S A 2017; 114:E8488-E8497. [PMID: 28923926 DOI: 10.1073/pnas.1706879114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial communities colonize epithelial surfaces of most animals. Several factors, including the innate immune system, mucus composition, and diet, have been identified as determinants of host-associated bacterial communities. Here we show that the early branching metazoan Hydra is able to modify bacterial quorum-sensing signals. We identified a eukaryotic mechanism that enables Hydra to specifically modify long-chain 3-oxo-homoserine lactones into their 3-hydroxy-HSL counterparts. Expression data revealed that Hydra's main bacterial colonizer, Curvibacter sp., responds differentially to N-(3-hydroxydodecanoyl)-l-homoserine lactone (3OHC12-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL). Investigating the impacts of the different N-acyl-HSLs on host colonization elucidated that 3OHC12-HSL allows and 3OC12-HSL represses host colonization of Curvibacter sp. These results show that an animal manipulates bacterial quorum-sensing signals and that this modification leads to a phenotypic switch in the bacterial colonizers. This mechanism may enable the host to manipulate the gene expression and thereby the behavior of its bacterial colonizers.
Collapse
|
25
|
Walsh K, Haggerty JM, Doane MP, Hansen JJ, Morris MM, Moreira APB, de Oliveira L, Leomil L, Garcia GD, Thompson F, Dinsdale EA. Aura-biomes are present in the water layer above coral reef benthic macro-organisms. PeerJ 2017; 5:e3666. [PMID: 28828261 PMCID: PMC5562181 DOI: 10.7717/peerj.3666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.
Collapse
Affiliation(s)
- Kevin Walsh
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - J Matthew Haggerty
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Michael P Doane
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - John J Hansen
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Megan M Morris
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Ana Paula B Moreira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louisi de Oliveira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Leomil
- Macae campus, Federal University of Rio de Janeiro, Macae, Rio de Janeiro, Brazil
| | - Gizele D Garcia
- Macae campus, Federal University of Rio de Janeiro, Macae, Rio de Janeiro, Brazil.,Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
26
|
Morris MM, Haggerty JM, Papudeshi BN, Vega AA, Edwards MS, Dinsdale EA. Nearshore Pelagic Microbial Community Abundance Affects Recruitment Success of Giant Kelp, Macrocystis pyrifera. Front Microbiol 2016; 7:1800. [PMID: 27895628 PMCID: PMC5107569 DOI: 10.3389/fmicb.2016.01800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/26/2016] [Indexed: 11/22/2022] Open
Abstract
Marine microbes mediate key ecological processes in kelp forest ecosystems and interact with macroalgae. Pelagic and biofilm-associated microbes interact with macroalgal propagules at multiple stages of recruitment, yet these interactions have not been described for Macrocystis pyrifera. Here we investigate the influence of microbes from coastal environments on recruitment of giant kelp, M. pyrifera. Through repeated laboratory experiments, we tested the effects of altered pelagic microbial abundance on the settlement and development of the microscopic propagules of M. pyrifera during recruitment. M. pyrifera zoospores were reared in laboratory microcosms exposed to environmental microbial communities from seawater during the complete haploid stages of the kelp recruitment cycle, including zoospore release, followed by zoospore settlement, to gametophyte germination and development. We altered the microbial abundance states differentially in three independent experiments with repeated trials, where microbes were (a) present or absent in seawater, (b) altered in community composition, and (c) altered in abundance. Within the third experiment, we also tested the effect of nearshore versus offshore microbial communities on the macroalgal propagules. Distinct pelagic microbial communities were collected from two southern California temperate environments reflecting contrasting intensity of human influence, the nearshore Point Loma kelp forest and the offshore Santa Catalina Island kelp forest. The Point Loma kelp forest is a high impacted coastal region adjacent to the populous San Diego Bay; whereas the kelp forest at Catalina Island is a low impacted region of the Channel Islands, 40 km offshore the southern California coast, and is adjacent to a marine protected area. Kelp gametophytes reared with nearshore Point Loma microbes showed lower survival, growth, and deteriorated morphology compared to gametophytes with the offshore Catalina Island microbial community, and these effects were magnified under high microbial abundances. Reducing abundance of Point Loma microbes restored M. pyrifera propagule success. Yet an intermediate microbial abundance was optimal for kelp propagules reared with Catalina Island microbes, suggesting that microbes also have a beneficial influence on kelp. Our study shows that pelagic microbes from nearshore and offshore environments are differentially influencing kelp propagule success, which has significant implications for kelp recruitment and kelp forest ecosystem health.
Collapse
Affiliation(s)
- Megan M Morris
- Department of Biology, San Diego State University San Diego, CA, USA
| | - John M Haggerty
- Department of Biology, San Diego State University San Diego, CA, USA
| | - Bhavya N Papudeshi
- Bioinformatics and Medical Informatics, San Diego State University San Diego, CA, USA
| | - Alejandro A Vega
- Department of Biology, San Diego State University San Diego, CA, USA
| | - Matthew S Edwards
- Department of Biology, San Diego State University San Diego, CA, USA
| | | |
Collapse
|
27
|
Kumar V, Zozaya-Valdes E, Kjelleberg S, Thomas T, Egan S. Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. Environ Microbiol 2016; 18:3962-3975. [PMID: 27337296 DOI: 10.1111/1462-2920.13403] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While macroalgae (or seaweeds) are increasingly recognized to suffer from disease, in most cases the causative agents are unknown. The model macroalga Delisea pulchra is susceptible to a bleaching disease and previous work has identified two epiphytic bacteria, belonging to the Roseobacter clade, that cause bleaching under laboratory conditions. However, recent environmental surveys have shown that these in vitro pathogens are not abundant in naturally bleached D. pulchra, suggesting the presence of other pathogens capable of causing this algal disease. To test this hypothesis, we cultured bacteria that were abundant on bleached tissue across multiple disease events and assessed their ability to cause bleaching disease. We identified the new pathogens Alteromonas sp. BL110, Aquimarina sp. AD1 and BL5 and Agarivorans sp BL7 that are phylogenetically diverse, distinct from the previous two pathogens and can also be found in low abundance in healthy individuals. Moreover, we found that bacterial communities of diseased individuals that were infected with these pathogens were less diverse and more divergent from each other than those of healthy algae. This study demonstrates that multiple and opportunistic pathogens can cause the same disease outcome for D. pulchra and we postulate that such pathogens are more common in marine systems than previously anticipated.
Collapse
Affiliation(s)
- Vipra Kumar
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Enrique Zozaya-Valdes
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Torsten Thomas
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
28
|
Egan S, Gardiner M. Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems. Front Microbiol 2016; 7:991. [PMID: 27446031 PMCID: PMC4914501 DOI: 10.3389/fmicb.2016.00991] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
With growing environmental pressures placed on our marine habitats there is concern that the prevalence and severity of diseases affecting marine organisms will increase. Yet relative to terrestrial systems, we know little about the underlying causes of many of these diseases. Moreover, factors such as saprophytic colonizers and a lack of baseline data on healthy individuals make it difficult to accurately assess the role of specific microbial pathogens in disease states. Emerging evidence in the field of medicine suggests that a growing number of human diseases result from a microbiome imbalance (or dysbiosis), questioning the traditional view of a singular pathogenic agent. Here we discuss the possibility that many diseases seen in marine systems are, similarly, the result of microbial dysbiosis and the rise of opportunistic or polymicrobial infections. Thus, understanding and managing disease in the future will require us to also rethink definitions of disease and pathogenesis for marine systems. We suggest that a targeted, multidisciplinary approach that addresses the questions of microbial symbiosis in both healthy and diseased states, and at that the level of the holobiont, will be key to progress in this area.
Collapse
Affiliation(s)
- Suhelen Egan
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, SydneyNSW, Australia
| | | |
Collapse
|
29
|
Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph PJ. Metabolomics: an emerging frontier of systems biology in marine macrophytes. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Brodie J, Williamson C, Barker GL, Walker RH, Briscoe A, Yallop M. Characterising the microbiome of Corallina officinalis, a dominant calcified intertidal red alga. FEMS Microbiol Ecol 2016; 92:fiw110. [PMID: 27222222 DOI: 10.1093/femsec/fiw110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 01/17/2023] Open
Abstract
The living prokaryotic microbiome of the calcified geniculate (articulated) red alga, Corallina officinalis from the intertidal seashore is characterised for the first time based on the V6 hypervariable region of 16S rRNA. Results revealed an extraordinary diversity of bacteria associated with the microbiome. Thirty-five prokaryotic phyla were recovered, of which Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Acidobacteria, Verrucomicrobia, Firmicutes and Chloroflexi made up the core microbiome. Unclassified sequences made up 25% of sequences, suggesting insufficient sampling of the world's oceans/macroalgae. The greatest diversity in the microbiome was on the upper shore, followed by the lower shore then the middle shore, although the microbiome community composition did not vary between shore levels. The C. officinalis core microbiome was broadly similar in composition to those reported in the literature for crustose coralline algae (CCAs) and free-living rhodoliths. Differences in relative abundance of the phyla between the different types of calcified macroalgal species may relate to the intertidal versus subtidal habit of the taxa and functionality of the microbiome components. The results indicate that much work is needed to identify prokaryotic taxa, and to determine the nature of the relationship of the bacteria with the calcified host spatially, temporally and functionally.
Collapse
Affiliation(s)
- Juliet Brodie
- Department of Life Sciences, Genomics and Microbial Biodiversity, Natural History Museum, Cromwell Road, London SW7, 5BD, UK
| | - Christopher Williamson
- Department of Life Sciences, Genomics and Microbial Biodiversity, Natural History Museum, Cromwell Road, London SW7, 5BD, UK
| | - Gary L Barker
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Rachel H Walker
- Department of Life Sciences, Genomics and Microbial Biodiversity, Natural History Museum, Cromwell Road, London SW7, 5BD, UK
| | - Andrew Briscoe
- Department of Life Sciences, Genomics and Microbial Biodiversity, Natural History Museum, Cromwell Road, London SW7, 5BD, UK
| | - Marian Yallop
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
31
|
Zozaya-Valdés E, Roth-Schulze AJ, Thomas T. Effects of Temperature Stress and Aquarium Conditions on the Red Macroalga Delisea pulchra and its Associated Microbial Community. Front Microbiol 2016; 7:161. [PMID: 26925036 PMCID: PMC4757742 DOI: 10.3389/fmicb.2016.00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/01/2016] [Indexed: 01/08/2023] Open
Abstract
In recent years, there has been an increase in the rate and severity of diseases affecting habitat-forming marine organisms, such as corals, sponges, and macroalgae. Delisea pulchra is a temperate red macroalga that suffers from a bleaching disease that is more frequent during summer, when seawater temperatures are elevated and the alga's chemical defense is weakened. A bacterial cause for the disease is implied by previous studies showing that some isolated strains can cause bleaching in vitro and that host-associated microbial communities are distinct between diseased and healthy individuals. However, nothing is known about the successional events in the microbial community that occur during the development of the disease. To study this aspect in the future, we aimed here to develop an experimental setup to study the bleaching disease in a controllable aquarium environment. Application of a temperature stress (up to 27°C) did not cause a clear and consistent pattern of bleaching, suggesting that temperature alone might not be the only or main factor to cause the disease. The results also showed that the aquarium conditions alone are sufficient to produce bleaching symptoms. Microbial community analysis based on 16S rRNA gene fingerprinting and sequencing showed significant changes after 15 days in the aquarium, indicating that the native microbial associates of D. pulchra are not stably maintained. Microbial taxa that were enriched in the aquarium-held D. pulchra thalli, however, did not match on a taxonomic level those that have been found to be enriched in natural bleaching events. Together our observations indicate that environmental factors, other than the ones investigated here, might drive the bleaching disease in D. pulchra and that the aquarium conditions have substantial impact on the alga-associated microbiome.
Collapse
Affiliation(s)
| | | | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, SydneyNSW, Australia
| |
Collapse
|
32
|
Lachnit T, Thomas T, Steinberg P. Expanding our Understanding of the Seaweed Holobiont: RNA Viruses of the Red Alga Delisea pulchra. Front Microbiol 2016; 6:1489. [PMID: 26779145 PMCID: PMC4705237 DOI: 10.3389/fmicb.2015.01489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Marine seaweeds are holobionts comprised of the macroalgal hosts and their associated microbiota. While the composition of the bacterial component of seaweed microbiomes is increasingly studied, almost nothing is known about the presence, diversity and composition of viruses in macroalgae in situ. In this study, we characterize for the first time the viruses associated with a red macroalga, Delisea pulchra. Using transmission electron microscopy we identified diverse morphotypes of virus-like particles in D. pulchra ranging from icosahedral to bacilliform to coiled pleomorphic as well as bacteriophages. Virome sequencing revealed the presence of a diverse group of dsRNA viruses affiliated to the genus Totivirus, known to infect plant pathogenic fungi. We further identified a ssRNA virus belonging to the order Picornavirales with a close phylogenetic relationship to a pathogenic virus infecting marine diatoms. The results of this study shed light on a so far neglected part of the seaweed holobiont, and suggest that some of the identified viruses may be possible pathogens for a host that is already known to be significantly impacted by bacterial infections.
Collapse
Affiliation(s)
- Tim Lachnit
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- Zoological Institute, Christian-Albrechts-University KielKiel, Germany
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- School for Biotechnology and Biomolecular Science, University of New South Wales, SydneyNSW, Australia
| | - Peter Steinberg
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, SydneyNSW, Australia
- Sydney Institute of Marine Science, MosmanNSW, Australia
| |
Collapse
|
33
|
Artificial cell-cell communication as an emerging tool in synthetic biology applications. J Biol Eng 2015; 9:13. [PMID: 26265937 PMCID: PMC4531478 DOI: 10.1186/s13036-015-0011-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.
Collapse
|
34
|
Küpper FC, Leblanc C, Meyer-Klaucke W, Potin P, Feiters MC. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies. JOURNAL OF PHYCOLOGY 2014; 50:652-664. [PMID: 26988449 DOI: 10.1111/jpy.12199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/22/2014] [Indexed: 06/05/2023]
Abstract
Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses.
Collapse
Affiliation(s)
- Frithjof C Küpper
- Oceanlab, University of Aberdeen, Main Street, Newburgh, AB41 6 AA, UK
- Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Argyll, Oban, PA37 1QA, UK
| | - Catherine Leblanc
- Integrative Biology of Marine Models, Centre National de la Recherche Scientifique, Station Biologique, Roscoff, F-29680, France
- Marine Plants and Biomolecules Laboratory, Université Pierre et Marie Curie, Université Paris 6, Station Biologique, Roscoff, F-29680, France
| | - Wolfram Meyer-Klaucke
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, c/o DESY, Notkestrasse 85, Hamburg, D-22607, Germany
| | - Philippe Potin
- Integrative Biology of Marine Models, Centre National de la Recherche Scientifique, Station Biologique, Roscoff, F-29680, France
- Marine Plants and Biomolecules Laboratory, Université Pierre et Marie Curie, Université Paris 6, Station Biologique, Roscoff, F-29680, France
| | - Martin C Feiters
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, NL-6525 AJ, The Netherlands
| |
Collapse
|
35
|
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31:1510-53. [DOI: 10.1039/c4np00017j] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 2014; 98:2917-35. [PMID: 24562178 DOI: 10.1007/s00253-014-5557-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/02/2023]
Abstract
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.
Collapse
|
37
|
Reusch TBH. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol Appl 2014; 7:104-22. [PMID: 24454551 PMCID: PMC3894901 DOI: 10.1111/eva.12109] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022] Open
Abstract
I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe-host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches.
Collapse
Affiliation(s)
- Thorsten B H Reusch
- GEOMAR Helmholtz-Centre for Ocean Research Kiel, Marine Ecology - Evolutionary Ecology of Marine Fishes Kiel, Germany
| |
Collapse
|
38
|
Egan S, Fernandes ND, Kumar V, Gardiner M, Thomas T. Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environ Microbiol 2013; 16:925-38. [PMID: 24112830 DOI: 10.1111/1462-2920.12288] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/13/2013] [Indexed: 12/26/2022]
Abstract
Macroalgae are important ecosystem engineers in temperate marine waters. The function of macroalgae is intimately linked to the composition and structure of their epibiotic bacterial, communities, and evidence has emerged that bacteria can also have a negative impact on their host by causing disease. A few examples exist where bacteria have been unambiguously linked to macroalgal disease, however in many cases, pathogenicity has not been clearly separated from saprophytic behaviour or secondary colonization after disease initiation. Nevertheless, pathogenic pressure by bacteria might be substantial, as macroalgae have evolved a range of innate and induced defence mechanism that have the potential to control bacterial attacks. The presence and abundance of virulence factors in marine bacteria, which have not previously been recognized as pathogens, also represents an underappreciated, opportunistic potential for disease. Given that virulence expression in opportunistic pathogens is often dependent on environmental conditions, we predict that current and future anthropogenic changes in the marine environment will lead to an increase in the occurrence of macroalgal disease. This review highlights important areas of research that require future attention to understand the link between environmental change, opportunistic pathogens and macroalgal health in the world's oceans.
Collapse
Affiliation(s)
- Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | |
Collapse
|
39
|
Lachnit T, Fischer M, Künzel S, Baines JF, Harder T. Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol 2013; 84:411-20. [PMID: 23311942 DOI: 10.1111/1574-6941.12071] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 02/04/2023] Open
Abstract
The macroalga Fucus vesiculosus carries a specific community of surface bacteria. To identify chemical compounds that possibly mediate abundance and community composition of algae-associated bacteria, we tested the effect of surface-available algal compounds on bacterial settlement and community composition under field conditions. Compounds on algal thalli were separated from the surface by extraction with organic solvents and investigated on growth inhibition and settlement of bacterial isolates. Based on in vitro data, partially purified extract fractions were then exposed to bacterial colonizers in vivo followed by bacterial enumeration and community analysis. The polar fraction of the algal surface extract revealed a significant profouling effect for Vibrionales, whereas the nonpolar fraction - containing the xanthophyll pigment fucoxanthin and other unidentified nonpolar surface compounds - revealed a significant 80% reduction of surface colonizing bacteria. The analysis of bacterial surface communities by 454 pyrosequencing demonstrated that the antifouling activity of nonpolar algal surface compounds was targeting the abundance of natural bacterial colonizers rather than the relative composition of bacterial members within the community. Moreover, the bacterial community composition on F. vesiculosus was markedly different from artificial control substrates and chemically manipulated experimental treatments, suggesting that other, nonextractable surface features and/or physical properties render algal-specific epiphytic bacterial communities.
Collapse
Affiliation(s)
- Tim Lachnit
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
40
|
Dobretsov S, Abed RMM, Teplitski M. Mini-review: Inhibition of biofouling by marine microorganisms. BIOFOULING 2013; 29:423-41. [PMID: 23574279 DOI: 10.1080/08927014.2013.776042] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| | | | | |
Collapse
|
41
|
Correa H, Zorro P, Arevalo-Ferro C, Puyana M, Duque C. Possible Ecological Role of Pseudopterosins G and P-U and SECO-Pseudopterosins J and K from the Gorgonian Pseudopterogorgia elisabethae from Providencia Island (SW Caribbean) in Regulating Microbial Surface Communities. J Chem Ecol 2012; 38:1190-202. [DOI: 10.1007/s10886-012-0182-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/30/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022]
|
42
|
Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 2012; 3:292. [PMID: 22936927 PMCID: PMC3425911 DOI: 10.3389/fmicb.2012.00292] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/24/2012] [Indexed: 12/27/2022] Open
Abstract
In the aquatic environment, biofilms on solid surfaces are omnipresent. The outer body surface of marine organisms often represents a highly active interface between host and biofilm. Since biofilms on living surfaces have the capacity to affect the fluxes of information, energy, and matter across the host's body surface, they have an important ecological potential to modulate the abiotic and biotic interactions of the host. Here we review existing evidence how marine epibiotic biofilms affect their hosts' ecology by altering the properties of and processes across its outer surfaces. Biofilms have a huge potential to reduce its host's access to light, gases, and/or nutrients and modulate the host's interaction with further foulers, consumers, or pathogens. These effects of epibiotic biofilms may intensely interact with environmental conditions. The quality of a biofilm's impact on the host may vary from detrimental to beneficial according to the identity of the epibiotic partners, the type of interaction considered, and prevailing environmental conditions. The review concludes with some unresolved but important questions and future perspectives.
Collapse
Affiliation(s)
- Martin Wahl
- Department Benthic Ecology, Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Franz Goecke
- Kieler Wirkstoff-Zentrum at Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Antje Labes
- Kieler Wirkstoff-Zentrum at Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Sergey Dobretsov
- Department Marine Science and Fisheries, Sultan Qaboos UniversityMuscat, Oman
| | - Florian Weinberger
- Department Benthic Ecology, Helmholtz Centre for Ocean Research KielKiel, Germany
| |
Collapse
|