1
|
Fundamental dietary specialisation explains differential use of resources within a koala population. Oecologia 2021; 196:795-803. [PMID: 34142232 DOI: 10.1007/s00442-021-04962-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/31/2021] [Indexed: 12/23/2022]
Abstract
The diets of individual animals within populations can differ, but few studies determine whether this is due to fundamental differences in preferences or capacities to eat specific foods, or to external influences such as dominance hierarchies or spatial variation in food availability. The distinction is important because different drivers of dietary specialisation are likely to have different impacts on the way in which animal populations respond to, for example, habitat modification. We used a captive feeding study to investigate the mechanisms driving individual dietary specialisation in a population of wild koalas (Phascolarctos cinereus) in which individuals predominantly ate either Eucalyptus viminalis or Eucalyptus obliqua foliage. All six koalas that primarily ate E. viminalis in the wild avoided eating E. obliqua for more than 1 month in captivity. In contrast, all seven koalas that primarily ate E. obliqua could be maintained exclusively on this species in captivity, although they ate less from individual trees with higher foliar concentrations of unsubstituted B-ring flavanones (UBFs). Our results show that fundamental differences between individual animals allow some to exploit food resources that are less suitable for others. This could reduce competition for food, increase habitat carrying capacity, and is also likely to buffer the population against extinction in the face of habitat modification. The occurrence of fundamental individual specialisation within animal populations could also affect the perceived conservation value of different habitats, translocation or reintroduction success, and population dynamics. It should therefore be further investigated in other mammalian herbivore species.
Collapse
|
2
|
Murata T, Batkhuu J. Biological activity evaluations of chemical constituents derived from Mongolian medicinal forage plants and their applications in combating infectious diseases and addressing health problems in humans and livestock. J Nat Med 2021; 75:729-740. [PMID: 34018093 PMCID: PMC8137442 DOI: 10.1007/s11418-021-01529-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Mongolian nomadic people possess traditional knowledge of wild plants that grow in their areas of habitation. Many of these are forage plants in nature and are consumed by livestock. However, these plants are known to have medicinal and/or toxic properties. To establish a scientific understanding of the plants, and in turn, offer sound knowledge on their applications and effective use, it is essential to collect data pertaining to the chemical constituents of each plant. Therefore, the first objective of this study was to identify and determine the structural constituents of the forage plants that were available to our research group. Furthermore, in an attempt to demonstrate the biological activities of the isolated chemical compounds, we focused on solving some of the social issues affecting Mongolian communities, including protozoan diseases affecting livestock, vectors of infectious diseases, and the general health of humans and their livestock. The results of the chemical constituents derived from Mongolian medicinal plants and their biological activities that were studied in the recent decade are also described herein.
Collapse
Affiliation(s)
- Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome, Aoba-ku, Sendai, 981-8558, Japan.
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, POB-617/46A, Ulaanbaatar, 14201, Mongolia
| |
Collapse
|
3
|
Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M, Petschenka G, Gómez JM, Perfectti F, Müller C, Pires JC, Mueller LA, Jander G. Independent evolution of ancestral and novel defenses in a genus of toxic plants ( Erysimum, Brassicaceae). eLife 2020; 9:e51712. [PMID: 32252891 PMCID: PMC7180059 DOI: 10.7554/elife.51712] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.
Collapse
Affiliation(s)
- Tobias Züst
- Institute of Plant Sciences, University of BernBernSwitzerland
| | | | | | - Makenzie E Mabry
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | - Hong An
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | | | | | | | | | - Matthias Erb
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Georg Petschenka
- Institut für Insektenbiotechnologie, Justus-Liebig-Universität GiessenGiessenGermany
| | - José-María Gómez
- Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (EEZA-CSIC)AlmeríaSpain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Department of Genetics, University of GranadaGranadaSpain
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld UniversityBielefeldGermany
| | - J Chris Pires
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | | | | |
Collapse
|
4
|
Sánchez KF, Huntley N, Duffy MA, Hunter MD. Toxins or medicines? Phytoplankton diets mediate host and parasite fitness in a freshwater system. Proc Biol Sci 2019; 286:20182231. [PMID: 30963882 PMCID: PMC6367176 DOI: 10.1098/rspb.2018.2231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Diets must satisfy the everyday metabolic requirements of organisms and can also serve as medicines to combat disease. Currently, the medicinal role of diets is much better understood in terrestrial than in aquatic ecosystems. This is surprising because phytoplankton species synthesize secondary metabolites with known antimicrobial properties. Here, we investigated the medicinal properties of phytoplankton (including toxin-producing cyanobacteria) against parasites of the dominant freshwater herbivore, Daphnia. We fed Daphnia dentifera on green algae and toxic cyanobacteria diets known to vary in their nutritional quality and toxin production, and an additional diet of Microcystis with added pure microcystin-LR. We then exposed Daphnia to fungal and bacterial parasites. Anabaena, Microcystis and Chlorella diets prevented infection of Daphnia by the fungal parasite Metschnikowia, while Nodularia toxins increased offspring production by infected hosts. In contrast to their medicinal effects against Metschnikowia, toxic phytoplankton generally decreased the fitness of Daphnia infected with the bacterial parasite, Pasteuria. We also measured the amount of toxin produced by phytoplankton over time. Concentrations of anatoxin-a produced by Anabaena increased in the presence of Metschnikowia, suggesting parasite-induced toxin production. Our research illustrates that phytoplankton can serve as toxins or medicines for their consumers, depending upon the identity of their parasites.
Collapse
Affiliation(s)
- Kristel F. Sánchez
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
5
|
Züst T, Petschenka G, Hastings AP, Agrawal AA. Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species. J Chem Ecol 2018; 45:50-60. [PMID: 30523520 DOI: 10.1007/s10886-018-1040-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Cardenolides are classically studied steroidal defenses in chemical ecology and plant-herbivore coevolution. Although milkweed plants (Asclepias spp.) produce up to 200 structurally different cardenolides, all compounds seemingly share the same well-characterized mode of action, inhibition of the ubiquitous Na+/K+ ATPase in animal cells. Over their evolutionary radiation, milkweeds show a quantitative decline of cardenolide production and diversity. This reduction is contrary to coevolutionary predictions and could represent a cost-saving strategy, i.e. production of fewer but more toxic cardenolides. Here we test this hypothesis by tandem cardenolide quantification using HPLC (UV absorption of the unsaturated lactone) and a pharmacological assay (in vitro inhibition of a sensitive Na+/K+ ATPase) in a comparative study of 16 species of Asclepias. We contrast cardenolide concentrations in leaf tissue to the subset of cardenolides present in exuding latex. Results from the two quantification methods were strongly correlated, but the enzymatic assay revealed that milkweed cardenolide mixtures often cause stronger inhibition than equal amounts of a non-milkweed reference cardenolide, ouabain. Cardenolide concentrations in latex and leaves were positively correlated across species, yet latex caused 27% stronger enzyme inhibition than equimolar amounts of leaf cardenolides. Using a novel multiple regression approach, we found three highly potent cardenolides (identified as calactin, calotropin, and voruscharin) to be primarily responsible for the increased pharmacological activity of milkweed cardenolide mixtures. However, contrary to an expected trade-off between concentration and toxicity, later-diverging milkweeds had the lowest amounts of these potent cardenolides, perhaps indicating an evolutionary response to milkweed's diverse community of specialist cardenolide-sequestering insect herbivores.
Collapse
Affiliation(s)
- Tobias Züst
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland.
| | - Georg Petschenka
- Institut für Insektenbiotechnologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Machado GBO, Leite FPP, Sotka EE. Nutrition of marine mesograzers: integrating feeding behavior, nutrient intake and performance of an herbivorous amphipod. PeerJ 2018; 6:e5929. [PMID: 30430042 PMCID: PMC6231427 DOI: 10.7717/peerj.5929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/14/2018] [Indexed: 11/24/2022] Open
Abstract
Consumers can regulate the acquisition and use of nutrients through behavioral and physiological mechanisms. Here, we present an experimental approach that simultaneously integrates multiple nutritional traits, feeding assays, and juvenile performance to assess whether a marine herbivore (the amphipod Ampithoe valida) regulates the intake of elements (carbon and nitrogen), macronutrients (protein and non-protein) or both when offered freeze-dried tissues of seaweeds varying in nutritional content. We assessed behavioral regulation of nutrients in three ways. First, during no-choice assays, we found that amphipods ingested similar amounts of carbon, but not nitrogen, non-protein and protein, across algal diets. Second, herbivore intake rates of carbon, protein and non-protein components across no-choice assays was similar to intake rates when offered a choice of foods. Third, variation in intake rates of carbon and non-protein components among algal diets was significantly greater than was tissue content of these components, while variation in intake rates of nitrogen was significantly lower; differences in protein intake variation was equivocal. While these analytical approaches are not uniformly consistent, carbon and nitrogen seem to emerge as the nutrient components that are more strongly regulated by A. valida. Juveniles reared on single diets shown patterns of survivorship, growth and reproduction that could not be predicted by these feeding preferences, nor nutrient content. We conclude that an integrative approach that considers the intake of multiple nutrients potentially yields insights into feeding behavior and its performance consequences.
Collapse
Affiliation(s)
- Glauco B O Machado
- Programa de Pós-graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Fosca P P Leite
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Erik E Sotka
- Grice Marine Laboratory and the Department of Biology, College of Charleston, Charleston, SC, United States of America
| |
Collapse
|
7
|
Review: Using physiologically based models to predict population responses to phytochemicals by wild vertebrate herbivores. Animal 2018; 12:s383-s398. [PMID: 30251623 DOI: 10.1017/s1751731118002264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex in vivo dynamics of nutrient-nutrient interactions and nutrient-toxin interactions associated with foraging. Mathematical modeling has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency (e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-based ecological adaptations.
Collapse
|
8
|
Marples NM, Speed MP, Thomas RJ. An individual-based profitability spectrum for understanding interactions between predators and their prey. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicola M Marples
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Eire
| | - Michael P Speed
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool, UK
| | - Robert J Thomas
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| |
Collapse
|
9
|
Roulette CJ, Njau EFA, Quinlan MB, Quinlan RJ, Call DR. Medicinal foods and beverages among Maasai agro-pastoralists in northern Tanzania. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:191-202. [PMID: 29409795 DOI: 10.1016/j.jep.2018.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pastoralist Maasai populations of east Africa use several different wild plants as dietary and medicinal additives in beverages (soups and teas), yet little is known about how the plants used and the rationales for use compare and contrast across different Maasai beverages, including how gender specific dietary and health concerns structure patterns of intake. AIM OF THE STUDY We investigated three Maasai beverages: almajani (tea or herbal infusion); motorí (traditional soup); and okiti (psychoactive herbal tea). In order to build knowledge about the cultural functions of these Maasai food-medicines and their incidence of use we also investigated use rationales and self-reported frequencies of use. We conclude by examining gender differences and the possible pharmacological antimicrobial activity of the most frequently used plants. MATERIALS AND METHODS Research was conducted in 2015, with a population of semi-nomadic agropastoralist Maasai residing in northern Tanzania. Data were collected using key informant interviews, plant collections, n = 32 structured surveys, and n = 40 freelist interviews followed by a literature review to determine the known antimicrobial activity of the most used plants. RESULTS We identified 20 plants that Maasai add to soup, 11 in tea, and 11 in the psychoactive tea, for a total of 24 herbal additives. Seven plant species were used in all three Maasai beverages, and these clustered with 10 common ailments. Based on self-reports, women use the beverages less frequently and in smaller amounts than men. There were also several gender differences in the plants that Maasai add to motorí and their associated use rationales. CONCLUSIONS There are several intersections concerning the plant species used and their associated rationales for use in almajani, motori, and okiti. Moving outward, Maasai beverages and their additives increasingly involve gender specific concerns. Female use of food-medicines, relative to men, is structured by concerns over pregnancy, birth, and lactation. The frequent consumption of herbal additives, many of which contain antimicrobial compounds, potentially helps modulate infections, but could have other unintentional effects as well.
Collapse
Affiliation(s)
- Casey J Roulette
- Department of Anthropology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, United States.
| | - Efrem-Fred A Njau
- National Herbarium of Tanzania, Tropical Pesticide Research Institute, Arusha, Tanzania.
| | - Marsha B Quinlan
- Department of Anthropology, Washington State University, Pullman, WA 99164-4910, United States; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7090, United States.
| | - Robert J Quinlan
- Department of Anthropology, Washington State University, Pullman, WA 99164-4910, United States; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7090, United States.
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7090, United States; Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| |
Collapse
|
10
|
Beale PK, Marsh KJ, Foley WJ, Moore BD. A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biol Rev Camb Philos Soc 2017; 93:674-692. [DOI: 10.1111/brv.12364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Phillipa K. Beale
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Karen J. Marsh
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - William J. Foley
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
- Animal Ecology and Conservation University of Hamburg, Martin‐Luther‐King‐Platz 3 20146 Hamburg Germany
| | - Ben D. Moore
- Hawkesbury Institute for the Environment Western Sydney University, Locked bag 1797 Penrith New South Wales 2751 Australia
| |
Collapse
|
11
|
Demko AM, Amsler CD, Hay ME, Long JD, McClintock JB, Paul VJ, Sotka EE. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 2017; 98:2312-2321. [PMID: 28590557 PMCID: PMC5581272 DOI: 10.1002/ecy.1918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 11/08/2022]
Abstract
Long-standing theory predicts that the intensity of consumer-prey interactions declines with increasing latitude, yet for plant-herbivore interactions, latitudinal changes in herbivory rates and plant palatability have received variable support. The topic is of growing interest given that lower-latitude species are moving poleward at an accelerating rate due to climate change, and predicting local interactions will depend partly on whether latitudinal gradients occur in these critical biotic interactions. Here, we assayed the palatability of 50 seaweeds collected from polar (Antarctica), temperate (northeastern Pacific; California), and tropical (central Pacific; Fiji) locations to two herbivores native to the tropical and subtropical Atlantic, the generalist crab Mithraculus sculptus and sea urchin Echinometra lucunter. Red seaweeds (Rhodophyta) of polar and temperate origin were more readily consumed by urchins than were tropical reds. The decline in palatability with decreasing latitude is explained by shifts in tissue organic content along with the quantity and quality of secondary metabolites, degree of calcification or both. We detected no latitudinal shift in palatability of red seaweeds to crabs, nor any latitudinal shifts in palatability of brown seaweeds (Phaeophyta) to either crabs or urchins. Our results suggest that evolutionary pressure from tropical herbivores favored red seaweeds with lower palatability, either through the production of greater levels of chemical defenses, calcification, or both. Moreover, our results tentatively suggest that the "tropicalization" of temperate habitats is facilitated by the migration of tropical herbivores into temperate areas dominated by weakly defended and more nutritious foods, and that the removal of these competing seaweeds may facilitate the invasion of better-defended tropical seaweeds.
Collapse
Affiliation(s)
- Alyssa M Demko
- Department of Biology, College of Charleston, Grice Marine Laboratory, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California, 92093, USA
| | - Charles D Amsler
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Mark E Hay
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Jeremy D Long
- Department of Biology and Coastal and Marine Institute Laboratory, San Diego State University, San Diego, California, 92182, USA
| | - James B McClintock
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida, 34949, USA
| | - Erik E Sotka
- Department of Biology, College of Charleston, Grice Marine Laboratory, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| |
Collapse
|
12
|
Grutters BMC, Saccomanno B, Gross EM, Van de Waal DB, van Donk E, Bakker ES. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants. OIKOS 2017. [DOI: 10.1111/oik.03956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bart M. C. Grutters
- Dept of Aquatic Ecology; Netherlands Inst. of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; NL-6708 PB Wageningen the Netherlands
| | - Benedetta Saccomanno
- Dept of Aquatic Ecology; Netherlands Inst. of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; NL-6708 PB Wageningen the Netherlands
| | - Elisabeth M. Gross
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Univ. de Lorraine; Metz France
| | - Dedmer B. Van de Waal
- Dept of Aquatic Ecology; Netherlands Inst. of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; NL-6708 PB Wageningen the Netherlands
| | - Ellen van Donk
- Dept of Aquatic Ecology; Netherlands Inst. of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; NL-6708 PB Wageningen the Netherlands
- Dept of Ecology and Biodiversity; Utrecht Univ.; Utrecht the Netherlands
| | - Elisabeth S. Bakker
- Dept of Aquatic Ecology; Netherlands Inst. of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; NL-6708 PB Wageningen the Netherlands
| |
Collapse
|
13
|
Kohl KD, Dearing MD. Intestinal Lymphatic Transport: an Overlooked Pathway for Understanding Absorption of Plant Secondary Compounds in Vertebrate Herbivores. J Chem Ecol 2017; 43:290-294. [PMID: 28255942 DOI: 10.1007/s10886-017-0828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 12/11/2022]
Abstract
Herbivores employ numerous strategies to reduce their exposure to toxic plant secondary chemicals (PSCs). However, the physiological mechanisms of PSC absorption have not been extensively explored. In particular, the absorption of PSCs via intestinal lymphatic absorption has been largely overlooked in herbivores, even though this pathway is well recognized for pharmaceutical uptake. Here, we investigated for the first time whether PSCs might be absorbed by lymphatic transport. We fed woodrats (Neotoma albigula) diets with increasing concentrations of terpene-rich juniper (Juniperus monosperma) either with or without a compound that blocks intestinal lymphatic absorption (Pluronic L-81). Woodrats consuming diets that contained the intestinal lymphatic absorption blocker exhibited increased food intakes and maintained higher body masses on juniper diets. Our study represents the first demonstration that PSCs may be absorbed by intestinal lymphatic absorption. This absorption pathway has numerous implications for the metabolism and distribution of PSCs in the systemic circulation, given that compounds absorbed via lymphatic transport bypass first-pass hepatic metabolism. The area of lymphatic transport of PSCs represents an understudied physiological pathway in plant-herbivore interactions.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, Vanderbilt University, 465 21st Ave South, Nashville, TN, 37235, USA. .,Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - M Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
14
|
Kohl KD, Dearing MD. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins. Front Microbiol 2016; 7:1165. [PMID: 27516760 PMCID: PMC4963388 DOI: 10.3389/fmicb.2016.01165] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma) that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, non-gastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host's ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that could be useful in the treatment of diseases in humans and domestic animals.
Collapse
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences, Vanderbilt University, NashvilleTN, USA
| | | |
Collapse
|
15
|
Smilanich AM, Fincher RM, Dyer LA. Does plant apparency matter? Thirty years of data provide limited support but reveal clear patterns of the effects of plant chemistry on herbivores. THE NEW PHYTOLOGIST 2016; 210:1044-1057. [PMID: 26889654 DOI: 10.1111/nph.13875] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
According to the plant-apparency hypothesis, apparent plants allocate resources to quantitative defenses that negatively affect generalist and specialist herbivores, while unapparent plants invest more in qualitative defenses that negatively affect nonadapted generalists. Although this hypothesis has provided a useful framework for understanding the evolution of plant chemical defense, there are many inconsistencies surrounding associated predictions, and it has been heavily criticized and deemed obsolete. We used a hierarchical Bayesian meta-analysis model to test whether defenses from apparent and unapparent plants differ in their effects on herbivores. We collected a total of 225 effect sizes from 158 published papers in which the effects of plant chemistry on herbivore performance were reported. As predicted by the plant-apparency hypothesis, we found a prevalence of quantitative defenses in woody plants and qualitative defenses in herbaceous plants. However, the detrimental impacts of qualitative defenses were more effective against specialists than generalists, and the effects of chemical defenses did not significantly differ between specialists and generalists for woody or herbaceous plants. A striking pattern that emerged from our data was a pervasiveness of beneficial effects of secondary metabolites on herbivore performance, especially generalists. This pattern provides evidence that herbivores are evolving effective counteradaptations to putative plant defenses.
Collapse
Affiliation(s)
- Angela M Smilanich
- Department of Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - R Malia Fincher
- Department of Biology, Samford University, 800 Lakeshore Dr., Birmingham, AL, 35229, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| |
Collapse
|
16
|
Lichti NI, Steele MA, Swihart RK. Seed fate and decision‐making processes in scatter‐hoarding rodents. Biol Rev Camb Philos Soc 2015; 92:474-504. [PMID: 26587693 DOI: 10.1111/brv.12240] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Nathanael I. Lichti
- Department of Forestry and Natural Resources Purdue University West Lafayette IN 47907 U.S.A
| | | | - Robert K. Swihart
- Department of Forestry and Natural Resources Purdue University West Lafayette IN 47907 U.S.A
| |
Collapse
|
17
|
Richter I, Fidler AE. Tunicate pregnane X receptor (PXR) orthologs: Transcript characterization and natural variation. Mar Genomics 2015; 23:99-108. [DOI: 10.1016/j.margen.2015.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
|
18
|
Richter I, Fidler AE. Marine invertebrate xenobiotic-activated nuclear receptors: their application as sensor elements in high-throughput bioassays for marine bioactive compounds. Mar Drugs 2014; 12:5590-618. [PMID: 25421319 PMCID: PMC4245547 DOI: 10.3390/md12115590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.
Collapse
Affiliation(s)
- Ingrid Richter
- Environmental Technology Group, Cawthron Institute, Private Bag 2, Nelson 7012, New Zealand.
| | - Andrew E Fidler
- Environmental Technology Group, Cawthron Institute, Private Bag 2, Nelson 7012, New Zealand.
| |
Collapse
|
19
|
The dilemma of foraging herbivores: dealing with food and fear. Oecologia 2014; 176:677-89. [DOI: 10.1007/s00442-014-3076-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
20
|
Fornoff F, Gross EM. Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia 2014; 175:173-85. [DOI: 10.1007/s00442-013-2880-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/27/2013] [Indexed: 01/14/2023]
|
21
|
The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2013; 2:636-52. [PMID: 25437337 PMCID: PMC4235702 DOI: 10.3390/pathogens2040636] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022] Open
Abstract
Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.
Collapse
|
22
|
Forbey JS, Wiggins NL, Frye GG, Connelly JW. Hungry grouse in a warming world: emerging risks from plant chemical defenses and climate change. WILDLIFE BIOLOGY 2013. [DOI: 10.2981/13-014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
23
|
Hagen EH, Roulette CJ, Sullivan RJ. Explaining human recreational use of 'pesticides': The neurotoxin regulation model of substance use vs. the hijack model and implications for age and sex differences in drug consumption. Front Psychiatry 2013; 4:142. [PMID: 24204348 PMCID: PMC3817850 DOI: 10.3389/fpsyt.2013.00142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/12/2013] [Indexed: 12/21/2022] Open
Abstract
Most globally popular drugs are plant neurotoxins or their close chemical analogs. These compounds evolved to deter, not reward or reinforce, consumption. Moreover, they reliably activate virtually all toxin defense mechanisms, and are thus correctly identified by human neurophysiology as toxins. Acute drug toxicity must therefore play a more central role in drug use theory. We accordingly challenge the popular idea that the rewarding and reinforcing properties of drugs "hijack" the brain, and propose instead that the brain evolved to carefully regulate neurotoxin consumption to minimize fitness costs and maximize fitness benefits. This perspective provides a compelling explanation for the dramatic changes in substance use that occur during the transition from childhood to adulthood, and for pervasive sex differences in substance use: because nicotine and many other plant neurotoxins are teratogenic, children, and to a lesser extent women of childbearing age, evolved to avoid ingesting them. However, during the course of human evolution many adolescents and adults reaped net benefits from regulated intake of plant neurotoxins.
Collapse
Affiliation(s)
- Edward H. Hagen
- Department of Anthropology, Washington State University, Vancouver, WA, USA
| | - Casey J. Roulette
- Department of Anthropology, Washington State University, Vancouver, WA, USA
| | - Roger J. Sullivan
- Department of Anthropology, California State University, Sacramento, CA, USA
| |
Collapse
|
24
|
Sotka EE, Gantz J. Preliminary evidence that the feeding rates of generalist marine herbivores are limited by detoxification rates. CHEMOECOLOGY 2013. [DOI: 10.1007/s00049-013-0137-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|