1
|
Souza JPA, Bandeira PT, Bergmann J, Zarbin PHG. Recent advances in the synthesis of insect pheromones: an overview from 2013 to 2022. Nat Prod Rep 2023; 40:866-889. [PMID: 36820746 DOI: 10.1039/d2np00068g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Covering: 2013 to June 2022Pheromones are usually produced by insects in sub-microgram amounts, which prevents the elucidation of their structures by nuclear magnetic resonance (NMR). Instead, a synthetic reference material is needed to confirm the structure of the natural compounds. In addition, the provision of synthetic pheromones enables large-scale field trials for the development of environmentally friendly pest management tools. Because of these potential applications in pest control, insect pheromones are attractive targets for the development of synthetic procedures and the synthesis of these intraspecific chemical messengers has been at the core of numerous research efforts in the field of pheromone chemistry. The present review is a quick reference guide for the syntheses of insect pheromones published from 2013 to mid-2022, listing the synthesized compounds and highlighting current methodologies in organic synthesis, such as carbon-carbon coupling reactions, organo-transition metal chemistry including ring-closing olefin metathesis, asymmetric epoxidations and dihydroxylations, and enzymatic reactions.
Collapse
Affiliation(s)
- João P A Souza
- Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná, UFPR, Caixa Postal 19020, Curitiba 81531-990, PR, Brazil.
| | - Pamela T Bandeira
- Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná, UFPR, Caixa Postal 19020, Curitiba 81531-990, PR, Brazil. .,Departamento de Química, Universidade Federal de Santa Maria, Avda. Roraima, 1000, Santa Maria, RS, Brazil
| | - Jan Bergmann
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Valparaíso, Chile.
| | - Paulo H G Zarbin
- Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná, UFPR, Caixa Postal 19020, Curitiba 81531-990, PR, Brazil.
| |
Collapse
|
2
|
Godoy R, Arias I, Venthur H, Quiroz A, Mutis A. Characterization of Two Aldehyde Oxidases from the Greater Wax Moth, Galleria mellonella Linnaeus. (Lepidoptera: Pyralidae) with Potential Role as Odorant-Degrading Enzymes. INSECTS 2022; 13:1143. [PMID: 36555053 PMCID: PMC9782417 DOI: 10.3390/insects13121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Odorant-degrading enzymes (ODEs) are proposed to degrade/inactivate volatile organic compounds (VOCs) on a millisecond timescale. Thus, ODEs play an important role in the insect olfactory system as a reset mechanism. The inhibition of these enzymes could incapacitate the olfactory system and, consequently, disrupt chemical communication, promoting and complementing the integrated pest management strategies. Here, we report two novel aldehyde oxidases, AOX-encoding genes GmelAOX2 and GmelAOX3, though transcriptomic analysis in the greater wax moth, Galleria mellonella. GmelAOX2 was clustered in a clade with ODE function, according to phylogenetic analysis. Likewise, to unravel the profile of volatiles that G. mellonella might face besides the sex pheromone blend, VOCs were trapped from honeycombs and the identification was made by gas chromatography-mass spectrometry. Semi-quantitative RT-PCR showed that GmelAXO2 has a sex-biased expression, and qRT-PCR indicated that both GmelAOX2 and GmelAOX3 have a higher relative expression in male antennae rather than female antennae. A functional assay revealed that antennal extracts had the strongest enzymatic activity against undecanal (4-fold) compared to benzaldehyde (control). Our data suggest that these enzymes have a crucial role in metabolizing sex pheromone compounds as well as plant-derived aldehydes, which are related to honeycombs and the life cycle of G. mellonella.
Collapse
Affiliation(s)
- Ricardo Godoy
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ignacio Arias
- Carrera Bioquímica, Universidad de La Frontera, Temuco 4811230, Chile
| | - Herbert Venthur
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ana Mutis
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. INSECTS 2021; 12:insects12060484. [PMID: 34071020 PMCID: PMC8224804 DOI: 10.3390/insects12060484] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.
Collapse
Affiliation(s)
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Z.); (A.G.)
| | - Angel Guerrero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia-CSIC, 08034 Barcelona, Spain
- Correspondence: (X.Z.); (A.G.)
| |
Collapse
|
4
|
Ando T, Yamamoto M. Semiochemicals containing lepidopteran sex pheromones: Wonderland for a natural product chemist. JOURNAL OF PESTICIDE SCIENCE 2020; 45:191-205. [PMID: 33304188 PMCID: PMC7691580 DOI: 10.1584/jpestics.d20-046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Since the first identification of bombykol, sex pheromones of about 700 moth species have been elucidated. Additionally, field evaluations of synthetic pheromones and their related compounds have revealed the male attraction of another 1,300 species. These pheromones and attractants are listed on the web-sites, "Pheromone Database, Part I." Pheromone components are classified according to their chemical structures into two major groups (Types I and II) and miscellaneous. Based on our previous review published in 2004, studies reported during the last two decades are highlighted here to provide information on the structure characteristics of newly identified pheromones, current techniques for structure determination, new enantioselective syntheses of methyl-branched pheromones, and the progress of biosynthetic research. Besides the moth sex pheromones, various pheromones and allomones from many arthropod species have been uncovered. These semiochemicals are being collected in the "Pheromone Database, Part II." The chemical diversity provides a wonderland for natural product chemists.
Collapse
Affiliation(s)
- Tetsu Ando
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
5
|
Neil TR, Shen Z, Robert D, Drinkwater BW, Holderied MW. Thoracic scales of moths as a stealth coating against bat biosonar. J R Soc Interface 2020; 17:20190692. [PMID: 32093539 DOI: 10.1098/rsif.2019.0692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many moths are endowed with ultrasound-sensitive ears that serve the detection and evasion of echolocating bats. Moths lacking such ears could still gain protection from bat biosonar by using stealth acoustic camouflage, absorbing sound waves rather than reflecting them back as echoes. The thorax of a moth is bulky and hence acoustically highly reflective. This renders it an obvious target for any bat. Much of the thorax of moths is covered in hair-like scales, the layout of which is remarkably similar in structure and arrangement to natural fibrous materials commonly used in sound insulation. Despite this structural similarity, the effect of thorax scales on moth echoes has never been characterized. Here, we test whether and how moth thorax scales function as an acoustic absorber. From tomographic echo images, we find that the thin layer of thoracic scales of diurnal butterflies affects the strength of ultrasound echoes from the thorax very little, while the thorax scales of earless moths absorbs an average of 67 ± 9% of impinging ultrasonic sound energy. We show that the thorax scales of moths provide acoustic camouflage by acting as broadband (20-160 kHz) stealth coating. Modelling results suggest the scales are acting as a porous sound absorber; however, the thorax scales of moths achieve a considerably higher absorption than technical fibrous porous absorbers with the same structural parameters. Such scales, despite being thin and lightweight, constitute a broadband, multidirectional and efficient ultrasound absorber that reduces the moths' detectability to hunting bats and gives them a survival advantage.
Collapse
Affiliation(s)
- Thomas R Neil
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Zhiyuan Shen
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, Bristol, UK
| | - Marc W Holderied
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Hughes GP, Cardé RT. Do Helicoverpa armigera Moths Signal Their Fecundity by Emission of an Antagonist? J Chem Ecol 2019; 46:21-29. [DOI: 10.1007/s10886-019-01132-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022]
|
7
|
Žunič Kosi A, Zou Y, Hoskovec M, Vrezec A, Stritih N, Millar JG. Novel, male-produced aggregation pheromone of the cerambycid beetle Rosalia alpina, a priority species of European conservation concern. PLoS One 2017; 12:e0183279. [PMID: 28827817 PMCID: PMC5565183 DOI: 10.1371/journal.pone.0183279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
Several recent studies have demonstrated the great potential for exploiting semiochemicals in ecology and conservation studies. The cerambycid beetle Rosalia alpina represents one of the flagship species of saproxylic insect biodiversity in Europe. In recent years its populations appear to have declined substantially, and its range has shrunk considerably as a result of forest management and urbanization. Here, we collected volatile chemicals released by males and females of R. alpina. Analyses of the resulting extracts revealed the presence of a single male-specific compound, identified as a novel alkylated pyrone structure. In field bioassays in Slovenia, traps baited with the synthesized pyrone captured both sexes of R. alpina, indicating that the pyrone functions as an aggregation pheromone. Our results represent the first example of a new structural class of pheromones within the Cerambycidae, and demonstrate that pheromone-baited traps can provide a useful tool for sampling R. alpina. This tool could be particularly useful in the ongoing development of conservation strategies for the iconic but endangered Alpine longicorn.
Collapse
Affiliation(s)
- Alenka Žunič Kosi
- National Institute of Biology, Department of Organisms and Ecosystem Research, Ljubljana, Slovenia
| | - Yunfan Zou
- University of California, Department of Entomology, Riverside, California, United States of America
| | - Michal Hoskovec
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| | - Al Vrezec
- National Institute of Biology, Department of Organisms and Ecosystem Research, Ljubljana, Slovenia
| | - Nataša Stritih
- National Institute of Biology, Department of Organisms and Ecosystem Research, Ljubljana, Slovenia
| | - Jocelyn G Millar
- University of California, Department of Entomology, Riverside, California, United States of America
| |
Collapse
|
8
|
Larsson MC. Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species. J Chem Ecol 2016; 42:853-868. [PMID: 27624066 PMCID: PMC5101348 DOI: 10.1007/s10886-016-0753-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 11/30/2022]
Abstract
As global biodiversity declines, biodiversity and conservation have become ever more important research topics. Research in chemical ecology for conservation purposes has not adapted to address this need. During the last 10-15 years, only a few insect pheromones have been developed for biodiversity and conservation studies, including the identification and application of pheromones specifically for population monitoring. These investigations, supplemented with our knowledge from decades of studying pest insects, demonstrate that monitoring with pheromones and other semiochemicals can be applied widely for conservation of rare and threatened insects. Here, I summarize ongoing conservation research, and outline potential applications of chemical ecology and pheromone-based monitoring to studies of insect biodiversity and conservation research. Such applications include monitoring of insect population dynamics and distribution changes, including delineation of current ranges, the tracking of range expansions and contractions, and determination of their underlying causes. Sensitive and selective monitoring systems can further elucidate the importance of insect dispersal and landscape movements for conservation. Pheromone-based monitoring of indicator species will also be useful in identifying biodiversity hotspots, and in characterizing general changes in biodiversity in response to landscape, climatic, or other environmental changes.
Collapse
Affiliation(s)
- Mattias C Larsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 230 53, Alnarp, Sweden.
| |
Collapse
|
9
|
Millar JG, Haynes KF, Dossey AT, McElfresh JS, Allison JD. Sex Attractant Pheromone of the Luna Moth, Actias luna (Linnaeus). J Chem Ecol 2016; 42:869-876. [PMID: 27544534 DOI: 10.1007/s10886-016-0751-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Giant silk moths (Lepidoptera: Saturniidae) typically are not well represented as larvae or adults in community level inventories of Lepidoptera, and as a result, little is known about their population dynamics. Furthermore, in recent years, many species of silk moths appear to have experienced population declines. Volatile sex pheromones are powerful sampling tools that can be used in operational conservation and monitoring programs for insects. Here, we describe the identification of the sex attractant pheromone of a giant silk moth, the luna moth Actias luna. Coupled gas chromatography-electroantennographic detection and gas chromatography-mass spectrometric analyses of extracts from pheromone glands of female luna moths supported the identification of (6E,11Z)-6,11-octadecadienal (E6,Z11-18:Ald), (6E)-6-octadecenal (E6-18:Ald), and (11Z)-11-octadecenal (Z11-18:Ald) as the compounds in extracts that elicited responses from antennae of male moths. These identifications were confirmed by synthesis, followed by testing of blends of the synthetic compounds in field trials in Ontario, Canada, and Kentucky, USA. Male moths were attracted to synthetic E6,Z11-18:Ald as a single component. Attraction appeared to be enhanced by addition of E6-18:Ald but not Z11-18:Ald, suggesting that the luna moth pheromone consists of a blend of E6,Z11-18:Ald and E6-18:Ald.
Collapse
Affiliation(s)
- Jocelyn G Millar
- Departments of Entomology and Chemistry, University of California, Riverside, CA, 92521, USA.
| | - Kenneth F Haynes
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aaron T Dossey
- All Things Bugs LLC, 120 Mark Twain Circle, APT# L 5, Athens, GA, 30605, USA
| | - J Steven McElfresh
- Departments of Entomology and Chemistry, University of California, Riverside, CA, 92521, USA
| | - Jeremy D Allison
- Natural Resources Canada - Canadian Forest Service, Great Lakes Forestry Centre, P6A 2E5, Sault Ste. Marie, ON, Canada
| |
Collapse
|
10
|
Lievers R, Groot AT. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths. PLoS One 2016; 11:e0161138. [PMID: 27533064 PMCID: PMC4988701 DOI: 10.1371/journal.pone.0161138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/29/2016] [Indexed: 11/25/2022] Open
Abstract
In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses.
Collapse
Affiliation(s)
- Rik Lievers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
- * E-mail:
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany
| |
Collapse
|
11
|
Female sex pheromones of two Japanese saturniid species, Rhodinia fugax and Loepa sakaei: identification, synthesis, and field evaluation. J Chem Ecol 2014; 41:1-8. [PMID: 25533776 DOI: 10.1007/s10886-014-0538-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/30/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
While 11 species in the family Saturniidae are found in Japan, no sex pheromones of the native species had been investigated previously. We collected larvae of Rhodinia fugax in Nagano and Tottori Prefecture, and of Loepa sakaei in Okinawa Prefecture, and extracted sex pheromones of these two species from virgin female moths. In gas chromatography-electroantennogram detection (GC-EAD) analyses, male antennae of each species responded to one component in the respective pheromone extracts of conspecific females. Chemical analyses of the extracts by GC/mass spectrometry revealed that the EAD-active compounds of R. fugax and L. sakaei were a hexadecadienal and a tetradecadienyl acetate, respectively. The two species belong to the subfamily Saturniinae, and the mass spectra of both were similar to that of the 6,11-hexadecadienyl acetate identified from Antheraea polyphemus, classified in the same subfamily, suggesting the same 6,11-dienyl structure for the C16 aldehyde and a 4,9-dienyl structure for the C14 acetate. Based on this assumption, four geometrical isomers of each dienyl compound were stereoselectively synthesized via acetylene intermediates, compared to the natural products, and tested in the field. Male catches confirmed the pheromone structures of the two Japanese saturniid species as (6E,11Z)-6,11-hexadecadienal for R. fugax and (4E,9Z)-4,9-tetradecadienyl acetate for L. sakaei. The compounds have a characteristic 1,6-dienyl motif common to the pheromones of Saturniinae species.
Collapse
|