1
|
Bar E, Davidovich-Rikanati R, Saini S, Inbar M, Lewinsohn E. Chiral Chemopolymorphism in the Monoterpenes of Pistacia palaestina Leaves and Galls. Chirality 2024; 36:e23702. [PMID: 39138008 DOI: 10.1002/chir.23702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024]
Abstract
Pistacia palaestina Boiss. is a common tree in the Mediterranean maquis. The leaves of this plant accumulate defensive monoterpenes, whose levels greatly increase in galls induced by the aphid Baizongia pistaciae. We previously found a significant chemopolymorphism in monoterpene content among individual trees, but the chirality of these monoterpenes was unknown. Although most plant species specifically accumulate one enantiomeric form of a given compound, P. palaestina individuals display chemopolymorphism in the chirality of the key monoterpenes accumulated. We report here a marked enantiomeric variation for the limonene, α- and β-pinene, camphene, sabinene, δ-3-carene, and terpene-4-ol content in leaves and galls of nine different naturally growing P. palaestina trees. Interestingly, insect-induced gall monoterpene composition is an augmentation of the specific enantiopolymorphism originally displayed by each individual tree.
Collapse
Affiliation(s)
- Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, Israel
| | - Shashank Saini
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, Israel
| | - Moshe Inbar
- Department of Evolutionary & Environmental Biology, University of Haifa, Haifa, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, Israel
- Department of Evolutionary & Environmental Biology, University of Haifa, Haifa, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Jia M, Liu J, Zhou W, Hua J, Luo S. Antimicrobial diterpene induced by two gall-inducing adelgids coexisting on Picea koraiensis. TREE PHYSIOLOGY 2022; 42:1601-1612. [PMID: 35405001 DOI: 10.1093/treephys/tpac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The mechanism by which closely related species can coexist is a central factor in the stability of ecological communities. The larch adelgid (Adelges laricis laricis) and the eastern spruce adelgid (Adelges (Sacchiphantes) abietis) have both been found on the branches of Picea koraiensis in China. These two adelgids exhibit strong infectivity and readily induce the formation of 'fish scale-like' and 'pineapple-like' galls with branch parasitism rates of between 75.01 ± 7.03 and 88.02 ± 4.39%. Interestingly, the gall tissues in which these two gall-inducing insects were found to be coexisting were discovered at a rate of ~0.2% in the studied populations. The weight and number of gall chambers as well as the number of adelgids in the 'fish scale-like' side were higher than those in the 'pineapple-like' side. Furthermore, compared with the normal branches, a diterpene neoabietic acid was found at elevated concentrations in the gall tissues, with especially high concentrations seen in the tissues of the co-occupied galls. Neoabietic acid exhibited strong antibacterial activities against Bacillus spp. isolated from the branches of P. koraiensis, as well as potent antifungal activity against the hyphal growth of Fusarium graminearum JMY-1, which was obtained from the gall tissues. Our result provides evidence that the coexistence of the two closely related species could be explained by alterations of the host tissues by the insects resulting in increased concentrations of the antimicrobial agent.
Collapse
Affiliation(s)
- Mingyue Jia
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Jiayi Liu
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | | | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| |
Collapse
|
3
|
Davidovich-Rikanati R, Bar E, Hivert G, Huang XQ, Hoppen-Tonial C, Khankin V, Rand K, Abofreih A, Muhlemann JK, Marchese JA, Shotland Y, Dudareva N, Inbar M, Lewinsohn E. Transcriptional up-regulation of host-specific terpene metabolism in aphid-induced galls of Pistacia palaestina. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:555-570. [PMID: 34129033 DOI: 10.1093/jxb/erab289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Galling insects gain food and shelter by inducing specialized anatomical structures in their plant hosts. Such galls often accumulate plant defensive metabolites protecting the inhabiting insects from predation. We previously found that, despite a marked natural chemopolymorphism in natural populations of Pistacia palaestina, the monoterpene content in Baizongia pistaciae-induced galls is substantially higher than in leaves of their hosts. Here we show a general up-regulation of key structural genes in both the plastidial and cytosolic terpene biosynthetic pathways in galls as compared with non-colonized leaves. Novel prenyltransferases and terpene synthases were functionally expressed in Escherichia coli to reveal their biochemical function. Individual Pistacia trees exhibiting chemopolymorphism in terpene compositions displayed differential up-regulation of selected terpene synthase genes, and the metabolites generated by their gene products in vitro corresponded to the monoterpenes accumulated by each tree. Our results delineate molecular mechanisms responsible for the formation of enhanced monoterpene in galls and the observed intraspecific monoterpene chemodiversity displayed in P. palaestina. We demonstrate that gall-inhabiting aphids transcriptionally reprogram their host terpene pathways by up-regulating tree-specific genes, boosting the accumulation of plant defensive compounds for the protection of colonizing insects.
Collapse
Affiliation(s)
- Rachel Davidovich-Rikanati
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Einat Bar
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Gal Hivert
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
- Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Carolina Hoppen-Tonial
- Department of Agronomy, Federal University of Technology - Paraná, Pato Branco, 85503-390, Brazil
- Department of Agronomy, Federal Institute of Paraná, Palmas, 85555-000, Brazil
| | - Vered Khankin
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Karin Rand
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
- Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 3498838, Israel
| | - Amal Abofreih
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Joelle K Muhlemann
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
- The James Hutton Institute, UK
| | - José Abramo Marchese
- Department of Agronomy, Federal University of Technology - Paraná, Pato Branco, 85503-390, Brazil
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Moshe Inbar
- Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 3498838, Israel
| | - Efraim Lewinsohn
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, Ramat Yishay, 30095, Israel
- Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Villagra C, Vera W, Lenitz S, Bergmann J. Differences in volatile emissions between healthy and gall-induced branches of Haplopappus foliosus (Asteraceae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Kurzfeld-Zexer L, Inbar M. Gall-forming aphids are protected (and benefit) from defoliating caterpillars: the role of plant-mediated mechanisms. BMC Ecol Evol 2021; 21:124. [PMID: 34144674 PMCID: PMC8214297 DOI: 10.1186/s12862-021-01861-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Interspecific interactions among insect herbivores are common and important. Because they are surrounded by plant tissue (endophagy), the interactions between gall-formers and other herbivores are primarily plant-mediated. Gall-forming insects manipulate their host to gain a better nutrient supply, as well as physical and chemical protection form natural enemies and abiotic factors. Although often recognized, the protective role of the galls has rarely been tested. Results Using an experimental approach, we found that the aphid, Smynthurodes betae, that forms galls on Pistacia atlantica leaves, is fully protected from destruction by the folivorous processionary moth, Thaumetopoea solitaria. The moth can skeletonize entire leaves on the tree except for a narrow margin around the galls that remains intact (“trimmed galls”). The fitness of the aphids in trimmed galls is unharmed. Feeding trials revealed that the galls are unpalatable to the moth and reduce its growth. Surprisingly, S. betae benefits from the moth. The compensatory secondary leaf flush following moth defoliation provides new, young leaves suitable for further gall induction that increase overall gall density and reproduction of the aphid. Conclusions We provide experimental support for the gall defense hypothesis. The aphids in the galls are protracted by plant-mediated mechanisms that shape the interactions between insect herbivores which feed simultaneously on the same host. The moth increase gall demsity on re-growing defoliated shoots.
Collapse
Affiliation(s)
- Lilach Kurzfeld-Zexer
- Department of Evolutionary & Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Moshe Inbar
- Department of Evolutionary & Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
6
|
Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics (Basel) 2021; 10:antibiotics10040425. [PMID: 33921406 PMCID: PMC8069618 DOI: 10.3390/antibiotics10040425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
There is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of Pistacia lentiscus L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities. PlL is a wild-growing shrub rich in terpenoids and polyphenols, the oil and extracts of which have been widely used against inflammation and infections, and as wound healing agents. The more recurrent components in PlL essential oil (EO) are represented by α-pinene, terpinene, caryophyllene, limonene and myrcene, with high variability in concentration depending on the Mediterranean country. The anti-inflammatory activity of the oil mainly occurs due to the inhibition of pro-inflammatory cytokines and the arachidonic acid cascade. Interestingly, the capacity against COX-2 and LOX indicates PlL EO as a dual inhibitory compound. The high content of polyphenols enriching the extracts provide explanations for the known biological properties of the plant. The protective effect against reactive oxygen species is of wide interest. In particular, their anthocyanins content greatly clarifies their antioxidative capacity. Further, the antimicrobial activity of PlL oil and extracts includes the inhibition of Staphylococcus aureus, Escherichia coli, periodontal bacteria and Candida spp. In conclusion, the relevant scientific properties indicate PlL as a nutraceutical and also as a therapeutic agent against a wide range of diseases based on inflammation and infections.
Collapse
Affiliation(s)
- Egle Milia
- Department of Medicine, Surgery and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| | - Simonetta Maria Bullitta
- C.N.R., Institute for Animal Production System in Mediterranean Environment (ISPAAM), Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy;
| | - Giorgio Mastandrea
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/C, 07100 Sassari, Italy;
| | - Barbora Szotáková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic;
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 48-06123 Perugia, Italy;
| | - Lenka Langhansová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic;
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy;
| | - Antonella Bortone
- Dental Unite, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| |
Collapse
|
7
|
Hefied F, Ben Ahmed Z, Yousfi M. In vitro antioxidant and α‐amylase inhibitory potential of methanolic and lipid fractions from
Pistacia atlantica Desf
. galls. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fatiha Hefied
- Laboratory of Fundamental Sciences University Amar Telidji Laghouat Algeria
| | - Ziyad Ben Ahmed
- Laboratory of Fundamental Sciences University Amar Telidji Laghouat Algeria
| | - Mohamed Yousfi
- Laboratory of Fundamental Sciences University Amar Telidji Laghouat Algeria
| |
Collapse
|
8
|
Zeng L, Tu XL, Dai H, Han FM, Lu BS, Wang MS, Nanaei HA, Tajabadipour A, Mansouri M, Li XL, Ji LL, Irwin DM, Zhou H, Liu M, Zheng HK, Esmailizadeh A, Wu DD. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biol 2019; 20:79. [PMID: 30999938 PMCID: PMC6474056 DOI: 10.1186/s13059-019-1686-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pistachio (Pistacia vera), one of the most important commercial nut crops worldwide, is highly adaptable to abiotic stresses and is tolerant to drought and salt stresses. RESULTS Here, we provide a draft de novo genome of pistachio as well as large-scale genome resequencing. Comparative genomic analyses reveal stress adaptation of pistachio is likely attributable to the expanded cytochrome P450 and chitinase gene families. Particularly, a comparative transcriptomic analysis shows that the jasmonic acid (JA) biosynthetic pathway plays an important role in salt tolerance in pistachio. Moreover, we resequence 93 cultivars and 14 wild P. vera genomes and 35 closely related wild Pistacia genomes, to provide insights into population structure, genetic diversity, and domestication. We find that frequent genetic admixture occurred among the different wild Pistacia species. Comparative population genomic analyses reveal that pistachio was domesticated about 8000 years ago and suggest that key genes for domestication related to tree and seed size experienced artificial selection. CONCLUSIONS Our study provides insight into genetic underpinning of local adaptation and domestication of pistachio. The Pistacia genome sequences should facilitate future studies to understand the genetic basis of agronomically and environmentally related traits of desert crops.
Collapse
Affiliation(s)
- Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xiao-Long Tu
- Allwegene Technologies Inc., Beijing, 102209, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | | | - Bing-She Lu
- College of Landscape Architecture and Tourism, Agricultural University of Hebei, Baoding, 071000, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Ali Tajabadipour
- Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Xiao-Long Li
- Biomarker Technologies Corporation, Beijing, China
| | - Li-Li Ji
- Allwegene Technologies Inc., Beijing, 102209, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong Zhou
- Chinese Academy of Forestry Sciences, Beijing, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | | | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
9
|
|
10
|
Lev-Yadun S, Halpern M. Extended phenotype in action. Two possible roles for silica needles in plants: not just injuring herbivores but also inserting pathogens into their tissues. PLANT SIGNALING & BEHAVIOR 2019; 14:1609858. [PMID: 31050310 PMCID: PMC6619976 DOI: 10.1080/15592324.2019.1609858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 05/22/2023]
Abstract
Phytoliths are silica bodies of various shapes including in the shape of sharp needles formed by many land plants. Defense from herbivory is one of the several known functions of phytoliths, especially the mechanical defense by abrasion of the mouthparts of arthropods and the teeth of mammalian herbivores. Another, although somewhat lesser-known, anti-herbivory defensive mechanism of phytoliths is wounding by sharp silica needles. We discuss and illuminate an even much less known defensive mechanism by phytoliths, i.e., the ability of needle-like phytoliths to insert microscopic pathogens (bacteria, fungi, viruses) into herbivores' tissues. We do it by comparison and by showing analogy with the better-known insertion of microbial pathogens into the body of herbivores by thorns, spines, and prickles. This largely overlooked and understudied defensive mechanism is a special case of a double extended phenotype; plants' defense, and the multiplication and dispersal of microorganisms, and is thus a case of mutualism.
Collapse
Affiliation(s)
- Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Tivon, Israel
- Iyar - The Israeli Institute for Advanced Studies, Lod, Israel
- CONTACT Simcha Lev-Yadun Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Tivon 36006, Israel
| | - Malka Halpern
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
11
|
Borges RM. The Galling Truth: Limited Knowledge of Gall-Associated Volatiles in Multitrophic Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1139. [PMID: 30140272 PMCID: PMC6094090 DOI: 10.3389/fpls.2018.01139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/13/2018] [Indexed: 05/18/2023]
Abstract
Galls are the product of enclosed internal herbivory where the gall maker induces a plant structure within which the herbivores complete their development. For successful sustained herbivory, gall makers must (1) suppress the induction of plant defenses in response to herbivory that is usually mediated through the jasmonic acid pathway and involves volatile organic compound (VOC) production, or (2) have mechanisms to cope with herbivory-induced VOCs, or (3) manipulate production of VOCs to their own advantage. Similarly, plants may have mechanisms (1) to avoid VOC suppression or (2) to attract galler enemies such as parasitoids. While research on VOCs involved in plant-herbivore-parasitoid/predator interactions is extensive, this has largely focussed on the impact of piercing, sucking, and chewing external herbivores or their eggs on VOC emissions. Despite the importance of gallers, owing to their damage to many economically valuable plants, the role of volatiles in gall-associated herbivory has been neglected; exceptions include studies on beneficial gallers and their enemies such as those that occur in brood-site pollination mutualisms. This is possibly the consequence of the difficulties inherent with studying internally occurring herbivory. This review examines the evidence for VOCs in galler attraction to host plants, potential VOC suppression by gallers, increased emission from galls and neighboring tissues, attraction of galler enemies, and the role of galler symbionts in VOC production. It suggests a research focus and ways in which studies on galler-associated VOCs can progress from a philatelic approach involving VOC listing toward a more predictive and evolutionary perspective.
Collapse
Affiliation(s)
- Renee M. Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
12
|
Martinez JJI, Moreno-González V, Jonas-Levi A, Álvarez R. Quantitative differences detected in the histology of galls induced by the same aphid species in different varieties of the same host. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:516-524. [PMID: 29424091 DOI: 10.1111/plb.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Plant galls are abnormal growths caused by an inducer that determines their morphology and anatomy. We qualitatively and quantitatively compared the histological anatomy of five aphid species (Paracletus cimiciformis, Forda marginata, Forda formicaria, Baizongia pistaciae and Geoica wertheimae) that induce galls in Pistacia terebinthus shrubs growing in Israel. We also quantitatively compared these galls to those that the aphids create on the same host in Spain. Histological study was conducted following methods described previously by the authors. Quantitative differences among the galls were found in five of 12 common anatomical traits: gall thickness, stomatal number in the epidermis-air, size of vascular bundles, distance of phloem ducts from the lumen and number of intraphloematic schizogenous ducts. Other structures were particular to one or some species: number of cracks in the epidermis-lumen, a sclereid layer, trichomes and microcrystal inclusions. Fisher's tests of combined probabilities showed that the galls induced in Israel were statistically different from those in Spain. In particular, the number of intraphloematic schizogenous ducts was higher in the galls induced in P. terebinthus in Israel. Such differences were also found in other traits related to defence of the gall inhabitant. In conclusion, while the gall shape and size are determined mainly by the cecidogenic insect, it seems that the host plant also plays an important role in determining the number/size of quantitative traits, in this case mainly protective structures.
Collapse
Affiliation(s)
- J-J I Martinez
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
- Lab. of Animal Ecology and Biodiversity, MIGAL - Galilee Research Center, Kiryat Shmona, Israel
| | - V Moreno-González
- Departamento de Biodiversidad y Gestión Ambiental - Área de Zoología, Universidad de León, León, Spain
| | - A Jonas-Levi
- Department of Food Sciences, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - R Álvarez
- Departamento de Biología Molecular-Área de Biología Celular, Universidad de León, León, Spain
| |
Collapse
|
13
|
Patel S, Rauf A, Khan H. The relevance of folkloric usage of plant galls as medicines: Finding the scientific rationale. Biomed Pharmacother 2017; 97:240-247. [PMID: 29091872 DOI: 10.1016/j.biopha.2017.10.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022] Open
Abstract
Galls, the abnormal growths in plants, induced by virus, bacteria, fungi, nematodes, arthropods, or even other plants, are akin to cancers in fauna. The galls which occur in a myriad of forms are phytochemically-distinct from the normal plant tissues, for these are the sites of tug-of-war, just like the granuloma in animals. To counter the stressors, in the form of the effector proteins of the invaders, the host plants elaborate a large repertoire of metabolites, which they normally will not produce. Perturbation of the jasmonic acid pathway, and the overexpression of auxin, and cytokinin, promote the tissue proliferation and the resultant galls. Though the plant family characteristics and the attackers determine the gall biochemistry, most of the galls are rich in bioactive phytochemicals such as phenolic acids, anthocyanins, purpurogallin, flavonoids, tannins, steroids, triterpenes, alkaloids, lipophilic components (tanshinone) etc. Throughout the long trajectory of evolution, humans have learned to use the galls as therapeutics, much like other plant parts. In diverse cultures, the evidence of folkloric usage of galls abound. Among others, galls from the plant genus like Rhus, Pistacia, Quercus, Terminalia etc. are popular as ethnomedicine. This review mines the literature on galling agents, and the medicinal relevance of galls.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, K.P.K, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|
14
|
Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls. J Chem Ecol 2017; 43:143-152. [PMID: 28108840 DOI: 10.1007/s10886-016-0817-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
Certain insect species can induce gall formation on numerous plants species. Although the mechanism of gall development is largely unknown, it is clear that insects manipulate their hosts' anatomy, physiology, and chemistry for their own benefit. It is well known that insect-induced galls often contain vast amounts of plant defensive compounds as compared to non-colonized tissues, but it is not clear if defensive compounds can be produced in situ in the galled tissues. To answer this question, we analyzed terpene accumulation patterns and possible independent biosynthetic potential of galls induced by the aphid Baizongia pistaciae L. on the terminal buds of Pistacia palaestina Boiss. We compared monoterpene levels and monoterpene synthase enzyme activity in galls and healthy leaves from individual trees growing in a natural setting. At all developmental stages, monoterpene content and monoterpene synthase activity were consistently (up to 10 fold on a fresh weight basis) higher in galls than in intact non-colonized leaves. A remarkable tree to tree variation in the products produced in vitro from the substrate geranyl diphosphate by soluble protein extracts derived from individual trees was observed. Furthermore, galls and leaves from the same trees displayed enhanced and often distinct biosynthetic capabilities. Our results clearly indicate that galls possess independent metabolic capacities to produce and accumulate monoterpenes as compared to leaves. Our study indicates that galling aphids manipulate the enzymatic machinery of their host plant, intensifying their own defenses against natural enemies.
Collapse
|
15
|
Rauf A, Patel S, Uddin G, Siddiqui BS, Ahmad B, Muhammad N, Mabkhot YN, Hadda TB. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed Pharmacother 2016; 86:393-404. [PMID: 28012394 DOI: 10.1016/j.biopha.2016.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022] Open
Abstract
Pistacia genus belong to family Anacardiaceae and it is versatile in that its member species have food (P. vera), medicinal (P. lentiscus) and ornamental (P. chinensis) values. Various species of this genus have folkloric uses with credible mention in diverse pharmacopeia. As a trove of phenolic compounds, terpenoids, monoterpenes, flavonoids, alkaloids, saponins, fatty acids, and sterols, this genus has garnered pharmaceutical attention in recent times. With adequate clinical studies, this genus might be exploited for therapy of a multitude of inflammatory diseases, as promised by preliminary studies. In this regard, the ethnomedicinal, phytochemistry, biological potencies, risks, and scopes of Pistacia genus have been reviewed here.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of chemistry, University of Swabi Anbar-23430, Khyber Pakhtunkhwa, Pakistan.
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego-92182, USA.
| | - Ghias Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar-25120, Pakistan
| | - Bina S Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-KPK-25120, KPK, Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Taibi Ben Hadda
- Laboratoire Chimie Matériaux, FSO, Université Mohammed Ier, Oujda-60000, Morocco
| |
Collapse
|
16
|
Guedes LM, Aguilera N, Becerra J, Hernández V, Isaias RMDS. Leaf and stem galls of Schinus polygamus (Cav.) Cabr (Anacardiaceae): Anatomical and chemical implications. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Lev-Yadun S. Does the whistling thorn acacia (Acacia drepanolobium) use auditory aposematism to deter mammalian herbivores? PLANT SIGNALING & BEHAVIOR 2016; 11:e1207035. [PMID: 27359246 PMCID: PMC5022412 DOI: 10.1080/15592324.2016.1207035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Auditory signaling including aposematism characterizes many terrestrial animals. Auditory aposematism by which certain animals use auditory aposematic signals to fend off enemies is well known for instance in rattlesnakes. Auditory signaling by plants toward animals and other plants is an emerging area of plant biology that still suffers from limited amount of solid data. Here I propose that auditory aposematism operates in the African whistling thorn acacia (Acacia drepanolobium = Vachellia drepanolobium). In this tree, the large and hollow thorn bases whistle when wind blows. This type of aposematism compliments the well-known conspicuous thorn and mutualistic ant based aposematism during day and may operate during night when the conspicuous thorns are invisible.
Collapse
Affiliation(s)
- Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel
| |
Collapse
|
18
|
Yahyaa M, Tholl D, Cormier G, Jensen R, Simon PW, Ibdah M. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4870-8. [PMID: 25924989 DOI: 10.1021/acs.jafc.5b00546] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants produce an excess of volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and aroma of carrots (Daucus carota L.). A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of volatile terpenes in a diverse collection of fresh carrots (D. carota L.). Here, we report on a transcriptome-based identification and functional characterization of two carrot terpene synthases, the sesquiterpene synthase, DcTPS1, and the monoterpene synthase, DcTPS2. Recombinant DcTPS1 protein produces mainly (E)-β-caryophyllene, the predominant sesquiterpene in carrot roots, and α-humulene, while recombinant DcTPS2 functions as a monoterpene synthase with geraniol as the main product. Both genes are differentially transcribed in different cultivars and during carrot root development. Our results suggest a role for DcTPS genes in carrot aroma biosynthesis.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| | - Dorothea Tholl
- ‡Department of Biological Sciences, Virginia Polytechnic Institute and State University, 409 Latham Hall, 220 Agquad Lane, Blacksburg, Virginia 24061, United States
| | - Guy Cormier
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Roderick Jensen
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Philipp W Simon
- ∥Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, United States
| | - Mwafaq Ibdah
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| |
Collapse
|