1
|
Eyer PA, Finand B, Mona S, Khimoun A, D'ettorre P, Fédérici P, Leroy C, Cornette R, Chifflet-Belle P, Monnin T, Doums C. Integrative characterization of genetic and phenotypic differentiation in an ant species complex with strong hierarchical population structure and low dispersal abilities. Heredity (Edinb) 2023; 130:163-176. [PMID: 36585503 PMCID: PMC9981590 DOI: 10.1038/s41437-022-00590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Low dispersal, occurrence of asexual reproduction and geographic discontinuity increase genetic differentiation between populations, which ultimately can lead to speciation. In this work, we used a multidisciplinary framework to characterize the genetic and phenotypic differentiation between and within two cryptic ant species with restricted dispersal, Cataglyphis cursor and C. piliscapa and used behavioral experiments to test for reproductive isolation. Their distribution is segregated by the Rhône River and they have been traditionally distinguished only by hair numbers, although a statistical assessment is still lacking. We found strong genetic (microsatellites, nuclear and mitochondrial sequences), morphological (number of hairs, tibia length, male genitalia) and chemical (cuticular hydrocarbons) differentiation not only between species but also among localities within species. However, inter-specific differentiation was slightly higher than intra-specific differentiation for most markers. Overall, this pattern could either reflect reproductive isolation or could result from a longer period of geographic isolation between species than among localities within species without necessarily involving reproductive isolation. Interestingly, our behavioral experiments showed an absence of mating between species associated to a higher aggressiveness of workers towards heterospecific males. This suggests that sexual selection may, at least partially, fuel reproductive isolation. We also showed that cuticular hydrocarbons, mtDNA sequences and number of hairs provide reliable criteria allowing species discrimination. Overall, this species complex offers a case study to further investigate varying stages of a speciation continuum by estimating reproductive isolation between pairs of localities varying by their level of genetic differentiation.
Collapse
Affiliation(s)
- P A Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, 75005, Paris, France.
- EPHE, PSL University, 75005, Paris, France.
| | - B Finand
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, 75005, Paris, France
| | - S Mona
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, 75005, Paris, France
- EPHE, PSL University, 75005, Paris, France
| | - A Khimoun
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, 75005, Paris, France
- EPHE, PSL University, 75005, Paris, France
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - P D'ettorre
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, 93430, Villetaneuse, France
| | - P Fédérici
- Sorbonne Université, Université Paris Est Créteil, CNRS, INRAe, IRD, Institute of Ecology and Environmental sciences of Paris, iEES-Paris, 75005, Paris, France
| | - C Leroy
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - R Cornette
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, 75005, Paris, France
| | - P Chifflet-Belle
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, 75005, Paris, France
- EPHE, PSL University, 75005, Paris, France
| | - T Monnin
- Sorbonne Université, Université Paris Est Créteil, CNRS, INRAe, IRD, Institute of Ecology and Environmental sciences of Paris, iEES-Paris, 75005, Paris, France
| | - C Doums
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE-PSL, Sorbonne Université, Université des Antilles, 75005, Paris, France
- EPHE, PSL University, 75005, Paris, France
| |
Collapse
|
2
|
Saleh NW, Henske J, Ramírez SR. Experimental disruption of social structure reveals totipotency in the orchid bee, Euglossa dilemma. Evolution 2022; 76:1529-1545. [PMID: 35589274 DOI: 10.1111/evo.14513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Eusociality has evolved multiple times across the insect phylogeny. Social insects with greater levels of social complexity tend to exhibit specialized castes with low levels of individual phenotypic plasticity. In contrast, species with simple social groups may consist of totipotent individuals that transition among behavioral and reproductive states. However, recent work has shown that in simple social groups, there can still be constraint on individual plasticity, caused by differences in maternal nourishment or social interaction. It is not well understood how these constraints arise, ultimately leading to the evolution of nonreproductive workers. Some species of orchid bees form social groups of a dominant and-one to two subordinate helpers where all individuals are reproductive. Females can also disperse to start their own nest as a solitary foundress, which includes a nonreproductive phase characterized by ovary inactivation, not typically expressed by subordinates. Little is known about individual flexibility across these trajectories. Here, using the orchid bee Euglossa dilemma, we assess the plasticity of subordinate helpers, finding that they are capable of the same behavioral, physiological, transcriptomic, and chemical changes seen in foundresses. Our results suggest that the lack of nonreproductive workers in E. dilemma is not due to a lack of subordinate plasticity.
Collapse
Affiliation(s)
- Nicholas W Saleh
- Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA.,Center for Population Biology, University of California, Davis, California, USA
| | - Jonas Henske
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany
| | - Santiago R Ramírez
- Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|