1
|
Lange C, Boyer S, Bezemer TM, Lefort MC, Dhami MK, Biggs E, Groenteman R, Fowler SV, Paynter Q, Verdecia Mogena AM, Kaltenpoth M. Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. THE ISME JOURNAL 2023; 17:1798-1807. [PMID: 37660231 PMCID: PMC10579242 DOI: 10.1038/s41396-023-01500-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Microbes can be an important source of phenotypic plasticity in insects. Insect physiology, behaviour, and ecology are influenced by individual variation in the microbial communities held within the insect gut, reproductive organs, bacteriome, and other tissues. It is becoming increasingly clear how important the insect microbiome is for insect fitness, expansion into novel ecological niches, and novel environments. These investigations have garnered heightened interest recently, yet a comprehensive understanding of how intraspecific variation in the assembly and function of these insect-associated microbial communities can shape the plasticity of insects is still lacking. Most research focuses on the core microbiome associated with a species of interest and ignores intraspecific variation. We argue that microbiome variation among insects can be an important driver of evolution, and we provide examples showing how such variation can influence fitness and health of insects, insect invasions, their persistence in new environments, and their responses to global environmental changes. A and B are two stages of an individual or a population of the same species. The drivers lead to a shift in the insect associated microbial community, which has consequences for the host. The complex interplay of those consequences affects insect adaptation and evolution and influences insect population resilience or invasion.
Collapse
Affiliation(s)
- Claudia Lange
- Manaaki Whenua Landcare Research, Lincoln, New Zealand.
| | - Stéphane Boyer
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - T Martijn Bezemer
- Above-Belowground Interactions Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | - Eva Biggs
- Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | | | | | | | | | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
2
|
Zhao J, Liu Y, Xu S, Wang J, Zhang Z, Wang MQ, Turlings TCJ, Zhang P, Zhou A. Mealybug salivary microbes inhibit induced plant defenses. PEST MANAGEMENT SCIENCE 2023; 79:4034-4047. [PMID: 37287215 DOI: 10.1002/ps.7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phenacoccus solenopsis is a polyphagous invasive mealybug that caused serious damage to crops worldwide. Phloem-sucking hemipterans are known to carry symbiotic microbes in their saliva. However, the role of salivary bacteria of P. solenopsis in modulating plant defenses remains limited. Exploring the impact of salivary bacteria on plant defense responses will contribute to the development of new targets for efficient control of invasive mealybugs. RESULTS Salivary bacteria of the invasive mealybug P. solenopsis can suppress herbivore-induced plant defenses and thus enhance mealybug fitness. Mealybugs treated with an antibiotic showed decreased weight gain, fecundity and survival. Untreated mealybugs suppressed jasmonic acid (JA)-regulated defenses but activated salicylic acid (SA)-regulated defenses in cotton plants. In contrast, antibiotic-treated mealybugs triggered JA-responsive gene expression and JA accumulation, and showed shortened phloem ingestion. Reinoculating antibiotic-treated mealybugs with Enterobacteriaceae or Stenotrophomonas cultivated from mealybug saliva promoted phloem ingestion and fecundity, and restored the ability of mealybugs to suppress plant defenses. Fluorescence in situ hybridization visualization revealed that Enterobacteriaceae and Stenotrophomonas colonize salivary glands and are secreted into the mesophyll cells and phloem vessels. Exogenous application of the bacterial isolates to plant leaves inhibited JA-responsive gene expression and activated SA-responsive gene expression. CONCLUSION Our findings imply that symbiotic bacteria in the saliva of the mealybug play an important role in manipulating herbivore-induced plant defenses, enabling this important pest to evade induced plant defenses and promoting its performance and destructive effects on crops. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongheng Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shouye Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jialu Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pengjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Aiming Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Xue R, Li Q, Guo R, Yan H, Ju X, Liao L, Zeng R, Song Y, Wang J. Rice Defense Responses Orchestrated by Oral Bacteria of the Rice Striped Stem Borer, Chilo suppressalis. RICE (NEW YORK, N.Y.) 2023; 16:1. [PMID: 36622503 PMCID: PMC9829949 DOI: 10.1186/s12284-022-00617-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plant defenses in response to chewing insects are generally regulated by jasmonic acid (JA) signaling pathway, whereas salicylic acid (SA) signaling is mainly involved in plant defense against biotrophic pathogens and piercing-sucking insects. Previous studies showed that both JA- and SA-related defenses in rice plants were triggered by the infestation of the rice striped stem borer (SSB, Chilo suppressalis), a destructive pest causing severe damage to rice production. Herbivore-associated microbes play an important role in modulating plant-insect interaction, and thus we speculate that the SSB symbiotic microbes acting as a hidden player may cause this anomalous result. The antibiotics (AB) treatment significantly depressed the performance of field-collected SSB larvae on rice plants, and reduced the quantities of bacteria around the wounds of rice stems compared to non-AB treatment. In response to mechanical wounding and oral secretions (OS) collected from non-AB treated larvae, rice plants exhibited lower levels of JA-regulated defenses, but higher levels of SA-regulated defenses compared to the treatment of OS from AB-treated larvae determined by using a combination of biochemical and molecular methods. Among seven culturable bacteria isolated from the OS of SSB larvae, Enterobacter and Acinetobacter contributed to the suppression of JA signaling-related defenses in rice plants, and axenic larvae reinoculated with these two strains displayed better performance on rice plants. Our findings demonstrate that SSB larvae exploit oral secreted bacteria to interfere with plant anti-herbivore defense and avoid fully activating the JA-regulated antiherbivore defenses of rice plants.
Collapse
Affiliation(s)
- Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ruiqing Guo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hui Yan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Lu Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Steinbrenner AD, Saldivar E, Hodges N, Guayazán-Palacios N, Chaparro AF, Schmelz EA. Signatures of plant defense response specificity mediated by herbivore-associated molecular patterns in legumes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1255-1270. [PMID: 35315556 DOI: 10.1111/tpj.15732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Chewing herbivores activate plant defense responses through a combination of mechanical wounding and elicitation by herbivore-associated molecular patterns (HAMPs). HAMPs are wound response amplifiers; however, specific defense outputs may also exist that strictly require HAMP-mediated defense signaling. To investigate HAMP-mediated signaling and defense responses, we characterized cowpea (Vigna unguiculata) transcriptome changes following elicitation by inceptin, a peptide HAMP common in Lepidoptera larvae oral secretions. Following inceptin treatment, we observed large-scale reprogramming of the transcriptome consistent with three different response categories: (i) amplification of mechanical wound responses, (ii) temporal extension through accelerated or prolonged responses, and (iii) examples of inceptin-specific elicitation and suppression. At both early and late timepoints, namely 1 and 6 h, large sets of transcripts specifically accumulated following inceptin elicitation. Further early inceptin-regulated transcripts were classified as reversing changes induced by wounding alone. Within key signaling- and defense-related gene families, inceptin-elicited responses included target subsets of wound-induced transcripts. Transcripts displaying the largest inceptin-elicited fold changes included transcripts encoding terpene synthases (TPSs) and peroxidases (POXs) that correspond with induced volatile production and increased POX activity in cowpea. Characterization of inceptin-elicited cowpea defenses via heterologous expression in Nicotiana benthamiana demonstrated that specific cowpea TPSs and POXs were able to confer terpene emission and the reduced growth of beet armyworm (Spodoptera exigua) herbivores, respectively. Collectively, our present findings in cowpea support a model where HAMP elicitation both amplifies concurrent wound responses and specifically contributes to the activation of selective outputs associated with direct and indirect antiherbivore defenses.
Collapse
Affiliation(s)
- Adam D Steinbrenner
- Department of Biology, University of Washington, Seattle, WA, USA
- Washington Research Foundation, Seattle, WA, USA
| | - Evan Saldivar
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Nile Hodges
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Eric A Schmelz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Yang Y, Liu X, Xu H, Liu Y, Lu Z. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Cnaphalocrocis medinalis. Front Microbiol 2022; 13:824224. [PMID: 35479615 PMCID: PMC9037797 DOI: 10.3389/fmicb.2022.824224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbes in insects may play an important role in the digestion, immunity and protection, detoxification of toxins, development, and reproduction. The rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious insect pest that can damage rice, maize, and other gramineous plants. To determine the effects of host plants and generations on the gut microbiota of C. medinalis, we deciphered the bacterial configuration of this insect pest fed rice or maize for three generations by Illumina MiSeq technology. A total of 16 bacterial phyla, 34 classes, 50 orders, 101 families, 158 genera, and 44 species were identified in C. medinalis fed rice or maize for three generations. Host plants, insect generation, and their interaction did not influence the alpha diversity indices of the gut microbiota of C. medinalis. The dominant bacterial taxa were Proteobacteria and Firmicutes at the phylum level and Enterococcus and unclassified Enterobacteriaceae at the genus level. A number of twenty genera coexisted in the guts of C. medinalis fed rice or maize for three generations, and their relative abundances occupied more than 90% of the gut microbiota of C. medinalis. A number of two genera were stably found in the gut of rice-feeding C. medinalis but unstably found in the gut microbiota of maize-feeding C. medinalis, and seven genera were stably found in the gut of maize-feeding C. medinalis but unstably found in the gut of rice-feeding C. medinalis. In addition, many kinds of microbes were found in some but not all samples of the gut of C. medinalis fed on a particular host plant. PerMANOVA indicated that the gut bacteria of C. medinalis could be significantly affected by the host plant and host plant × generation. We identified 47 taxa as the biomarkers for the gut microbiota of C. medinalis fed different host plants by LEfSe. Functional prediction suggested that the most dominant role of the gut microbiota in C. medinalis is metabolism, followed by environmental information processing, cellular processes, and genetic information processing. Our findings will enrich the understanding of gut bacteria in C. medinalis and reveal the differences in gut microbiota in C. medinalis fed on different host plants for three generations.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhongxian Lu,
| |
Collapse
|
6
|
Poretsky E, Ruiz M, Ahmadian N, Steinbrenner AD, Dressano K, Schmelz EA, Huffaker A. Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivore-associated molecular patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1295-1316. [PMID: 34564909 DOI: 10.1111/tpj.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.
Collapse
Affiliation(s)
- Elly Poretsky
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Ruiz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nazanin Ahmadian
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Keini Dressano
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric A Schmelz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alisa Huffaker
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
7
|
Banerjee S, Maiti TK, Roy RN. Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Crit Rev Biotechnol 2021; 42:384-402. [PMID: 34612103 DOI: 10.1080/07388551.2021.1942777] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To explore the unmapped biotechnologically important microbial platforms for human welfare, the insect gut system is such a promising arena. Insects, the inhabitant of all ecological niches, harbor a healthy diversified microbial population in their versatile gut environment. This deep-rooted symbiotic relationship between insects and gut microbes is the result of several indispensable microbial performances that include: enzyme production, detoxification of plant defense compounds and insecticides, maintenance of life cycle, host fertility, bioremediation, pest biocontrol, production of antimicrobial compounds, and in addition provide vitamins, amino acids, and lactic acids to their hosts. Insects have developed such symbiotic interactions with different microorganisms for nutritional benefits like the digestion of dietary compounds by the production of several key hydrolytic enzymes viz: amylase, cellulase, lignocellulase, protease, lipase, xylanase, pectinase, chitinase, laccase, etc. The nutritional enrichment offered by these microbes to insects may be the key factor in the evolutionary attainment of this group. Around one million insect species are grouped under 31 orders, however, only ten of such groups' have been studied in relation to enzyme-producing gut microbes. Moreover, insect gut symbionts are a potential source of biotechnologically active biomolecules as these microbes go through a course of selection pressures in their host gut environment. As symbiosis has pronounced potential regarding the production of novel compounds, especially enzymes with multidimensional industrial capabilities, so there are ample scopes to explore this treasure box for human welfare. Biological significance as well as industrially compatible capabilities can categorize these insect gut symbionts as an unexplored biotechnological aspect.
Collapse
Affiliation(s)
- Sandipan Banerjee
- Microbiology Research Laboratory, Department of Botany, Dr. B. N. Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, India.,Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, India
| | | | - Raj Narayan Roy
- Microbiology Research Laboratory, Department of Botany, Dr. B. N. Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, India
| |
Collapse
|
8
|
Ali JG, Casteel CL, Mauck KE, Trase O. Chemical Ecology of Multitrophic Microbial Interactions: Plants, Insects, Microbes and the Metabolites that Connect Them. J Chem Ecol 2021; 46:645-648. [PMID: 32776182 DOI: 10.1007/s10886-020-01209-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - C L Casteel
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.
| | - K E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.
| | - O Trase
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Abstract
Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors-that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts-are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Tan CW, Peiffer M, Hoover K, Rosa C, Felton GW. Parasitic Wasp Mediates Plant Perception of Insect Herbivores. J Chem Ecol 2019; 45:972-981. [PMID: 31713110 DOI: 10.1007/s10886-019-01120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Microplitis croceipes is a solitary parasitoid that specializes on noctuid larvae of Helicoverpa zea and Heliothis virescens. Both the parasitoid and its hosts are naturally distributed across a large part of North America. When parasitoids deposit their eggs into hosts, venom and polydnaviruses (PDVs) are also injected into the caterpillars, which can suppress host immune responses, thus allowing parasitoid larvae to develop. In addition, PDVs can regulate host oral cues, such as glucose oxidase (GOX). The purpose of this study was to determine if parasitized caterpillars differentially induce plant defenses compared to non-parasitized caterpillars using two different caterpillar host/plant systems. Heliothis virescens caterpillars parasitized by M. croceipes had significantly lower salivary GOX activity than non-parasitized caterpillars, resulting in lower levels of tomato defense responses, which benefited parasitoid performance by increasing the growth rate of parasitized caterpillars. In tobacco plants, parasitized Helicoverpa zea caterpillars had lower GOX activity but induced higher plant defense responses. The higher tobacco defense responses negatively affected parasitoid performance by reducing the growth rate of parasitized caterpillars, causing longer developmental periods, and reduced cocoon mass and survival of parasitoids. These studies demonstrate a species-specific effect in different plant-insect systems. Based on these results, plant perception of insect herbivores can be affected by parasitoids and lead to positive or negative consequences to higher trophic levels depending upon the particular host-plant system.
Collapse
Affiliation(s)
- Ching-Wen Tan
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
11
|
Pan Q, Shikano I, Hoover K, Liu TX, Felton GW. Pathogen-Mediated Tritrophic Interactions: Baculovirus-Challenged Caterpillars Induce Higher Plant Defenses than Healthy Caterpillars. J Chem Ecol 2019; 45:515-524. [PMID: 31127421 DOI: 10.1007/s10886-019-01077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
Although the tritrophic interactions of plants, insect herbivores and their natural enemies have been intensely studied for several decades, the roles of entomopathogens in their indirect modulation of plant-insect relationships is still unclear. Here, we employed a sublethal dose of a baculovirus with a relatively broad host range (AcMNPV) to explore if feeding by baculovirus-challenged Helicoverpa zea caterpillars induces direct defenses in the tomato plant. We examined induction of plant defenses following feeding by H. zea, including tomato plants fed on by healthy caterpillars, AcMNPV-challenged caterpillars, or undamaged controls, and subsequently compared the transcript levels of defense related proteins (i.e., trypsin proteinase inhibitors, peroxidase and polyphenol oxidase) and other defense genes (i.e., proteinase inhibitor II and cysteine proteinase inhibitor) from these plants, in addition to comparing caterpillar relative growth rates. As a result, AcMNPV-challenged caterpillars induced the highest plant anti-herbivore defenses. We examined several elicitors and effectors in the secretions of these caterpillars (i.e., glucose oxidase, phospholipase C, and ATPase hydrolysis), which surprisingly did not differ between treatments. Hence, we suggest that the greater induction of plant defenses by the virus-challenged caterpillars may be due to differences in the amount of these secretions deposited during feeding or to some other unknown factor(s).
Collapse
Affiliation(s)
- Qinjian Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China. .,Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Mason CJ, Jones AG, Felton GW. Co-option of microbial associates by insects and their impact on plant-folivore interactions. PLANT, CELL & ENVIRONMENT 2019; 42:1078-1086. [PMID: 30151965 DOI: 10.1111/pce.13430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/28/2023]
Abstract
Plants possess a suite of traits that make them challenging to consume by insect herbivores. Plant tissues are recalcitrant, have low levels of protein, and may be well defended by chemicals. Insects use diverse strategies for overcoming these barriers, including co-opting metabolic activities from microbial associates. In this review, we discuss the co-option of bacteria and fungi in the herbivore gut. We particularly focus upon chewing, folivorous insects (Coleoptera and Lepidoptera) and discuss the impacts of microbial co-option on herbivore performance and plant responses. We suggest that there are two components to microbial co-option: fixed and plastic relationships. Fixed relationships are involved in integral dietary functions and can be performed by microbial enzymes co-opted into the genome or by stably transferred associates. In contrast, the majority of gut symbionts appear to be looser and perform more facultative, context-dependent functions. This more plastic, variable co-option of bacteria likely produces a greater number of insect phenotypes, which interact differently with plant hosts. By altering plant detection of herbivory or mediating insect interactions with plant defensive compounds, microbes can effectively improve herbivore performance in real time within and between generations.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| | - Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|