1
|
Duan SJ, Du J, Yu DW, Pei XJ, Yin DQ, Wang SJ, Tao QZ, Dan Y, Zhang XC, Deng J, Chen JS, Wei Q, Lei NF. Clonal integration of stress signal induces morphological and physiological response of root within clonal network. PLoS One 2024; 19:e0298258. [PMID: 38446823 PMCID: PMC10917298 DOI: 10.1371/journal.pone.0298258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Clonal integration of defense or stress signal induced systemic resistance in leaf of interconnected ramets. However, similar effects of stress signal in root are poorly understood within clonal network. Clonal fragments of Centella asiaticas with first-young, second-mature, third-old and fourth-oldest ramets were used to investigate transportation or sharing of stress signal among interconnected ramets suffering from low water availability. Compared with control, oxidative stress in root of the first-young, second-mature and third-old ramets was significantly alleviated by exogenous ABA application to the fourth-oldest ramets as well as enhancement of antioxidant enzyme (SOD, POD, CAT and APX) activities and osmoregulation ability. Surface area and volume in root of the first-young ramets were significantly increased and total length in root of the third-old ramets was significantly decreased. POD activity in root of the fourth-oldest and third-old ramets was significantly enhanced by exogenous ABA application to the first-young ramets. Meanwhile, total length and surface area in root of the fourth-oldest and third-old ramets were significantly decreased. Ratio of belowground to aboveground biomass in the whole clonal fragments was significantly increased by exogenous ABA application to the fourth-oldest or first-young ramets. It is suggested that transportation or sharing of stress signal may induce systemic resistance in root of interconnected ramets. Specially, transportation or sharing of stress signal against phloem flow was observed in the experiment. Possible explanation is that rapid recovery of foliar photosynthesis in first-young ramets subjected to exogenous ABA application can partially reverse phloem flow within clonal network. Thus, our experiment provides insight into ecological implication on clonal integration of stress signal.
Collapse
Affiliation(s)
- Su-Juan Duan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jie Du
- Jiuzhaigou National Nature Reserve Administration, Sichuan, China
| | - Dong-Wei Yu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiang-Jun Pei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Da-Qiu Yin
- Huaneng Tibet Yarlung Zangbo River Hydropower Development and Investment Co., Ltd, Lhasa, China
| | - Shi-Jun Wang
- Huaneng Tibet Yarlung Zangbo River Hydropower Development and Investment Co., Ltd, Lhasa, China
| | - Qi-Zhong Tao
- Huaneng Tibet Yarlung Zangbo River Hydropower Development and Investment Co., Ltd, Lhasa, China
| | - Yi Dan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiao-Chao Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Jie Deng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jin-Song Chen
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qing Wei
- College of Pastoral Agricultural Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Ning-Fei Lei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
2
|
Root Secondary Metabolites in Populus tremuloides: Effects of Simulated Climate Warming, Defoliation, and Genotype. J Chem Ecol 2021; 47:313-321. [PMID: 33683546 DOI: 10.1007/s10886-021-01259-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Climate warming can influence interactions between plants and associated organisms by altering levels of plant secondary metabolites. In contrast to studies of elevated temperature on aboveground phytochemistry, the consequences of warming on root chemistry have received little attention. Herein, we investigated the effects of elevated temperature, defoliation, and genotype on root biomass and phenolic compounds in trembling aspen (Populus tremuloides). We grew saplings of three aspen genotypes under ambient or elevated temperatures (+4-6 °C), and defoliated (by 75%) half of the trees in each treatment. After 4 months, we harvested roots and determined their condensed tannin and salicinoid (phenolic glycoside) concentrations. Defoliation reduced root biomass, with a slightly larger impact under elevated, relative to ambient, temperature. Elevated temperature decreased condensed tannin concentrations by 21-43% across the various treatment combinations. Warming alone did not alter salicinoid concentrations but eliminated a small negative impact of defoliation on those compounds. Graphical vector analysis suggests that effects of warming and defoliation on condensed tannins and salicinoids were predominantly due to reduced biosynthesis of these metabolites in roots, rather than to changes in root biomass. In general, genotypes did not differ in their responses to temperature or temperature by defoliation interactions. Collectively, our results suggest that future climate warming will alter root phytochemistry, and that effects will vary among different classes of secondary metabolites and be influenced by concurrent ecological interactions such as herbivory. Temperature- and herbivory-mediated changes in root chemistry have the potential to influence belowground trophic interactions and soil nutrient dynamics.
Collapse
|
3
|
Herbivore Gender Effects on Volatile Induction in Aspen and on Olfactory Responses in Leaf Beetles. FORESTS 2020. [DOI: 10.3390/f11060638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hybrid aspen (Populus tremula × tremuloides Michx.) is a fast-growing tree species used for short-rotation forestry in northern latitudes. Aspen species have a rich herbivore fauna, including defoliating leaf beetles that induce emissions of volatile organic compounds (VOCs) when feeding on aspen leaves. We investigated the differential induction of VOCs by male and female Phratora laticollis leaf beetles feeding on hybrid aspen and the differences in the orientation of beetles in response to gender-specific induced VOCs. The hypotheses for the study were (1) the VOCs in the headspace of plants infested with beetles of the two genders individually and in mixed aggregates would vary subtly, and (2) foraging adult beetles would be able to detect differences in VOC blends and use them to fine-tune their orientation choices. In Y-tube bioassays, both females and males preferred VOCs from leaves damaged by one gender (females or males) over undamaged leaves. However, if leaves were damaged by a two-gender population, neither females nor males indicated a preference over volatiles of undamaged leaves. Leaves damaged by both beetle genders simultaneously had significantly increased green leaf volatile (GLV), benzenoid and homoterpene emissions compared to undamaged leaves. Emissions of these compounds possibly indicate higher herbivore pressure and a higher risk of attack by parasitoids and predators and could thus be the cause of the lack of beetle preference. Our findings provide new basic information on gender-based host plant selection by herbivores and may be helpful in the development of sustainable biogenic VOC-based herbivore-control methods for intensive short-rotation hybrid aspen production.
Collapse
|