1
|
Gellert HR, Halley DC, Sieb ZJ, Smith JC, Pask GM. Microstructures at the distal tip of ant chemosensory sensilla. Sci Rep 2022; 12:19328. [PMID: 36369461 PMCID: PMC9652420 DOI: 10.1038/s41598-022-21507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ants and other eusocial insects emit and receive chemical signals to communicate important information within the colony. In ants, nestmate recognition, task allocation, and reproductive distribution of labor are largely mediated through the detection of cuticular hydrocarbons (CHCs) that cover the exoskeleton. With their large size and limited volatility, these CHCs are believed to be primarily detected through direct contact with the antennae during behavioral interactions. Here we first use scanning electron microscopy to investigate the unique morphological features of CHC-sensitive basiconic sensilla of two ant species, the black carpenter ant Camponotus pennsylvanicus and the Indian jumping ant Harpegnathos saltator. These basiconic sensilla possess an abundance of small pores typical of most insect olfactory sensilla, but also have a large concave depression at the terminal end. Basiconic sensilla are enriched at the distal segments of the antennae in both species, which aligns with their proposed role in contact chemosensation of CHCs. A survey of these sensilla across additional ant species shows varied microstructures at their tips, but each possess surface textures that would also increase sensory surface area. These unique ant chemosensory sensilla represent yet another example of how specialized structures have evolved to serve the functional requirements of eusocial communication.
Collapse
Affiliation(s)
- Hannah R Gellert
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA
| | - Daphné C Halley
- Program in Environmental Studies, Middlebury College, Middlebury, VT, 05753, USA
| | - Zackary J Sieb
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Jody C Smith
- Sciences Technical Support Services, Middlebury College, Middlebury, VT, 05753, USA
| | - Gregory M Pask
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA.
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
- Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA.
| |
Collapse
|
2
|
Boudinot BE, Moosdorf OTD, Beutel RG, Richter A. Anatomy and evolution of the head of Dorylus helvolus (Formicidae: Dorylinae): Patterns of sex- and caste-limited traits in the sausagefly and the driver ant. J Morphol 2021; 282:1616-1658. [PMID: 34427942 DOI: 10.1002/jmor.21410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/21/2022]
Abstract
Ants are highly polyphenic Hymenoptera, with at least three distinct adult forms in the vast majority of species. Their sexual dimorphism, however, is overlooked to the point of being a nearly forgotten phenomenon. Using a multimodal approach, we interrogate the near total head microanatomy of the male of Dorylus helvolus, the "sausagefly," and compare it with the conspecific or near-conspecific female castes, the "driver ants." We found that no specific features were shared uniquely between the workers and males to the exclusion of the queens, indicating independence of male and worker development; males and queens, however, uniquely shared several features. Certain previous generalizations about ant sexual dimorphism are confirmed, while we also discover discrete muscular presences and absences, for which reason we provide a coarse characterization of functional morphology. Based on the unexpected retention of a medial carinate line on the structurally simplified mandible of the male, we postulate a series of developmental processes to explain the patterning of ant mandibles. We invoke functional and anatomical principles to classify sensilla. Critically, we observe an inversion of the expected pattern of male-queen mandible development: male Dorylus mandibles are extremely large while queen mandibles are poorly developed. To explain this, we posit that the reproductive-limited mandible phenotype is canalized in Dorylus, thus partially decoupling the queen and worker castes. We discuss alternative hypotheses and provide further comparisons to understand mandibular evolution in army ants. Furthermore, we hypothesize that the expression of the falcate phenotype in the queen is coincidental, that is, a "spandrel," and that the form of male mandibles is also generally coincidental across the ants. We conclude that the theory of ant development and evolution is incomplete without consideration of the male system, and we call for focused study of male anatomy and morphogenesis, and of trait limitation across all castes.
Collapse
Affiliation(s)
- Brendon Elias Boudinot
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Olivia Tikuma Diana Moosdorf
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Rolf Georg Beutel
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Adrian Richter
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| |
Collapse
|
3
|
Jaleel W, Li Q, Shi Q, LYU L. Preference and effect of gustatory sense on sugar-feeding of fire ants. PeerJ 2021; 9:e11943. [PMID: 34447630 PMCID: PMC8364317 DOI: 10.7717/peerj.11943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The red imported fire ant is one of the notorious species of ants all over the world. Sugar is one of the most important components of food and necessary for the survival of ants. Because more than 70% food of fire ants is honeydew produced by Homopteran insects such as aphids and scales. METHODOLOGY It is well known that beetles, flies, and honey bees can recognize the sugar taste through their legs and antennae, but in the case of fire ants, no records regarding gustatory sense were published. In the current study, considering the importance of sugar bait, we investigated the gustatory sense of the fire ant workers to sucrose via behavioral sequence and gustatory behavior. First, the feeding sequence (ethogram) of the fire ant workers on most preferred sugar (sucrose) solution was observed and categorized. Secondly, the gustatory behavior of treated fire ant workers (without flagellum and foreleg tarsi treated with HCL solution) was observed on the sucrose solution. In addition, using scanning electron microscopy (SEM) techniques, we identified the possible porous sensilla types on antenna flagellum and foreleg tarsi of fire ant workers. RESULTS Based on the results of feeding sequence, foreleg tarsi of workers were the main body appendages in the detection of the sucrose droplet as compared to antennae flagellum and palps. Feeding time of treated workers with HCL solution was significantly decreased on sucrose solution as compared to those workers having no flagellum. While both types of treated workers have less feeding time in comparison to normal workers. Based on the results of feeding sequence analysis and feeding time, it is indicating that the foreleg tarsi of workers play a more important role in the detection of sucrose solution as compared to antennae flagellum. Based on the SEM results, sensilla chaetic, trichoid II, and basiconic I and II have a clear pore at their tip. This study provides a substantial basis for elucidating the gustatory function of antennal and tarsal sensilla on appendages of fire ant workers to sugars and further baits improvement for the management of fire ants.
Collapse
Affiliation(s)
- Waqar Jaleel
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qunchen Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Department of Entomology, College of Agriculture, South China Agriculture University, Guangzhou, Guangdong, China
| | - Qingxing Shi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lihua LYU
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Heinze J, Marschall J, Lautenschläger B, Seifert B, Gratiashvili N, Strohm E. Courtship with two spoons-Anatomy and presumed function of the bizarre antennae of Cardiocondyla zoserka ant males. Ecol Evol 2021; 11:7827-7833. [PMID: 34188854 PMCID: PMC8216964 DOI: 10.1002/ece3.7615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 11/06/2022] Open
Abstract
Mating in ants often occurs on the wing during nuptial flights or on the ground when scattered female sexuals attract males by pheromones. In both scenarios, there is little opportunity for males to engage in prolonged aggressive competition or elaborate courtship displays. Male morphology is therefore adapted to locating female sexuals and mating, and it lacks specific weapons or other traits associated with courtship. In contrast, sexuals of the ant genus Cardiocondyla typically mate in their natal nests. As a consequence, in many species winged males have been replaced by wingless fighter or territorial males, which kill or expel rival males with their strong mandibles and show complex mating behavior. However, no wingless males are known from Cardiocondyla zoserka from West Africa, and instead, winged males have evolved a bizarre secondary sexual trait: uniquely shaped antennae with spoon-like tips that show heavily sculptured ventral surfaces with numerous invaginations. We here report on the courtship behavior of C. zoserka males and describe antennal glands with class 3 gland cells, which presumably secrete a close range sex pheromone. Antennal glands have not yet been found in males of other ant species, including a close relative of C. zoserka, suggesting that in ants with intranidal mating sexual selection can rapidly lead to highly divergent adaptations and the evolution of novel structures.
Collapse
Affiliation(s)
- Jürgen Heinze
- LS Zoology/Evolutionary BiologyUniversität RegensburgRegensburgGermany
| | - Jella Marschall
- LS Zoology/Evolutionary BiologyUniversität RegensburgRegensburgGermany
| | | | | | | | - Erhard Strohm
- LS Zoology/Evolutionary BiologyUniversität RegensburgRegensburgGermany
| |
Collapse
|
5
|
Wanchoo A, Zhang W, Ortiz-Urquiza A, Boswell J, Xia Y, Keyhani NO. Red Imported Fire Ant ( Solenopsis invicta) Chemosensory Proteins Are Expressed in Tissue, Developmental, and Caste-Specific Patterns. Front Physiol 2020; 11:585883. [PMID: 33192598 PMCID: PMC7646262 DOI: 10.3389/fphys.2020.585883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The red imported fire ant, Solenopsis invicta, is a eusocial invasive insect that has spread worldwide. Chemosensory proteins (CSPs) are ligand-binding proteins that participate in a diverse range of physiological processes that include olfaction and chemical transport. Here, we performed a systematic survey of the expression of the 21 gene S. invicta CSP family that includes at least two groups of apparent S. invicta-specific gene expansions. These data revealed caste, tissue, and developmental stage-specific differential expression of the SiCSPs. In general, moderate to high SiCSP expression was seen in worker antennae and abdomen tissues with lower expression in head/thorax regions. Male and female alates showed high antennal expression of fewer SiCSPs, with the female alate thorax showing comparatively high SiCSP expression. SiCSP expression was lower in male alates tissues compared to workers and female alates, albeit with some highly expressed SiCSPs. SiCSP expression was low during development including in eggs, larvae (early and late instars), and pupae. Global analyses revealed examples of conserved, divergent, and convergent SiCSP expression patterns linked to phylogenetic relationships. The developmental and caste-specific variation seen in SiCSP expression patterns suggests specific functional diversification of CSPs that may translate into differential chemical recognition and communication among individuals and/or reflect other cellular roles of CSPs. Our results support a model for CSPs acting as general ligand carriers involved in a wide range of physiological processes beyond olfaction. As compared to the expression patterns of the S. invicta odorant binding proteins (OBPs), an inverse correlation between SiOBP and SiCSP expression was seen, suggesting potential complementary and/or compensatory functions between these two classes of ligand carriers.
Collapse
Affiliation(s)
- Arun Wanchoo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Wei Zhang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - John Boswell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Molecular Profiling of the Drosophila Antenna Reveals Conserved Genes Underlying Olfaction in Insects. G3-GENES GENOMES GENETICS 2019; 9:3753-3771. [PMID: 31527046 PMCID: PMC6829134 DOI: 10.1534/g3.119.400669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Repellent odors are widely used to prevent insect-borne diseases, making it imperative to identify the conserved molecular underpinnings of their olfactory systems. Currently, little is known about the molecules supporting odor signaling beyond the odor receptors themselves. Most known molecules function in one of two classes of olfactory sensilla, single-walled or double-walled, which have differing morphology and odor response profiles. Here, we took two approaches to discover novel genes that contribute to insect olfaction in the periphery. We transcriptionally profiled Drosophila melanogasteramos mutants that lack trichoid and basiconic sensilla, the single-walled sensilla in this species. This revealed 187 genes whose expression is enriched in these sensilla, including pickpocket ion channels and neuromodulator GPCRs that could mediate signaling pathways unique to single-walled sensilla. For our second approach, we computationally identified 141 antennal-enriched (AE) genes that are more than ten times as abundant in D. melanogaster antennae as in other tissues or whole-body extracts, and are thus likely to play a role in olfaction. We identified unambiguous orthologs of AE genes in the genomes of four distantly related insect species, and most identified orthologs were expressed in the antenna of these species. Further analysis revealed that nearly half of the 141 AE genes are localized specifically to either single or double-walled sensilla. Functional annotation suggests the AE genes include signaling molecules and enzymes that could be involved in odorant degradation. Together, these two resources provide a foundation for future studies investigating conserved mechanisms of odor signaling.
Collapse
|