1
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
2
|
Krawczyk S, Nawrocka A, Zdyb A. Charge-transfer excited state in pyrene-1-carboxylic acids adsorbed on titanium dioxide nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:19-26. [PMID: 29501002 DOI: 10.1016/j.saa.2018.02.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
The electronic structure of excited photosensitizer adsorbed at the surface of a solid is the key factor in the electron transfer processes that underlie the efficiency of dye-sensitized solar cells and photocatalysts. In this work, Stark effect (electroabsorption) spectroscopy has been used to measure the polarizability and dipole moment changes in electronic transitions of pyrene-1-carboxylic (PCA), -acetic (PAA) and -butyric (PBA) acids in ethanol, both free and adsorbed on colloidal TiO2, in glassy ethanol at low temperature. The lack of appreciable increase of dipole moment in the excited state of free and adsorbed PAA and PBA points that two or more single bonds completely prevent the expansion of π-electrons from the aromatic ring towards the carboxylic group, thus excluding the possibility of direct electron injection into TiO2. In free PCA, the pyrene's forbidden S0→S1 transition has increased intensity, exhibits a long progression in 1400cm-1 Ag mode and is associated with |∆μ| of 2 D. Adsorption of PCA on TiO2 causes a broadening and red shift of the S0→S1 absorption band and an increase in dipole moment change on electronic excitation to |∆μ|=6.5 D. This value increased further to about 15 D when the content of acetic acid in the colloid was changed from 0.2% to 2%, and this effect is ascribed to the surface electric field. The large increase of |∆μ| points that the electric field effect can not only change the energetics of electron transfer from the excited sensitizer into the solid, but can also shift the molecular electronic density, thus directly influencing the electronic coupling factor relevant for electron transfer at the molecule-solid interface.
Collapse
Affiliation(s)
- S Krawczyk
- Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland.
| | - A Nawrocka
- Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - A Zdyb
- Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
3
|
Kerzig C, Goez M. Combining energy and electron transfer in a supramolecular environment for the "green" generation and utilization of hydrated electrons through photoredox catalysis. Chem Sci 2016; 7:3862-3868. [PMID: 30155030 PMCID: PMC6013799 DOI: 10.1039/c5sc04800a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/26/2016] [Indexed: 01/08/2023] Open
Abstract
We present a new mechanism that sustainably produces hydrated electrons, i.e., extremely strong reductants, yet consumes only green photons (532 nm) and the bioavailable ascorbate as sacrificial donor. The mechanism couples an energy-transfer cycle, in which a light-harvesting ruthenium polypyridine complex absorbs a first photon and passes the excitation energy on to a pyrene-based redox catalyst, with an electron-transfer cycle, in which the resulting triplet is reductively quenched and the energy-rich aryl radical anion is finally ionized by a second photon. Thus separating the roles of primary and secondary absorber permitted choosing a redox catalyst with a nonabsorbing ground state but efficiently ionizable radical anion; the quantum yield of the ionization step in our complex mechanism surpasses that in a simple photoredox cycle featuring only the metal complex by a factor of four. We suppressed undesired cross reactions through the noncovalent interactions of an anionic micelle with the charges of the reactants, intermediates, and products: the cationic light-harvesting complex remains affixed to the micelle surface, which blocks the access of the negatively charged sacrificial donor, aryl radical anion and hydrated electron, but allows the pyrene ground-state almost unhindered entry into the Stern layer despite a carboxylate substituent by virtue of its large dipole moment. We demonstrate the applicability of the mechanism to the reductive detoxification of halogenated organic waste, which hitherto required UV-C for electron generation, by decomposing the typical model compound chloroacetate.
Collapse
Affiliation(s)
- Christoph Kerzig
- Martin-Luther-Universität Halle-Wittenberg , Institut für Chemie , Kurt-Mothes-Str. 2 , D-06120 Halle (Saale) , Germany .
| | - Martin Goez
- Martin-Luther-Universität Halle-Wittenberg , Institut für Chemie , Kurt-Mothes-Str. 2 , D-06120 Halle (Saale) , Germany .
| |
Collapse
|
4
|
Finkler B, Riemann I, Vester M, Grüter A, Stracke F, Jung G. Monomolecular pyrenol-derivatives as multi-emissive probes for orthogonal reactivities. Photochem Photobiol Sci 2016; 15:1544-1557. [DOI: 10.1039/c6pp00290k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chameleons in a test tube: up to four easily distinguishable emission colors result from conversion by two hydrolytic enzymes at opposite reaction sites.
Collapse
Affiliation(s)
- Björn Finkler
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | | | - Michael Vester
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | - Andreas Grüter
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | | | - Gregor Jung
- Biophysical Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| |
Collapse
|
5
|
Niko Y, Hiroshige Y, Kawauchi S, Konishi GI. Fundamental photoluminescence properties of pyrene carbonyl compounds through absolute fluorescence quantum yield measurement and density functional theory. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.072] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Fernandez YAD, Pasotti L, Pallavicini P, Hechavarria JMF. Exploiting micelle-driven coordination to evaluate the lipophilicity of molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9930-9943. [PMID: 22655966 DOI: 10.1021/la3012316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a systematic study based on the calculation of complexation constants between a Zn-complex solubilized in Triton X-100 micellar solutions and a series of linear mono- and dicarboxylic acids, under physiological pH conditions, that allowed the evaluation of the lipophilicity of these molecules. This empirical lipophilicity parameter describes conveniently the partition of organic molecules between hydrophobic microdomains and water. The results can be used to predict the lipophilicity of molecules with similar structure and allows the distinction of intrinsic contributions of the carboxylates and of the methylene groups to the lipophilicity of the molecule.
Collapse
|
7
|
Niko Y, Hiroshige Y, Kawauchi S, Konishi GI. Additional insights into luminescence process of polycyclic aromatic hydrocarbons with carbonyl groups: photophysical properties of secondary N-alkyl and tertiary n,n-dialkyl carboxamides of naphthalene, anthracene, and pyrene. J Org Chem 2012; 77:3986-96. [PMID: 22458253 DOI: 10.1021/jo300317r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we report the substitution effects of N-alkyl and N,N-dialkyl carboxamide groups on the fluorescence properties of polycyclic aromatic hydrocarbon chromophores, so as to control their fluorescence properties. The fluorescence properties of compounds obtained using solvents with different polarities showed very little change, indicating that the modified compounds do not form charge transfer states. TD-DFT calculations and measurements performed at low temperature (78 K) and in viscous solvents revealed that the N-alkyl and N,N-dialkyl carboxamide groups tend to reduce the contributions from intersystem crossing and increase those from internal conversion. Considering that the fluorescence mechanism of low-fluorescence carbonyl compounds such as aldehyde and ketone is dominated by intersystem crossing and that of high-luminescence carbonyl compounds such as carboxylic acid and ester is dominated by a radiative process, it can be said that the photophysical process of N-alkyl and N,N-dialkyl carboxamides is novel. In addition, the calculation results for excited states indicated that such contributions can be controlled by selecting the appropriate polycyclic aromatic hydrocarbon or amide structure, in addition to solvent viscosity and temperature.
Collapse
Affiliation(s)
- Yosuke Niko
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Tokyo 152-8552, Japan
| | | | | | | |
Collapse
|
8
|
Niko Y, Konishi GI. Polymer-Chain-Induced Tunable Luminescence Properties: Amphiphilic Poly(2-oxazoline)s Possessing a N,N-Dialkylpyrene-1-carboxamide Chromophore in the Side Chain. Macromolecules 2012. [DOI: 10.1021/ma3001252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yosuke Niko
- Department of Organic
and Polymeric
Materials, Tokyo Institute of Technology, O-okayama, Tokyo 152-8552, Japan
| | - Gen-ichi Konishi
- Department of Organic
and Polymeric
Materials, Tokyo Institute of Technology, O-okayama, Tokyo 152-8552, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012,
Japan
| |
Collapse
|
9
|
Abstract
Aqueous dispersions of graphene oxide (GO) have been found to emit a structured, strongly pH-dependent visible fluorescence. Based on experimental results and model computations, this is proposed to arise from quasi-molecular fluorophores, similar to polycyclic aromatic compounds, formed by the electronic coupling of carboxylic acid groups with nearby carbon atoms of graphene. Sharp and structured emission and excitation features resembling the spectra of molecular fluorophores are present near 500 nm in basic conditions. The GO emission reversibly broadens and red-shifts to ca. 680 nm in acidic conditions, while the excitation spectra remain very similar in shape and position, consistent with excited state protonation of the emitting species in acidic media. The sharp and structured emission and excitation features suggest that the effective fluorophore size in the GO samples is remarkably well defined.
Collapse
|
10
|
Synthesis, luminescence properties, and theoretical insights of N-alkyl- or N,N-dialkyl-pyrene-1-carboxamide. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Sasaki R, Nako Y, Murata S. Amphiphilic pyrenecarboxylic acids: incorporation into vesicle membrane and ability as sensitizer for electron transport reactions. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zelent B, Vanderkooi JM, Nucci NV, Gryczynski I, Gryczynski Z. Phosphate assisted proton transfer in water and sugar glasses: a study using fluorescence of pyrene-1-carboxylate and IR spectroscopy. J Fluoresc 2009; 19:21-31. [PMID: 18496739 DOI: 10.1007/s10895-008-0375-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
The role of water's H-bond percolation network in acid-assisted proton transfer was studied in water and glycerol solutions and in sugar glasses. Proton transfer rates were determined by the fluorescence of pyrene-1-carboxylate, a compound with a higher pK in its excited state relative to the ground state. Excitation of pyrene-1-COO- produces fluorescence from pyrene-1-COOH when a proton is accepted during the excited singlet state lifetime of pyrene-1-COO-. The presence of glycerol as an aqueous cosolvent decreases proton transfer rates from phosphoric and acetic acid in a manner that does not follow the Stokes relationship on viscosity. In sugar glass composed of trehalose and sucrose, proton transfer occurs when phosphate is incorporated in the glass. Sugar glass containing phosphate retains water and it is suggested that proton transfer requires this water. The infrared (IR) frequency of water bending mode in sugar glass and in aqueous solution is affected by the presence of phosphate and the IR spectral bands of all phosphate species in water are temperature dependent; both results are consistent with H-bonding between water and phosphate. The fluorescence results, which studied the effect of cosolvent, highlight the role of water in assisting proton transfer in reactions involving biological acids, and the IR results, which give spectroscopic evidence for H-bonding between water and phosphate, are consistent with a mechanism of proton transfer involving H-bonding. The possibility that the phosphate-rich surface of membranes assists in proton equilibration in cells is discussed.
Collapse
Affiliation(s)
- Bogumil Zelent
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
13
|
Chirico G, Collini M, D'Alfonso L, Denat F, Diaz-Fernandez YA, Pasotti L, Rousselin Y, Sok N, Pallavicini P. Micelles as Containers for Self-Assembled Nanodevices: A Fluorescent Sensor for Lipophilicity. Chemphyschem 2008; 9:1729-37. [DOI: 10.1002/cphc.200800292] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|