1
|
Ghosh M, Dasgupta U, Nayek S, Saha A, Bhattacharjee RR, Chowdhury AD. PSS functionalized and stabilized carbon nanodots for specific sensing of iron in biological medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122445. [PMID: 36773421 DOI: 10.1016/j.saa.2023.122445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Carbon Quantum Dots (CQDs) are already emerged as an excellent sensing element for its exceptional behavior in fluorescence, biocompatibility, and water dispersibility. However, its poor stability, selectivity and reproducibility in complex medium still be a big problem for its practical application. To overcome this, in the work, we have developed a new type of carbon quantum dot-PSS fluorescent nanocomposites which has been used for specific Fe3+ detection. The polystyrene sulfonate (PSS) polymer not only stabilize the QDs but also produces specific sites for Fe3+ to make a co-ordinate complex via Fe3+-SO3. The detection limit is calculated as low as 1 ppm which is adequate for measuring Fe3+ in blood or water samples. The mechanism of the quenching is very specific towards the Fe3+ ion due to the presence of PSS which makes the sensor selective among other metal ions and possible interferences. The rapid process of sensing, simple instrumentation, and excellent performances in presence of 1 % BSA and serum samples indicates the possible application for diagnostic usage in near future.
Collapse
Affiliation(s)
- Malabika Ghosh
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Uddipan Dasgupta
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Sumanta Nayek
- Amity Institute of Environmental Sciences, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Plot 8, Block LB, Sector III, Bidhannagar, Kolkata 700 106, India
| | - Rama Ranjan Bhattacharjee
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India.
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India.
| |
Collapse
|
2
|
Llaver M, Barrionuevo SD, Troiani H, Wuilloud RG, Ibañez FJ. Highly Selective and Sensitive Fluorescent Determination of Fe3+ within Alcoholic Beverages with 1,5-Diphenylcarbazone-Functionalized Graphene Quantum Dots. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
3
|
González-González RB, Morales-Murillo MB, Martínez-Prado MA, Melchor-Martínez EM, Ahmed I, Bilal M, Parra-Saldívar R, Iqbal HMN. Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. CHEMOSPHERE 2022; 300:134515. [PMID: 35398070 DOI: 10.1016/j.chemosphere.2022.134515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Rapid industrialization and manufacturing expansion have caused heavy metal pollution, which is a critical environmental issue faced by global population. In addition, the disadvantages presented by conventional detection methods such as the requirement of sophisticated instruments and qualified personnel have led to the development of novel nanosensors. Recently, carbon dots (CDs) have been presented as a multifunctional nanomaterial alternative for the accurate detection of heavy metal ions in water systems. The capacity of CDs to detect contaminants in wastewater -including heavy metals- can be found in the literature; however, to the best of our knowledge, none of them discusses the most recent strategies to enhance their performance. Therefore, in this review, beyond presenting successful examples of the use of CDs for the detection of metal ions, we further discuss the strategies to enhance their photoluminescence properties and their performance for environmental monitoring. In this manner, strategies such as heteroatom-doping and surface passivation are reviewed in detail, as well as describing the mechanisms and the effect of precursors and synthesis methods. Finally, the current challenges are described in detail to propose some recommendations for further research.
Collapse
Affiliation(s)
| | - Martha Beatriz Morales-Murillo
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | - María Adriana Martínez-Prado
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | | | - Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD, 4222, Australia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
4
|
Rodwihok C, Tam TV, Choi WM, Suwannakaew M, Woo SW, Wongratanaphisan D, Kim HS. Preparation and Characterization of Photoluminescent Graphene Quantum Dots from Watermelon Rind Waste for the Detection of Ferric Ions and Cellular Bio-Imaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:702. [PMID: 35215030 PMCID: PMC8878562 DOI: 10.3390/nano12040702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Graphene quantum dots (GQDs) were synthesized using watermelon rind waste as a photoluminescent (PL) agent for ferric ion (Fe3+) detection and in vitro cellular bio-imaging. A green and simple one-pot hydrothermal technique was employed to prepare the GQDs. Their crystalline structures corresponded to the lattice fringe of graphene, possessing amide, hydroxyl, and carboxyl functional groups. The GQDs exhibited a relatively high quantum yield of approximately 37%. Prominent blue emission under UV excitation and highly selective PL quenching for Fe3+ were observed. Furthermore, Fe3+ could be detected at concentrations as low as 0.28 μM (limit of detection), allowing for high sensitivity toward Fe3+ detection in tap and drinking water samples. In the bio-imaging experiment, the GQDs exhibited a low cytotoxicity for the HeLa cells, and they were clearly illuminated at an excitation wavelength of 405 nm. These results can serve as the basis for developing an environment-friendly, simple, and cost-effective approach of using food waste by converting them into photoluminescent nanomaterials for the detection of metal ions in field water samples and biological cellular studies.
Collapse
Affiliation(s)
- Chatchai Rodwihok
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Tran Van Tam
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Mayulee Suwannakaew
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Sang Woon Woo
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Han S. Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| |
Collapse
|
5
|
Wu D, Qu C, Wang J, Yang R, Qu L. Highly sensitive and selective fluorescence sensing and imaging of Fe 3+ based on a novel nitrogen-doped graphene quantum dots. LUMINESCENCE 2021; 36:1592-1599. [PMID: 33900668 DOI: 10.1002/bio.4062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022]
Abstract
A novel nitrogen-doped graphene quantum dots (N-GQDs) with a green fluorescence emission was synthesized through microwave method using citric acid and semicarbazide hydrochloride as reactants. The as-synthesized N-GQDs exhibited good stability, excellent water solubility, and negligible cytotoxicity. Due to intermolecular charge transfer, ferric ion (Fe3+ ) has a strong quenching effect on the N-GQDs. Fluorescence quenching has a linear relationship with the Fe3+ concentration in the range 0.02-12 μM. The detection limit was 1.43 nM. What is more, it is worth mentioning that the obtained N-GQDs showed high selectivity and sensitivity towards Fe3+ . Under the optimum conditions, the addition of 10-fold copper ions and 100-fold other metal ions had no influence on the detection of Fe3+ (0.8 μM), which indicated a higher sensitivity compared with that of the reported methods. Due to their excellent properties, the obtained N-GQDs was successfully applied for sensing and imaging Fe3+ in water samples and HeLa cells.
Collapse
Affiliation(s)
- Dongming Wu
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Chaojie Qu
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Jizhong Wang
- Ministry of Agriculture and Rural Affairs, Hunan Division GRG Metrol & Test, Key Laboratory Southern Farmland Pollution Prevention & Control, Changsha, Hunan, China
| | - Ran Yang
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Lingbo Qu
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Zhang Y, Xu H, Yang Y, Zhu F, Pu Y, You X, Liao X. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of dopamine using a dual-emission carbon dot-gold nanocluster nanohybrid. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Mirzababaei M, Larijani K, Hashemi-Moghaddam H, Mirjafary Z, Madanchi H. In Vitro Targeting of NL2 Peptide Bounded on Poly L-DOPA Coated Graphene Quantum Dot. J Fluoresc 2021; 31:279-288. [PMID: 33387213 DOI: 10.1007/s10895-020-02660-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023]
Abstract
Chemotherapy using drug delivery systems (DDS) can target cancer cells selectively and without affecting normal cells. In this paper, NL2 peptide as a tumor targeted peptide was bonded on the surface of poly 3,4-Dihydroxy-L-phenylalanine (Poly L-DOPA) graphene quantum dots (GQD), which was imprinted by Doxorubicin (DOX). The synthesized nanocomposite was characterized by Fourier-transform infrared spectroscopy (FTIR) and particle size was determined by dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). DOX release from synthesized nano-composite was investigated spectrophotometrically. Also, the toxicity and selectivity of NL2-GQD-NC on SK-BR-3 cell line were evaluated. FTIR and DLS experiment confirm the successful synthesis of Poly L-DOPA coated graphene quantum dots and their uniform particles. In vitro studies have shown that NL2-GQD-NC attached more to SK-BR-3 cells than NL2-free nanocomposites (GQD-NC). After attaching the cells could be imaged due to the presence of GQD particles and DOX release was accomplished in the tumor cells.
Collapse
Affiliation(s)
- Mahdi Mirzababaei
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Hashemi-Moghaddam
- Department of Medicinal Chemistry, School of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Zhang Y, Yang M, Shao Z, Xu H, Chen Y, Yang Y, Xu W, Liao X. A paper-based fluorescent test for determination and visualization of cysteine and glutathione by using gold-silver nanoclusters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Kalaiyarasan G, Joseph J, Kumar P. Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection. ACS OMEGA 2020; 5:22278-22288. [PMID: 32923785 PMCID: PMC7482302 DOI: 10.1021/acsomega.0c02627] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 05/28/2023]
Abstract
Carbon quantum dots (CQDs), a novel fluorescent nanomaterial, have been extensively employed/explored in various applications, that is, biosensors, bioimaging, nanomedicine, therapeutics, photocatalysis, electrocatalysis, energy storage system, and so forth. In this study, we report the synthesis, characterization, and the application of phosphorus-doped CQDs (PCQDs), synthesized using trisodium citrate and phosphoric acid by the hydrothermal method. The effect of phosphorus doping on optical features and the formation of PCQDs have been explored elaborately by controlling the concentrations of precursors, reaction time, and the temperature. The fluorescent quantum yield for PCQDs was determined to be 16.1% at an excitation/emission wavelength of 310/440 nm. Also, the optical and structural properties of PCQDs were determined by using various spectroscopic and microscopic techniques. Static quenching of fluorescence was determined upon the addition of Fe3+ to PCQDs because of the formation of the fluorescent inactive complex (PCQDs-Fe3+). Hence, this chemistry leads to the development of a new fluorometric assay for the detection of Fe3+. The lower limit of Fe3+ detection is determined to be 9.5 nM (3σ/slope), with the linear fit from 20 nM to 3.0 μM (R 2 = 0.99). We have validated this new assay in the raw, ejected, and purified water samples of the RO plant by the standard addition method. These results suggest the possibility of developing a new commercial assay for Fe3+ detection in blood, urine, and various industrial waste and sewage water samples. Furthermore, recycling the pollutant water into the freshwater using filters that consist of PCQDs offers a great deal.
Collapse
Affiliation(s)
- Gopi Kalaiyarasan
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - James Joseph
- Electrodics
and Electrocatalysis Division, CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamil Nadu 630003, India
| | - Pankaj Kumar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
10
|
Bhamore JR, Park TJ, Kailasa SK. Glutathione-capped Syzygium cumini carbon dot-amalgamated agarose hydrogel film for naked-eye detection of heavy metal ions. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00208-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDevelopment of a facile and sensitive analytical tool for the detection of heavy metal ions is still a challenging task because of interference from other chemical species. In this work, glutathione (GSH)-capped Syzygium cumini carbon dots (CDs) have been integrated with agarose hydrogel film and used as an amalgamated solid probe for sensing of different metal ions (Pb2+, Fe3+, and Mn2+). The synthesis of a solid sensing platform is based on the electrostatic interactions between GSH-capped Syzygium cumini CDs and agarose hydrogel. The developed hydrogel-based solid probe exhibited good linearities with the concentration ranges of metal ions from 0.005 to 0.075, 0.0075 to 0.1, and 0.0075 to 0.1 mM with detection limits of 1.3, 2.5, and 2.1 μM for Pb2+, Fe3+, and Mn2+ ions, respectively.
Collapse
|