1
|
Yan X, Zhang C, Gao LX, Liu MM, Yang YT, Yu LJ, Zhou YB, Milaneh S, Zhu YL, Li J, Wang WL. Novel imidazo[1,2,4] triazole derivatives: Synthesis, fluorescence, bioactivity for SHP1. Eur J Med Chem 2024; 265:116027. [PMID: 38128236 DOI: 10.1016/j.ejmech.2023.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 μM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 μM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.
Collapse
Affiliation(s)
- Xue Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Min Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Ting Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Jie Yu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; Higher Institute of Applied Science and Technology, Department of Pharmaceutical and Chemical Industries, Damascus, 31983, Syria
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Wen J, Hua Q, Ding S, Sun A, Xia Y. Recent Advances in Fluorescent Probes for Zinc Ions Based on Various Response Mechanisms. Crit Rev Anal Chem 2023:1-32. [PMID: 37486769 DOI: 10.1080/10408347.2023.2238078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Zinc is a vital metal element with extensive applications in various fields such as industry, metallurgy, agriculture, food, and healthcare. For living organisms, zinc ions are indispensable, and their deficiency can lead to physiological and metabolic abnormalities that cause multiple diseases. Hence, there is a significant need for selective recognition and effective detection of free zinc ions. As a probe method with high sensitivity, high selectivity, real-time monitoring, safety, harmlessness and ease of operation, fluorescent probes have been widely used in metal ion identification studies, and many convenient, low-cost and easy-to-operate fluorescent probes for Zn2+ detection have been developed. This article reviews the latest research advances in fluorescent chemosensors for Zn2+ detection from 2019 to 2023. In particular, sensors working through photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), chelation-enhanced fluorescence (CHEF), and aggregation-induced emission (AIE) mechanisms are described. We discuss the use of various recognition mechanisms in detecting zinc ions through specific cases, some of which have been validated through theoretical calculations.
Collapse
Affiliation(s)
- Jinrong Wen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Qianying Hua
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Sha Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Aokui Sun
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
3
|
Abstract
The reversible photoisomerization of azobenzenes has been extensively studied to construct systems with optical responsiveness; however, this process limits the luminescence of these compounds. Recently, there have been many efforts to design and synthesize fluorescent azobenzene compounds, such as inhibition of electron transfer, inducing aggregation, and metal-enhancement, which make the materials ideal for application in fluorescence probes, light-emitting devices, molecular detection, etc. Herein, we review the recently reported progress in the development of various fluorescent azobenzenes and summarize the possible mechanism of their fluorescence emission. The potential applications of these materials are also discussed. Finally, in order to guide research in this field, the existing problems and future development prospects are discussed.
Collapse
|
4
|
Hojitsiriyanont J, Chaibuth P, Boonkitpatarakul K, Ruangpornvisuti V, Palaga T, Chainok K, Sukwattanasinitt M. Effects of amino proton and denticity of quinoline-pyridine based dyes on Cd2+ and Zn2+ fluorescence sensing properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
A salicylaldehyde based dual chemosensor for zinc and arsenate ion detection: Biological application. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
|
7
|
Design and synthesis of new salicylhydrazone tagged indole derivative for fluorometric sensing of Zn2+ ion and colorimetric sensing of F− ion: Applications in live cell imaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
A novel tetrapeptide fluorescence sensor for early diagnosis of prostate cancer based on imaging Zn 2+ in healthy versus cancerous cells. J Adv Res 2020; 24:363-370. [PMID: 32489681 PMCID: PMC7256208 DOI: 10.1016/j.jare.2020.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 01/16/2023] Open
Abstract
Zinc as a biomarker can be used to diagnose the early stage prostate cancer, while ZIP1 protein, a zinc transporter is significantly down-regulated in prostate cancer cells. This behavior leads to the apparent alteration of the enrichment ability for zinc between early prostate cancer tissues and healthy tissues. This difference inspires us to develop a novel Zn2+ sensor that applies to the clinic diagnosis of early prostate cancer. We designed a tetrapeptide sensor H2L (Dansyl-Gly-Pro-Trp-Gly-NH2) according to the photo-induced electron transfer principle (PET), and it performed adequately in Zn2+ imaging of prostate cell lines. Based on the assessment of Zn2+ enrichment ability, there was distinctly lower Zn2+ concentrate in prostate cancer cell lines than healthy prostate epithelial cells. Furthermore, H2L displayed high sensitivity with a detection limit as low as 49.5 nM, and high specificity for Zn2+ detection. Also the low toxicity and the superior cell permeability of H2L made the imaging of Zn2+ ions detection safe and rapid. We expect that H2L to be a powerful tool for early diagnosis of prostate cancer and a good indicator for the precise resection of cancer tissue during surgery.
Collapse
|
9
|
Yanfang S, Hualai W, Hui B. A coumarin-based turn-on chemosensor for selective detection of Zn(II) and application in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117746. [PMID: 31757707 DOI: 10.1016/j.saa.2019.117746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
A 2-oxo-2H-chromene-3-carbohydrazide (CHB) was synthesized by the reaction of salicylaldehyde with diethyl malonate and hydrazine hydrate. The recognition behaviors of CHB to Zn2+ were investigated and the results showed that CHB exhibits well selectivity and sensitivity to Zn2+ with fast response in PBS (pH = 7.24, 60% DMF), the co-existed cations and anions could not interfere the recognition between CHB and Zn2+. Besides, the detection limit of CHB for Zn2+ was calculated to be 0.95 μM. Furthermore, DFT, EI-MS data and Job's plot were applied for determining the sensing mechanism of CHB with Zn2+ and the results showed that a type of 2:1 complex was formed between CHB and Zn2+ with the binding constant was 1.32 × 104 M-2. At last, probe CHB was successfully applied for the imaging of Zn2+ in living cells.
Collapse
Affiliation(s)
- Shang Yanfang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
| | - Wang Hualai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Bai Hui
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
10
|
Singhal D, Althagafi I, Kumar A, Yadav S, Prasad AK, Pratap R. Thieno[3,2-c]pyran: an ESIPT based fluorescence “turn-on” molecular chemosensor with AIE properties for the selective recognition of Zn2+ ion. NEW J CHEM 2020. [DOI: 10.1039/d0nj02236e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thieno[3,2-c]pyran was synthesized as a fluorescent turn-on chemosensor for the selective recognition of Zn2+ ions with a low detection limit (0.67 μM), and it also exhibited AIE properties.
Collapse
Affiliation(s)
- Divya Singhal
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | | | - Ashish Kumar
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | - Saroj Yadav
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | - Ashok K. Prasad
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| | - Ramendra Pratap
- Department of Chemistry
- University of Delhi, North Campus
- Delhi-110007
- India
| |
Collapse
|
11
|
Singh N, Kumar P, Kumar R, Aazam ES, Riaz U. Development of a near infrared novel bioimaging agent via co-oligomerization of Congo red with aniline and o-phenylenediamine: experimental and theoretical studies. RSC Adv 2019; 9:36479-36491. [PMID: 35540595 PMCID: PMC9075138 DOI: 10.1039/c9ra05814a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023] Open
Abstract
With a view to study the effect of insertion of a multifunctional dye moiety on the photo physical properties of conducting polymers, the present paper reports for the first time the homopolymerization and co-oligomerization of Congo red (CR) dye with aniline and o-phenylenediamine. The co-oligomerization was established by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), and ultraviolet-visible (UV-vis) spectroscopy while the morphology was examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The theoretical as well as experimental data of 1H-NMR as well as IR studies confirmed the co-oligomer formation while ultraviolet-visible spectroscopy studies revealed a dynamic change in the optical properties upon variation of co-oligomer composition. X-ray diffraction studies established a crystalline morphology of oligomers. Live cell confocal imaging studies revealed that the co-oligomers could be effectively used in NIR imaging.
Collapse
Affiliation(s)
- Neetika Singh
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Prabhat Kumar
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University NewDelhi 110067 India
| | - Raj Kumar
- School of Life Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Elham S Aazam
- Chemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 23622 Saudia Arabia
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
12
|
Khanra S, Ta S, Ghosh M, Chatterjee S, Das D. Subtle structural variation in azine/imine derivatives controls Zn2+ sensitivity: ESIPT-CHEF combination for nano-molar detection of Zn2+ with DFT support. RSC Adv 2019; 9:21302-21310. [PMID: 35521340 PMCID: PMC9066000 DOI: 10.1039/c9ra03652k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/30/2019] [Indexed: 11/24/2022] Open
Abstract
Excited-state intra-molecular proton transfer (ESIPT)-active imine and azine derivatives, structurally characterised by XRD, and denoted L1, L2, L3 and L4, possess weak fluorescence. The interaction of these probes with Zn2+ turns ON the fluorescence to allow its nano-molar detection. Among the four ESIPT-active molecules, L2, L3 and L4 are bis-imine derivatives while L1 is a mono-imine derivative. Among the three bis-imine derivatives, one is symmetric (L3) while L2 and L4 are unsymmetrical. The lowest detection limits (DL) of L1, L2, L3 and L4 for Zn2+ are 32.66 nM, 36.16 nM, 15.20 nM and 33.50 nM respectively. All the probes bind Zn2+ (105 M−1 order) strongly. Computational studies explore the orbital level interactions responsible for the associated photo-physical processes. Single crystal X-ray structurally characterised ESIPT-active weakly fluorescent imine and azine derivatives undergo Zn2+ assisted turn ON fluorescence.![]()
Collapse
Affiliation(s)
- Somnath Khanra
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | - Sabyasachi Ta
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | - Milan Ghosh
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | | | - Debasis Das
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| |
Collapse
|