1
|
Niranjan R, Prasad GD, Achankunju S, Arockiaraj M, Velumani K, Nachimuthu K, Sundramoorthy AK, Neogi I, Nallasivam JL, Rajeshkumar V, Mahadevegowda SH. Multicomponent Reaction Based Tolyl-substituted and Pyrene-Pyridine Conjugated Isomeric Ratiometric Fluorescent Probes: A Comparative Investigation of Photophysical and Hg(II)-Sensing Behaviors. J Fluoresc 2024; 34:2613-2628. [PMID: 37864613 DOI: 10.1007/s10895-023-03467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
Herein, the synthesis of pyrene conjugated 2,6-di-ortho-tolylpyridine and 2,6-di-para-tolylpyridine structural isomers were achieved efficiently through multicomponent Chichibabin pyridine synthesis reaction. The DFT, TD-DFT and experimental investigations were carried out to investigate the photophysical behaviors of the synthesized novel pyrene-pyridine based isomeric probes. Our studies revealed that, due to the continuous conjugation of the pyrene, pyridine and tolyl moieties, the dihedral angles of the trisubstituents on the central pyridine moiety significantly influences the photophysical properties of the synthesized novel pyrene based fluorescent probes. Further, we have comparatively investigated the sensing behaviors of the synthesized tolyl-substituted isomeric ratiometric fluorescent probes with metal ions, our studies reveals that both the ortho and para tolyl ratiometric fluorescent probes have distinct photoemissive properties in selectively sensing of Hg2+ ions. Our studies indicates that, the para-tolyl substituted isomer displays more red-shift in wavelength of emission band compared to its ortho isomer analogue during ratiometric fluorescent specific detection of Hg2+ ions.
Collapse
Affiliation(s)
- Raghvendra Niranjan
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - G Durga Prasad
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Simi Achankunju
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Kotteswaran Velumani
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Ishita Neogi
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Jothi L Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Surendra H Mahadevegowda
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
2
|
Sogra S, V A, Ps C, L S, S A, S V, Das AK. A Prompt Study on Recent Advances in the Development Of Colorimetric and Fluorescent Chemosensors for "Nanomolar Detection" of Biologically Important Analytes. J Fluoresc 2024:10.1007/s10895-023-03552-1. [PMID: 38285156 DOI: 10.1007/s10895-023-03552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Fluorescent and colorimetric chemosensors for selective detection of various biologically important analytes have been widely applied in different areas such as biology, physiology, pharmacology, and environmental sciences. The research area based on fluorescent chemosensors has been in existence for about 150 years with the development of large number of fluorescent chemosensors for selective detection of cations as metal ions, anions, reactive species, neutral molecules and different gases etc. Despite the progress made in this field, several problems and challenges still exist. The most important part of sensing is limit of detection (LOD) which is the lowest concentration that can be measured (detected) with statistical significance by means of a given analytical procedure. Although there are so many reports available for detection of millimolar to micromolar range but the development of chemosensors for the detection of analytes in nanomolar range is still a challenging task. Therefore, in our current review we have focused the history and a general overview of the development in the research of fluorescent sensors for selective detection of various analytes at nanomolar level only. The basic principles involved in the design of chemosensors for specific analytes, binding mode, photophysical properties and various directions are also covered here. Summary of physiochemical properties, mechanistic view and type of different chemosensors has been demonstrated concisely in the tabular forms.
Collapse
Affiliation(s)
- Syeda Sogra
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Aishwarya V
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Chaithra Ps
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Suchi L
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Abhishek S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
3
|
Anshmya S, Narmatha G, Saravana Mani K, Nandhakumar R. A coumarin hydrazone appended rotatable phenolic scaffold as fluorescent chemosensor for Ag + ions and its bio imaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123215. [PMID: 37536242 DOI: 10.1016/j.saa.2023.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
A coumarin hydrazone-phenol conjugate, COH4 was designed, synthesized and utilized for the cation sensing studies by fluorimetry studies. The synthesized chemosensor was completely characterized by the usual spectroscopic and analytical studies. The COH4 receptor was examined for the detection of metal ions, in which it had a noticeable blue shifted fluorescence enhancement for Ag+ ions. Upon binding towards Ag+ ions, the photoinduced electron transfer (PET) process is inhibited via intramolecular charge transfer (ICT) process assisted by the arrest of the carbon-carbon single bond rotation. The binding stoichiometry of COH4 + Ag+ complexation ratio is noted to be 1:2, which was further confirmed by jobs plot method. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.41 µM and 0.13 µM respectively. Moreover, COH4 was successfully utilized for the practical applications of Ag+ ion detection in bacterial cell lines.
Collapse
Affiliation(s)
- Selvaraj Anshmya
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India
| | - Ganesan Narmatha
- Fluorensic Materials Lab, Department of Applied Chemistry, Karunya Institute of Technology and Sciences, (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Kailasam Saravana Mani
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India.
| | - Raju Nandhakumar
- Fluorensic Materials Lab, Department of Applied Chemistry, Karunya Institute of Technology and Sciences, (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India.
| |
Collapse
|
4
|
Esteves CIC, Raposo MMM, Costa SPG. New Amino Acid-Based Thiosemicarbazones and Hydrazones: Synthesis and Evaluation as Fluorimetric Chemosensors in Aqueous Mixtures. Molecules 2023; 28:7256. [PMID: 37959675 PMCID: PMC10650509 DOI: 10.3390/molecules28217256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Bearing in mind the interest in the development and application of amino acids/peptides as bioinspired systems for sensing, a series of new phenylalanine derivatives bearing thiosemicarbazone and hydrazone units at the side chain were synthesised and evaluated as fluorimetric chemosensors for ions. Thiosemicarbazone and hydrazone moieties were chosen because they are considered both proton-donor and proton-acceptor, which is an interesting feature in the design of chemosensors. The obtained compounds were tested for the recognition of organic and inorganic anions (such as AcO-, F-, Cl-, Br-, I-, ClO4-, CN-, NO3-, BzO-, OH-, H2PO4- and HSO4-) and of alkaline, alkaline-earth, and transition metal cations, (such as Na+, K+, Cs+, Ag+, Cu+, Cu2+, Ca2+, Cd2+, Co2+, Pb2+, Pd2+, Ni2+, Hg2+, Zn2+, Fe2+, Fe3+ and Cr3+) in acetonitrile and its aqueous mixtures in varying ratios via spectrofluorimetric titrations. The results indicate that there is a strong interaction via the donor N, O and S atoms at the side chain of the various phenylalanines, with higher sensitivity for Cu2+, Fe3+ and F- in a 1:2 ligand-ion stoichiometry. The photophysical and metal ion-sensing properties of these phenylalanines suggest that they might be suitable for incorporation into peptide chemosensory frameworks.
Collapse
Affiliation(s)
| | | | - Susana P. G. Costa
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.I.C.E.); (M.M.M.R.)
| |
Collapse
|
5
|
Oliveri IP, Attinà A, Di Bella S. A Zinc(II) Schiff Base Complex as Fluorescent Chemosensor for the Selective and Sensitive Detection of Copper(II) in Aqueous Solution. SENSORS (BASEL, SWITZERLAND) 2023; 23:3925. [PMID: 37112266 PMCID: PMC10141078 DOI: 10.3390/s23083925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The development of chemosensors able to detect analytes in a variety of sample matrices through a low-cost, fast, and direct approach is of current interest in food, health, industrial, and environmental fields. This contribution presents a simple approach for the selective and sensitive detection of Cu2+ ions in aqueous solution based on a transmetalation process of a fluorescent substituted Zn(salmal) complex. Transmetalation is accompanied by relevant optical absorption changes and quenching of the fluorescence emission, leading to high selectivity and sensitivity of the chemosensor, with the advantage of not requiring any sample pretreatment or pH adjustment. Competitive experiments demonstrate a high selectivity of the chemosensor towards Cu2+ with respect to the most common metal cations as potential interferents. A limit of detection down to 0.20 μM and a dynamic linear range up to 40 μM are achieved from fluorometric data. By exploiting the fluorescence quenching upon formation of the copper(II) complex, simple paper-based sensor strips, visible to naked eyes under UV light, are used for the rapid, qualitative, and quantitative in situ detection of Cu2+ ions in aqueous solution over a wide concentration range, up to 10.0 mM, in specific environments, such as in industrial wastewater, where higher concentrations of Cu2+ ions can occur.
Collapse
|
6
|
Üçüncü M. A Phenalenone-based Fluorescent Probe for the Detection of Fe 3+ ions. J Fluoresc 2023; 33:707-712. [PMID: 36507999 DOI: 10.1007/s10895-022-03117-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
A phenalenone based "turn on" probe was developed for selective and sensitive detection of Fe3+ ions in aqueous solutions. The thiophene-2-carboxaldehyde (receptor unit) was integrated into the 6-amino-1-phenalenone (6-AP) (signal reporter unit) through the C = N bond formation. The probe, 6-APT, operated through subsequent hydrolysis of the C = N bond induced by the coordination of Fe3+ ions to the heteroatoms to form highly fluorescent 6-AP. The probe displayed remarkable characteristics such as rapid response time (< 1 min), high analyte selectivity, and low limit of detection (1.3 µM). The sensing approach offered an accurate method for the detection of Fe3+ ions in real water samples (tap water and drinking water). In addition to the fluorometric response, the presence of Fe3+ ions can be monitored under daylight by the change in the color of the solution. Importantly, this study is the first example of a phenalenone-based sensor developed for metal ion sensing in literature.
Collapse
Affiliation(s)
- Muhammed Üçüncü
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey.
| |
Collapse
|
7
|
Patil N, Dhake R, Phalak R, Fegade U, Ramalingan C, Saravanan V, Altalhi T. A Colorimetric Distinct Color Change Cu(II) 4-{[1-(2,5-dihydroxyphenyl)ethylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one Chemosensor and its Application as a Paper Test Kit. J Fluoresc 2022; 33:1089-1099. [PMID: 36574186 DOI: 10.1007/s10895-022-03034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022]
Abstract
In the current research work "4-{[1-(2,5-dihydroxyphenyl)ethylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one" chemosensor (C1) synthesized by condensation reaction using "4-amino-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one" and "2,5-dihydroxy actophenone" was used as the effective sensor of metal ion. The C1 shows absorption peak at 326 nm due to the C = C bond (π-π* transition), while the absorption peak at 364 nm is caused by the C = O bond (n-π* transition). In the presence of copper, C1 only demonstrated a redshift in absorption peak from 364 to 425 nm. Even in the presence of other competing metal ions, the hypsochromic shift of the absorption band and the quenching of the fluorescence emission intensity were different for detecting Cu2+, in CH3OH-H2O (v/v = 6:4). The capacity of the C1 to bind with Cu2+ was further proved using DFT simulations. The complex C1 + Cu2+ has a HOMO-LUMO energy gap of 2.8002 eV, which is lesser than C1 (2.9991 eV) showing improvement in the stability of the C1 + Cu2+ complex. Using the Benesi-Hildebrand and Scatchard plots, calculated Kb values were to be 47,340 and 48369 M-1 respectively, showing the creation of stable complexation between Cu2+ and C1 with 1:1 stoichiometry. The limit of detection (LOD) for Cu2+ ion was 649 nM. Strip sheets were also built and tested to detect varying amounts of Cu2+ in aqueous solution, and their color change suggested that they might be used for on-site Cu2+ detection in polluted water.
Collapse
Affiliation(s)
- Nilima Patil
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon, 425201, MH, India
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, Jalgaon, 425201, MH, India
| | - Rajesh Dhake
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon, 425201, MH, India.
| | - Raju Phalak
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon, 425201, MH, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, Jalgaon, 425201, MH, India.
| | - Chennan Ramalingan
- Department of Chemistry, Kalasalingam Academy of Research and Education (Deemed to Be University), Krishnankoil, 626 126, Tamilnadu, India
| | - Vadivel Saravanan
- Department of Chemistry, Kalasalingam Academy of Research and Education (Deemed to Be University), Krishnankoil, 626 126, Tamilnadu, India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
8
|
Rubina SR, Leka SI, Priya KS, Kumar RR, Murugesan S. One‐Pot Three‐Component Domino Synthesis of Isoxazolo[5,4‐
b
]pyrano[2,3‐
f
]quinolines: An Efficient Fluorescent Turn‐off Chemosensor for Picric Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202203902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Stephen Raja Rubina
- School of Chemistry Madurai Kamaraj University Madurai 625021 Tamil Nadu INDIA
| | | | | | - Raju Ranjith Kumar
- School of Chemistry Madurai Kamaraj University Madurai 625021 Tamil Nadu INDIA
| | | |
Collapse
|
9
|
Shepelenko ЕN, Podshibyakin VA, Dubonosova IV, Karlutova ОY, Dubonosov AD, Bren VA. Ion-Induced Chromo(fluoro)genic Rearrangements of Rhodamine Derivatives. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Kavitha V, Viswanathamurthi P, Haribabu J, Echeverria C. A new subtle and integrated detector to sense Hg2+ions: A vision towards its applicability on water samples and live cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Highly selective and sensitive fluorometric probe for Cd2+ ions based on 4-(quinolin-2-ylmethylene)aminoanisole Schiff base. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Jiang C, Hu SJ, Zhou LP, Yang J, Sun QF. Lanthanide-organic pincer hosts with allosteric-controlled metal ion binding specificity. Chem Commun (Camb) 2022; 58:5494-5497. [PMID: 35416812 DOI: 10.1039/d2cc01379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lanthanide-organic pincer hosts were synthesized, which showed allosteric-controlled metal ion binding selectivities due to the lanthanide-induced subtle changes of the central vacant binding site.
Collapse
Affiliation(s)
- Chen Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Yin P, Ma W, Liu J, Hu T, Wei T, Chen J, Li T, Niu Q. Dual functional chemosensor for nano-level detection of Al3+ and Cu2+: Application to real samples analysis, colorimetric test strips and molecular logic gates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
AbhijnaKrishna R, Velmathi S. A review on fluorimetric and colorimetric detection of metal ions by chemodosimetric approach 2013–2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Ekta, Utreja D, Singh K. Synthesis of sulfonamide based chemosensor for sensing of toxic Hg2+ ions in soil extract. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Chumak A, Khodzhaeva R, Kharchenko O, Kotlyar V, Kolomoitsev O, Doroshenko A. Complexation of 1,3-dihetaryl-5-phenyl-2-pyrazoline Derivatives with Polyvalent Metal Ions: Quantum Chemical Modeling and Experimental Investigation. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2022. [DOI: 10.17721/fujcv10i1p155-174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
1,3,5-Triaryl-2-pyrazoline derivatives with a pyridine ring in position 1 and 2-benzimidazolyl or 2-benzothiazolyl bicycles in position 3 were synthesized. Spectral properties in solvents of similar polarity, i.e. aprotic acetonitrile and in protic methanol, were studied, complexation with cadmium and mercury ions in acetonitrile was elucidated as well. Quantum-chemical modeling with application of the elements of Bader's atoms-in-molecules (AIM) theory of the title molecules conformational structure and 1:1 stoichiometry complexes formed with polyvalent metals of various nature (Mg, Zn, Cd, Pb, Hg, Ba) was conducted. The principal possibility of “nitrogen-sulfur” switching of the metal ions binding sites for the benzothiazole derivative was revealed, and makes possible to classify this compound as “smart ligand”.
Collapse
|
17
|
OLIVERI IPP, Munzi G, Di Bella S. A simple approach based on transmetalation for the selective and sensitive colorimetric/fluorometric detection of copper(II) ions in drinking water. NEW J CHEM 2022. [DOI: 10.1039/d2nj03695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for feasible and efficient methods for sensing cations in the environment is a challenge of current scientific interest. Among colorimetric and fluorometric methods, those allowing a direct and...
Collapse
|
18
|
Ma J, Dong Y, Yu Z, Wu Y, Zhao Z. A pyridine based Schiff base as a selective and sensitive fluorescent probe for cadmium ions with “turn-on” fluorescence responses. NEW J CHEM 2022. [DOI: 10.1039/d1nj05919j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A pyridine based Schiff base probe (PMPA) showed high selectivity and sensitivity towards Cd2+ ions with intense bluish green fluorescence. The sensing mechanism of probe PMPA for detecting Cd2+ was based on the inhibited PET and CHEF processes.
Collapse
Affiliation(s)
- Jialin Ma
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China
| | - Yuwei Dong
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China
| | - Zhou Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China
| | - Yan Wu
- Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
19
|
Park S, Suh B, Kim C. A chalcone-based fluorescent chemosensor for detecting Mg 2+ and Cd 2. LUMINESCENCE 2021; 37:332-339. [PMID: 34877783 DOI: 10.1002/bio.4175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
SBOD (sodium (E)-2-(3-[5-bromothiophen-2-yl]-3-oxoprop-1-en-1-yl)-4,6-dichlorophenolate) was designed and synthesized as a chalcone-based fluorescent turn-on chemosensor for Mg2+ and Cd2+ . SBOD selectively detected Mg2+ and Cd2+ through the increase in effective fluorescence. Detection limits of SBOD for Mg2+ and Cd2+ were calculated to be 3.8 μM and 2.9 μM, respectively. The binding modes of SBOD for Mg2+ and Cd2+ were determined to be 1:1 by ESI-MS and Job plot. Association mechanisms for SBOD to Mg2+ and Cd2+ were illustrated by ESI-MS, UV-vis, fluorescence spectroscopy, and calculations.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| | - Boeon Suh
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| | - Cheal Kim
- Department of Fine Chem., Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, South Korea
| |
Collapse
|
20
|
Ekta, Utreja D, Singh K, Sharma S. A Schiff‐Base Molecular Keypad LockandTurn‐On Sensor for Selective Detection of Fe
3+
with INHIBIT Logic Behaviour. ChemistrySelect 2021. [DOI: 10.1002/slct.202103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ekta
- Department of Chemistry Punjab Agricultural University Ludhiana 141004 India
| | - Divya Utreja
- Department of Chemistry Punjab Agricultural University Ludhiana 141004 India
| | - Kamaljit Singh
- Department of Chemistry Guru Nanak Dev University Amritsar 143004 India
| | - Sucheta Sharma
- Department of Biochemistry Punjab Agricultural University Ludhiana 141004 India
| |
Collapse
|
21
|
Ferretti CA, Gutierrez LG, Guntero VA, Noriega PJ, Kneeteman MN. A selective colorimetric chemosensor for detection of Cu(II) ions in aqueous samples. CR CHIM 2021. [DOI: 10.5802/crchim.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Freixa Z, Rivilla I, Monrabal F, Gómez-Cadenas JJ, Cossío FP. Bicolour fluorescent molecular sensors for cations: design and experimental validation. Phys Chem Chem Phys 2021; 23:15440-15457. [PMID: 34264251 PMCID: PMC8317197 DOI: 10.1039/d1cp01203g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022]
Abstract
Molecular entities whose fluorescence spectra are different when they bind metal cations are termed bicolour fluorescent molecular sensors. The basic design criteria of this kind of compound are presented and the different fluorescent responses are discussed in terms of their chemical behaviour and electronic features. These latter elements include intramolecular charge transfer (ICT), formation of intramolecular and intermolecular excimer/exciplex complexes and Förster resonance energy transfer (FRET). Changes in the electronic properties of the fluorophore based on the decoupling between its constitutive units upon metal binding are also discussed. The possibility of generating fluorescent bicolour indicators that can capture metal cations in the gas phase and at solid-gas interfaces is also discussed.
Collapse
Affiliation(s)
- Zoraida Freixa
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain. and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián/Donostia, Spain
| | - Iván Rivilla
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain. and Donostia International Physics Center (DIPC), 20018 San Sebastián/Donostia, Spain
| | - Francesc Monrabal
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain. and Donostia International Physics Center (DIPC), 20018 San Sebastián/Donostia, Spain
| | - Juan J Gómez-Cadenas
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain. and Donostia International Physics Center (DIPC), 20018 San Sebastián/Donostia, Spain
| | - Fernando P Cossío
- Donostia International Physics Center (DIPC), 20018 San Sebastián/Donostia, Spain and Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián/Donostia, Spain
| |
Collapse
|
23
|
Docker A, Bunchuay T, Ahrens M, Martinez‐Martinez AJ, Beer PD. Chalcogen Bonding Ion‐Pair Cryptand Host Discrimination of Potassium Halide Salts. Chemistry 2021; 27:7837-7841. [DOI: 10.1002/chem.202100579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew Docker
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC) Faculty of Science Mahidol University 272 Thanon Rama VI, Ratchathewi Bangkok 10400 Thailand
| | - Michael Ahrens
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | | | - Paul D. Beer
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
24
|
Ismail C, Mtiraoui H, Winum JY, Msaddek M, Gharbi R. Design, synthesis and photoluminescent studies of new 1,5-benzodiazepines derivatives: Towards new ESIPT compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|