1
|
Bai B, Wang Y, Xiong S, Ma X. Electric vehicle-attributed environmental injustice: Pollutant transfer into regions with poor traffic accessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143853. [PMID: 33293095 DOI: 10.1016/j.scitotenv.2020.143853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/07/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Electric vehicles (EVs) are promoted in recent years as an effective way in alleviating the air pollution caused by tailpipe emissions. However, the pollutants derived from EVs are unheeded. EVs rely on electricity to provide power, and thus their related pollution is transferred to the power plants, which gives rise to the environmental and health pressure to the adjacent regions. In this paper, the transfer of EV-attributed PM2.5, SO2, and NOx inhalations in China are studied. Then by comparing the inhalations versus traffic accessibility among the impacted municipalities, this study sheds light on the environmental injustice lying in the mismatch between pollutant inhalations and traffic accessibility. The results reveal that compared with Shanghai and Shenzhen, the promotion of EVs in Beijing triggers higher pollutant inhalations to its surrounding municipalities. North China Power Grid undertakes 715.62 g PM2.5 inhalation in total, which is 2.51 and 3.20 times higher than the East China Power Grid and the China Southern Power Grid, respectively. The number of municipalities with lower traffic accessibility while higher pollutant inhalation is 8,8, and 17 in North China Power Grid, East China Power Grid, and China Southern Power Grid respectively, indicating conspicuous environmental injustice resulted from the promotion of EVs.
Collapse
Affiliation(s)
- Bo Bai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yihan Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Siqin Xiong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiaoming Ma
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
2
|
Pérez-Maldonado IN, Ochoa-Martínez ÁC, López-Ramírez ML, Varela-Silva JA. Urinary levels of 1-hydroxypyrene and health risk assessment in children living in Mexican communities with a high risk of contamination by polycyclic aromatic hydrocarbons (PAHs). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:348-357. [PMID: 30468079 DOI: 10.1080/09603123.2018.1549727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Health complications have been associated with polycyclic aromatic hydrocarbons (PAHs) exposure, a widespread environmental pollutants family. Therefore, the objective of this investigation was to develop a probabilistic health risk evaluation (using Monte-Carlo simulation) in an infantile population living in areas with a high risk of pollution by PAHs (indoor wood combustion, brick kiln industry, municipal landfill, and low and high vehicular traffic) in Mexico. Urine samples were obtained from Mexican children (n = 135) and urinary 1-OHP concentrations (used as a PAHs biomarker) were quantified. Highest urinary 1-OHP concentrations were detected in children living in areas that use wood combustion as the principal indoor fuel (3.50 ± 0.95 µg/L). Nevertheless, estimated hazard quotients (HQ) lower than 1 were found in all assessed sites after Monte-Carlo analysis. Although HQ <1.0 (a toxic effect is not expected), more data are necessary to determine the real impact of PAHs exposure on children health status.
Collapse
Affiliation(s)
- Iván N Pérez-Maldonado
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- c Unidad Académica Multidisciplinaria Zona Media , Universidad Autónoma de San Luis Potosí , Rioverde, San Luis Potosí , México
| | - Ángeles C Ochoa-Martínez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Myrna L López-Ramírez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - José A Varela-Silva
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- d Facultad de Enfermería , Universidad Autónoma de Zacatecas , Zacatecas , México
| |
Collapse
|
3
|
Martenies SE, Allshouse WB, Starling AP, Ringham BM, Glueck DH, Adgate JL, Dabelea D, Magzamen S. Combined environmental and social exposures during pregnancy and associations with neonatal size and body composition: the Healthy Start study. Environ Epidemiol 2019; 3:e043. [PMID: 31583369 PMCID: PMC6775643 DOI: 10.1097/ee9.0000000000000043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prenatal environmental and social exposures have been associated with decreased birth weight. However, the effects of combined exposures in these domains are not fully understood. Here we assessed multi-domain exposures for participants in the Healthy Start study (Denver, CO) and tested associations with neonatal size and body composition. METHODS In separate linear regression models, we tested associations between neonatal outcomes and three indices for exposures. Two indices were developed to describe exposures to environmental hazards (ENV) and social determinants of health (SOC). A third index combined exposures in both domains (CE = ENV/10 × SOC/10). Index scores were assigned to mothers based on address at enrollment. Birth weight and length were measured at delivery, and weight-for-length z-scores were calculated using a reference distribution. Percent fat mass was obtained by air displacement plethysmography. RESULTS Complete data were available for 897 (64%) participants. Median (range) ENV, SOC, and CE values were 31.9 (7.1-63.2), 36.0 (2.8-75.0), and 10.9 (0.4-45.7), respectively. After adjusting for potential confounders, 10-point increases in SOC and CE were associated with 27.7 g (95%CI: 12.4 - 42.9 g) and 56.3 g (19.4 - 93.2 g) decreases in birth weight, respectively. SOC and CE were also associated with decreases in % fat mass. CONCLUSIONS Combined exposures during pregnancy were associated with lower birth weight and % fat mass. Evidence of a potential synergistic effect between ENV and SOC suggests a need to more fully consider neighborhood exposures when assessing neonatal outcomes.
Collapse
Affiliation(s)
- Sheena E. Martenies
- Department of Environmental and Radiological Health Sciences, Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | | | - Anne P. Starling
- Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brandy M. Ringham
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Deborah H. Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Dana Dabelea
- Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Huang H, Wang A, Morello-Frosch R, Lam J, Sirota M, Padula A, Woodruff TJ. Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors. Curr Environ Health Rep 2019; 5:88-99. [PMID: 29441463 DOI: 10.1007/s40572-018-0180-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to identify cumulative modeling methods used to evaluate combined effects of exposures to environmental chemicals and social stressors. The specific review question is: What are the existing quantitative methods used to examine the cumulative impacts of exposures to environmental chemical and social stressors on health? RECENT FINDINGS There has been an increase in literature that evaluates combined effects of exposures to environmental chemicals and social stressors on health using regression models; very few studies applied other data mining and machine learning techniques to this problem. The majority of studies we identified used regression models to evaluate combined effects of multiple environmental and social stressors. With proper study design and appropriate modeling assumptions, additional data mining methods may be useful to examine combined effects of environmental and social stressors.
Collapse
Affiliation(s)
- Hongtai Huang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA.
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA.
| | - Aolin Wang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
- Department of Environmental Science, Policy, and Management, and the School of Public Health, University of California, Berkeley, CA, USA
| | - Juleen Lam
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Marina Sirota
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Amy Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
The Sustainable Development Goals cannot be achieved without improving maternal and child nutrition. J Public Health Policy 2017; 38:137-145. [PMID: 28275250 DOI: 10.1057/s41271-016-0043-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poor nutrition is a global pandemic with social, economic, and environmental causes and consequences. Of the 17 Sustainable Development Goals (SDGs), only SDG2 explicitly mentions nutrition. Turning the aspirations of the SDGs into reality will require recognition that good nutrition ensured through sustainable agriculture, is simultaneously an absolutely fundamental input and output. Because all of the other SDGs are directly or indirectly linked to improving nutrition, funding to improve nutrition is essential to success for many SDGs. Greater focus on cooperation across disciplines to advance the science of program delivery and to understand the full contribution of nutrition to many desirable outcomes as part of development are surely the ways forward. Missing today's opportunities to advance thinking and program implementation for more effectively improving nutrition for all, especially for women and children, will lead to a wider failure to meet the SDGs.
Collapse
|