1
|
Lovro Brkić A, Supina A, Čapeta D, Dončević L, Ptiček L, Mandić Š, Racané L, Delač I. Stability and reversibility of organic molecule modifications of CVD-synthesized monolayer MoS 2. NANOTECHNOLOGY 2024; 36:065702. [PMID: 39496202 DOI: 10.1088/1361-6528/ad8e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
We investigated the stability of monolayer MoS2samples synthesized using chemical vapor deposition and subsequently modified with organic molecules under ambient conditions. By analyzing the optical signatures of the samples using photoluminescence spectroscopy, Raman spectroscopy, and surface quality using atomic force microscopy, we observed that this modification of monolayer MoS2with organic molecules is stable and retains its optical signature over time under ambient conditions. Furthermore, we show the reversibility of the effects induced by the organic molecules, as heating the modified samples restores their original optical signatures, indicating the re-establishment of the optical properties of the pristine monolayer MoS2.
Collapse
Affiliation(s)
- Antun Lovro Brkić
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
- Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Antonio Supina
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | - Davor Čapeta
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | - Lucija Dončević
- Division of Molecular Medicine, Ruder Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Šimun Mandić
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | - Livio Racané
- University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Ida Delač
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Brkić AL, Supina A, Čapeta D, Dončević L, Ptiček L, Mandić Š, Racané L, Delač I. Influence of Solvents and Adsorption of Organic Molecules on the Properties of CVD Synthesized 2D MoS 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2115. [PMID: 37513127 PMCID: PMC10383348 DOI: 10.3390/nano13142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
We present a simple method for modification of 2D materials by drop-casting of the organic molecule in solution on the 2D material under ambient conditions. Specifically, we investigated the adsorption of 6-(4,5-Dihydro-1H-imidazol-3-ium-2-yl)-2-(naphthalene-2-yl)benzothiazole methanesulfonate (L63MS) organic molecule on 2D MoS2. To better understand the effect of the organic molecule on the 2D material, we also investigated the impact of solvents alone on the materials' properties. The MoS2 samples were synthesized using ambient pressure chemical vapor deposition. Atomic force microscopy, Raman spectroscopy, photoluminescence spectroscopy and optical microscopy were used to characterize the samples. The measurements were performed after synthesis, after the drop-casting of solvents and after the drop-casting of organic molecule solutions. Our results indicate that the used organic molecule effectively adsorbs on and prompts discernible changes in the (opto)electronic properties of the 2D material. These changes encompass variations in the Raman spectra shape, alterations in the photoluminescence (PL) signal characteristics and modifications in excitonic properties. Such alterations can be linked to various phenomena including doping, bandgap modifications, introduction or healing of defects and that the solvent plays a crucial role in the process. Our study provides insights into the modification of 2D materials under ambient conditions and highlights the importance of solvent selection in the process.
Collapse
Affiliation(s)
- Antun Lovro Brkić
- Center for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; (A.L.B.)
- Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Antonio Supina
- Center for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; (A.L.B.)
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Davor Čapeta
- Center for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; (A.L.B.)
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Šimun Mandić
- Center for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; (A.L.B.)
| | - Livio Racané
- University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Ida Delač
- Center for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; (A.L.B.)
| |
Collapse
|
4
|
Assali M, Kittana N, Badran I, Omari S. Covalent functionalization of graphene sheets for plasmid DNA delivery: experimental and theoretical study. RSC Adv 2023; 13:7000-7008. [PMID: 36874935 PMCID: PMC9979783 DOI: 10.1039/d3ra00727h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Several approaches, including plasmid transfection and viral vectors, were used to deliver genes into cells for therapeutic and experimental purposes. However, due to the limited efficacy and questionable safety issues, researchers are looking for better new approaches. Over the past decade, graphene has attracted tremendous attention in versatile medical applications, including gene delivery, which could be safer than the traditional viral vectors. This work aims to covalently functionalize pristine graphene sheets with a polyamine to allow the loading of plasmid DNA (pDNA) and enhance its delivery into cells. Graphene sheets were successfully covalently functionalized with a derivative of tetraethylene glycol connected to polyamine groups to improve their water dispersibility and capacity to interact with the pDNA. The improved dispersibility of the graphene sheets was demonstrated visually and by transmission electron microscopy. Also, it was shown by thermogravimetric analysis that the degree of functionalization was about 58%. Moreover, the surface charge of the functionalized graphene was +29 mV as confirmed by zeta potential analysis. The complexion of f-graphene with pDNA was achieved at a relatively low mass ratio (10 : 1). The incubation of HeLa cells with f-graphene loaded with pDNA that encodes enhanced green fluorescence protein (eGFP) resulted in the detection of fluorescence signal in the cells within one hour. f-Graphene showed no toxic effect in vitro. Density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations revealed strong binding with ΔH 298 = 74.9 kJ mol-1. QTAIM between the f-graphene and a simplified model of pDNA. Taken together, the developed functionalized graphene could be used for the development of a new non-viral gene delivery system.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University Nablus Palestine
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University Nablus Palestine
| | - Ismail Badran
- Department of Chemistry, Faculty of Sciences, An-Najah National University Nablus Palestine
| | - Safa Omari
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University Nablus Palestine
| |
Collapse
|
5
|
Adenine derived reactive dispersant and the enhancement of graphene based composites. J Colloid Interface Sci 2023; 640:91-99. [PMID: 36842421 DOI: 10.1016/j.jcis.2023.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
HYPOTHESIS Homogeneous dispersion of graphene is the precondition for constructing high performance graphene based composites. However, most of the current dispersants reported in literature still suffer excess usage to reach a desired graphene concentration. Residual of dispersant in composite may seriously affect its properties. Hence, it is expected to obtain effective dispersant with high reactivity to diminish its adverse impacts on graphene composites. EXPERIMENTS A highly reactive graphene dispersant (DSiA) was synthesized by grafting silanol groups (Si-OH) onto adenine. Molecular structure and the performance of the dispersant were systematically characterized. Composites were fabricated by direct writing of the graphene dispersion on various substrates, and their features were evaluated by resistance, solvent erosion and tensile testing. FINDINGS Graphene concentration can reach up to 6 mg mL-1 in the presents of DSiA at the weight ratio of 1:1 (DSiA: graphene). DSiA also exhibited good performance for stabilizing multi-walled carbon nanotubes (MWCNTs). Moreover, the dispersant is highly reactive. The graphene based composites showed good mechanical strength and excellent solvent resistance. Overall, the new dispersant provides an ideal choice to uniformly disperse graphene and suitable for fabricating high performance nanocarbon based composites.
Collapse
|
6
|
Balkourani G, Damartzis T, Brouzgou A, Tsiakaras P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:355. [PMID: 35009895 PMCID: PMC8749877 DOI: 10.3390/s22010355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023]
Abstract
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts' synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values.
Collapse
Affiliation(s)
- Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
| | - Theodoros Damartzis
- Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, Sion, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Angeliki Brouzgou
- Department of Energy Systems, School of Technology, University of Thessaly, Geopolis, Regional Road Trikala-Larisa, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), 620990 Yekaterinburg, Russia
| |
Collapse
|
7
|
Graphene for Antimicrobial and Coating Application. Int J Mol Sci 2022; 23:ijms23010499. [PMID: 35008923 PMCID: PMC8745297 DOI: 10.3390/ijms23010499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Graphene is a versatile compound with several outstanding properties, providing a combination of impressive surface area, high strength, thermal and electrical properties, with a wide array of functionalization possibilities. This review aims to present an introduction of graphene and presents a comprehensive up-to-date review of graphene as an antimicrobial and coating application in medicine and dentistry. Available articles on graphene for biomedical applications were reviewed from January 1957 to August 2020) using MEDLINE/PubMed, Web of Science, and ScienceDirect. The selected articles were included in this study. Extensive research on graphene in several fields exists. However, the available literature on graphene-based coatings in dentistry and medical implant technology is limited. Graphene exhibits high biocompatibility, corrosion prevention, antimicrobial properties to prevent the colonization of bacteria. Graphene coatings enhance adhesion of cells, osteogenic differentiation, and promote antibacterial activity to parts of titanium unaffected by the thermal treatment. Furthermore, the graphene layer can improve the surface properties of implants which can be used for biomedical applications. Hence, graphene and its derivatives may hold the key for the next revolution in dental and medical technology.
Collapse
|
8
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
9
|
Tang Z, Chulanova E, Küllmer M, Winter A, Picker J, Neumann C, Schreyer K, Herrmann-Westendorf F, Arnlind A, Dietzek B, Schubert US, Turchanin A. Photoactive ultrathin molecular nanosheets with reversible lanthanide binding terpyridine centers. NANOSCALE 2021; 13:20583-20591. [PMID: 34874038 DOI: 10.1039/d1nr05430a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, functional molecular nanosheets have attracted much attention in the fields of sensors and energy storage. Here, we present an approach for the synthesis of photoactive metal-organic nanosheets with ultimate molecular thickness. To this end, we apply low-energy electron irradiation induced cross-linking of 4'-(2,2':6',2''-terpyridine-4'-yl)-1,1'-biphenyl-4-thiol self-assembled monolayers on gold to convert them into functional ∼1 nm thick carbon nanomembranes possessing the ability to reversibly complex lanthanide ions (Ln-CNMs). The obtained Ln-CNMs can be prepared on a large-scale (>10 cm2) and inherit the photoactivity of the pristine terpyridine lanthanide complex (Ln(III)-tpy). Moreover, they possess mechanical stability as free-standing sheets over micrometer sized openings. The presented methodology paves a simple and robust way for the preparation of ultrathin nanosheets with tailored photoactive properties for application in photocatalytic and energy conversion devices.
Collapse
Affiliation(s)
- Zian Tang
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
| | - Elena Chulanova
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria Küllmer
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Julian Picker
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
| | - Christof Neumann
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
| | - Kristin Schreyer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix Herrmann-Westendorf
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
- Leibniz Institute of Photonic Technology, Research Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Andreas Arnlind
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
| | - Benjamin Dietzek
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Research Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
10
|
Asghari M, Saadatmandi S, Afsari M. Graphene Oxide and its Derivatives for Gas Separation Membranes. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Morteza Asghari
- University of Science and Technology of Mazandaran Separation Processes Research Group (SPRG) Behshahr Mazandaran Iran
| | | | - Morteza Afsari
- University of Technology Sydney (UTS) Center for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering 2007 Sydney NSW Australia
| |
Collapse
|
11
|
Bokare A, Arif J, Erogbogbo F. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2211. [PMID: 34578524 PMCID: PMC8467028 DOI: 10.3390/nano11092211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Graphene represents a new generation of materials which exhibit unique physicochemical properties such as high electron mobility, tunable optics, a large surface to volume ratio, and robust mechanical strength. These properties make graphene an ideal candidate for various optoelectronic, photonics, and sensing applications. In recent years, numerous efforts have been focused on azobenzene polymers (AZO-polymers) as photochromic molecular switches and thermal sensors because of their light-induced conformations and surface-relief structures. However, these polymers often exhibit drawbacks such as low photon storage lifetime and energy density. Additionally, AZO-polymers tend to aggregate even at moderate doping levels, which is detrimental to their optical response. These issues can be alleviated by incorporating graphene derivatives (GDs) into AZO-polymers to form orderly arranged molecules. GDs such as graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs) can modulate the optical response, energy density, and photon storage capacity of these composites. Moreover, they have the potential to prevent aggregation and increase the mechanical strength of the azobenzene complexes. This review article summarizes and assesses literature on various strategies that may be used to incorporate GDs into azobenzene complexes. The review begins with a detailed analysis of structures and properties of GDs and azobenzene complexes. Then, important aspects of GD-azobenzene composites are discussed, including: (1) synthesis methods for GD-azobenzene composites, (2) structure and physicochemical properties of GD-azobenzene composites, (3) characterization techniques employed to analyze GD-azobenzene composites, and most importantly, (4) applications of these composites in various photonics and thermal devices. Finally, a conclusion and future scope are given to discuss remaining challenges facing GD-azobenzene composites in functional science engineering.
Collapse
Affiliation(s)
| | | | - Folarin Erogbogbo
- Department of Biomedical Engineering, San José State University, 1 Washington Square, San José, CA 95112, USA; (A.B.); (J.A.)
| |
Collapse
|
12
|
Russo P, Cimino F, Tufano A, Fabbrocino F. Thermal and Quasi-Static Mechanical Characterization of Polyamide 6-Graphene Nanoplatelets Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1454. [PMID: 34072680 PMCID: PMC8226739 DOI: 10.3390/nano11061454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
The growing demand for lightweight and multifunctional products in numerous industrial fields has recently fuelled a growing interest in the development of materials based on polymer matrices including graphene-like particles, intrinsically characterized by outstanding mechanical, thermal, and electrical properties. Specifically, with regard to one of the main mass sectors, which is the automotive, there has been a significant increase in the use of reinforced polyamides for underhood applications and fuel systems thanks to their thermal and chemical resistance. In this frame, polyamide 6 (PA6) composites filled with graphene nanoplatelets (GNPs) were obtained by melt-compounding and compared in terms of thermal and mechanical properties with the neat matrix processed under the same condition. The results of the experimental tests have shown that the formulations studied so far offer slight improvements in terms of thermal stability but much more appreciable benefits regarding both tensile and flexural parameters with respect to the reference material. Among these effects, the influence of the filler content on the strength parameter is noteworthy. However, the predictable worsening of the graphene sheet dispersion for GNPs contents greater than 3%, as witnessed by scanning electron images of the tensile fractured sections of specimens, affected the ultimate performance of the more concentrated formulation.
Collapse
Affiliation(s)
- Pietro Russo
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Francesca Cimino
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Antonio Tufano
- Department of Engineering, Telematic University Pegaso, Centro Direzionale Napoli Isola F2, Pegaso Tower, 80143 Napoli, Italy; (A.T.); (F.F.)
| | - Francesco Fabbrocino
- Department of Engineering, Telematic University Pegaso, Centro Direzionale Napoli Isola F2, Pegaso Tower, 80143 Napoli, Italy; (A.T.); (F.F.)
| |
Collapse
|
13
|
Yutomo EB, Noor FA, Winata T. Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene - a density-functional study. RSC Adv 2021; 11:18371-18380. [PMID: 35480933 PMCID: PMC9033507 DOI: 10.1039/d1ra01095f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Doping with nitrogen atom is an effective way to modify the electronic and magnetic properties of graphene. In this paper, we studied the effect of the number of dopant atoms on the electronic and magnetic properties of the two most common nitrogen bond configurations in N-doped graphene, that is, graphitic and pyridinic, using density functional theory (DFT). We found that the formation of graphitic and pyridinic configurations can initiate the transition of the electronic properties of graphene from semimetal to metal with n-type conductivity for the graphitic configuration and p-type conductivity for the pyridinic configuration. The formation of a bandgap-like structure was observed in both configurations. The bandgap increased with the increase in the number of dopant atoms. We also observed that the formation of graphitic configuration did not cause a transition to the magnetic properties of graphene even though the number of dopant atoms was increased. In the pyridinic configuration, the increase in the number of dopant atoms caused graphene to be paramagnetic, with the remarkable total magnetic moment of 0.400 μB per cell in the pyridinic-N3 model. This study provides a deeper understanding of the modification of electronic and magnetic properties of N-doped graphene by controlling the bond configuration and the number of nitrogen dopants. The number of dopant atoms is a parameter that can effectively tune the electronic and magnetic properties of graphitic and pyridinic N-doped graphene.![]()
Collapse
Affiliation(s)
- Erik Bhekti Yutomo
- Physics of Electronics Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, InstitutTeknologi Bandung Bandung 40132 Indonesia
| | - Fatimah Arofiati Noor
- Physics of Electronics Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, InstitutTeknologi Bandung Bandung 40132 Indonesia
| | - Toto Winata
- Physics of Electronics Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, InstitutTeknologi Bandung Bandung 40132 Indonesia
| |
Collapse
|
14
|
Li L, Chakik M, Prakash R. A Review of Corrosion in Aircraft Structures and Graphene-Based Sensors for Advanced Corrosion Monitoring. SENSORS 2021; 21:s21092908. [PMID: 33919187 PMCID: PMC8122423 DOI: 10.3390/s21092908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Corrosion is an ever-present phenomena of material deterioration that affects all metal structures. Timely and accurate detection of corrosion is required for structural maintenance and effective management of structural components during their life cycle. The usage of aircraft materials has been primarily driven by the need for lighter, stronger, and more robust metal alloys, rather than mitigation of corrosion. As such, the overall cost of corrosion management and aircraft downtime remains high. To illustrate, $5.67 billion or 23.6% of total sustainment costs was spent on aircraft corrosion management, as well as 14.1% of total NAD for the US Air Force aviation and missiles in the fiscal year of 2018. The ability to detect and monitor corrosion will allow for a more efficient and cost-effective corrosion management strategy, and will therefore, minimize maintenance costs and downtime, and to avoid unexpected failure associated with corrosion. Conventional and commercial efforts in corrosion detection on aircrafts have focused on visual and other field detection approaches which are time- and usage-based rather than condition-based; they are also less effective in cases where the corroded area is inaccessible (e.g., fuel tank) or hidden (rivets). The ability to target and detect specific corrosion by-products associated with the metals/metal alloys (chloride ions, fluoride ions, iron oxides, aluminum chlorides etc.), corrosion environment (pH, wetness, temperature), along with conventional approaches for physical detection of corrosion can provide early corrosion detection as well as enhanced reliability of corrosion detection. The paper summarizes the state-of-art of corrosion sensing and measurement technologies for schedule-based inspection or continuous monitoring of physical, environmental and chemical presence associated with corrosion. The challenges are reviewed with regards to current gaps of corrosion detection and the complex task of corrosion management of an aircraft, with a focused overview of the corrosion factors and corrosion forms that are pertinent to the aviation industry. A comprehensive overview of thin film sensing techniques for corrosion detection and monitoring on aircrafts are being conducted. Particular attention is paid to innovative new materials, especially graphene-derived thin film sensors which rely on their ability to be configured as a conductor, semiconductor, or a functionally sensitive layer that responds to corrosion factors. Several thin film sensors have been detailed in this review as highly suited candidates for detecting corrosion through direct sensing of corrosion by-products in conjunction with the aforementioned physical and environmental corrosion parameters. The ability to print/pattern these thin film materials directly onto specific aircraft components, or deposit them onto rigid and flexible sensor surfaces and interfaces (fibre optics, microelectrode structures) makes them highly suited for corrosion monitoring applications.
Collapse
Affiliation(s)
- Lucy Li
- Aerospace Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Mounia Chakik
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
Vasilopoulos V, Pitou M, Fekas I, Papi R, Ouranidis A, Pavlidou E, Patsalas P, Choli-Papadopoulou Τ. Graphene-Wrapped Copper Nanoparticles: An Antimicrobial and Biocompatible Nanomaterial with Valuable Properties for Medical Uses. ACS OMEGA 2020; 5:26329-26334. [PMID: 33110960 PMCID: PMC7581071 DOI: 10.1021/acsomega.0c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The great demand for antibacterial, biocompatible, and easily manufactured nanostructures has led to the design and development of graphene-wrapped copper nanoparticles (CuNPs) supported on Si wafers. In this study, we investigated the antibacterial properties of graphene/CuNPs nanostructures against Gram-positive and Gram-negative bacteria. Additional experiments regarding graphene/CuNPs nanostructures behavior against mouse fibroblast cell line L929 indicated their biocompatibility and consequently render them as model biomaterials for medical uses. Biofunctionalization of graphene/CuNPs nanostructures with a high-molecular-weight protein (green fluorescent protein), which retains its functionality after a "tight binding" on the nanostructure's surface, opens the way for attaching and other proteins, or biomolecules of great biological interest, to prepare novel biomaterials.
Collapse
Affiliation(s)
- Vasileios Vasilopoulos
- Department
of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Pitou
- Department
of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ilias Fekas
- Department
of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Rigini Papi
- Department
of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Andreas Ouranidis
- Department
of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleni Pavlidou
- Department
of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Panos Patsalas
- Department
of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | |
Collapse
|
16
|
Vasiljević J, Demšar A, Leskovšek M, Simončič B, Čelan Korošin N, Jerman I, Šobak M, Žitko G, Van de Velde N, Čolović M. Characterization of Polyamide 6/Multilayer Graphene Nanoplatelet Composite Textile Filaments Obtained Via In Situ Polymerization and Melt Spinning. Polymers (Basel) 2020; 12:polym12081787. [PMID: 32785048 PMCID: PMC7464262 DOI: 10.3390/polym12081787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Studies of the production of fiber-forming polyamide 6 (PA6)/graphene composite material and melt-spun textile fibers are scarce, but research to date reveals that achieving the high dispersion state of graphene is the main challenge to nanocomposite production. Considering the significant progress made in the industrial mass production of graphene nanoplatelets (GnPs), this study explored the feasibility of production of PA6/GnPs composite fibers using the commercially available few-layer GnPs. To this aim, the GnPs were pre-dispersed in molten ε-caprolactam at concentrations equal to 1 and 2 wt %, and incorporated into the PA6 matrix by the in situ water-catalyzed ring-opening polymerization of ε-caprolactam, which was followed by melt spinning. The results showed that the incorporated GnPs did not markedly influence the melting temperature of PA6 but affected the crystallization temperature, fiber bulk structure, crystallinity, and mechanical properties. Furthermore, GnPs increased the PA6 complex viscosity, which resulted in the need to adjust the parameters of melt spinning to enable continuous filament production. Although the incorporation of GnPs did not provide a reinforcing effect of PA6 fibers and reduced fiber tensile properties, the thermal stability of the PA6 fiber increased. The increased melt viscosity and graphene anti-dripping properties postponed melt dripping in the vertical flame spread test, which consequently prolonged burning within the samples.
Collapse
Affiliation(s)
- Jelena Vasiljević
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
- Correspondence: (J.V.); (I.J.); Tel.: +386-1-20-03-200 (J.V.); +386-1-4760-440 (I.J.)
| | - Andrej Demšar
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
| | - Mirjam Leskovšek
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
| | - Barbara Simončič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia; (A.D.); (M.L.); (B.S.)
| | - Nataša Čelan Korošin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
- Correspondence: (J.V.); (I.J.); Tel.: +386-1-20-03-200 (J.V.); +386-1-4760-440 (I.J.)
| | - Matic Šobak
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| | - Gregor Žitko
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| | - Nigel Van de Velde
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| | - Marija Čolović
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (M.Š.); (G.Ž.); (N.V.d.V.); (M.Č.)
| |
Collapse
|
17
|
Tang Z, George A, Winter A, Kaiser D, Neumann C, Weimann T, Turchanin A. Optically Triggered Control of the Charge Carrier Density in Chemically Functionalized Graphene Field Effect Transistors. Chemistry 2020; 26:6473-6478. [PMID: 32150652 PMCID: PMC7318135 DOI: 10.1002/chem.202000431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Indexed: 01/14/2023]
Abstract
Field effect transistors (FETs) based on 2D materials are of great interest for applications in ultrathin electronic and sensing devices. Here we demonstrate the possibility to add optical switchability to graphene FETs (GFET) by functionalizing the graphene channel with optically switchable azobenzene molecules. The azobenzene molecules were incorporated to the GFET channel by building a van der Waals heterostructure with a carbon nanomembrane (CNM), which is used as a molecular interposer to attach the azobenzene molecules. Under exposure with 365 nm and 455 nm light, azobenzene molecules transition between cis and trans molecular conformations, respectively, resulting in a switching of the molecular dipole moment. Thus, the effective electric field acting on the GFET channel is tuned by optical stimulation and the carrier density is modulated.
Collapse
Affiliation(s)
- Zian Tang
- Institute of Physical ChemistryFriedrich Schiller University JenaLessingstraße 1007743JenaGermany
| | - Antony George
- Institute of Physical ChemistryFriedrich Schiller University JenaLessingstraße 1007743JenaGermany
| | - Andreas Winter
- Institute of Physical ChemistryFriedrich Schiller University JenaLessingstraße 1007743JenaGermany
| | - David Kaiser
- Institute of Physical ChemistryFriedrich Schiller University JenaLessingstraße 1007743JenaGermany
| | - Christof Neumann
- Institute of Physical ChemistryFriedrich Schiller University JenaLessingstraße 1007743JenaGermany
| | - Thomas Weimann
- Physikalisch-Technische Bundesanstalt (PTB)Bundesallee 10038116BraunschweigGermany
| | - Andrey Turchanin
- Institute of Physical ChemistryFriedrich Schiller University JenaLessingstraße 1007743JenaGermany
- Jena Center for Soft MatterPhilosophenweg 707743JenaGermany
| |
Collapse
|
18
|
Masoumparast M, Mokhtary M, Kefayati H. Preparation and characterization of polyvinylpyrrolidone/cobalt ferrite functionalized chitosan graphene oxide (CoFe2O4@CS@GO-PVP) nanocomposite. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractCobalt ferrite functionalized chitosan graphene oxide (CoFe2O4@CS@GO) was inserted successfully in polyvinylpyrrolidone (PVP), and its distribution was distinguished through scanning electron microscope (SEM) analysis. Furthermore, the thermal and structural characterizations of the CoFe2O4@CS@GO-PVP nanocomposite were accomplished via the TGA, DSC, FT-IR, and XRD methods. The magnetic characterization of the synthesized nanocomposite was specified by vibrating sample magnetometer (VSM). Results demonstrated the improved thermal stability of pure PVP with the addition of CoFe2O4@CS@GO. The DSC analysis results also showed that the glass transition temperature of 158.9°C–164.8°C was obtained for the CoFe2O4@CS@GO-PVP nanocomposites. The FT-IR spectra indicated that an interaction occurred between CoFe2O4@CS@GO and PVP. Due to a good distribution of CoFe2O4@CS@GO in the PVP matrix, the strong interaction shown by the ~18 cm−1 red shift with good complexation of the carbonyl functional group of PVP with CoFe2O4@CS@GO was observed for the CoFe2O4@CS@GO-PVP (5% w/w) nanocomposite.
Collapse
Affiliation(s)
- Mehrnaz Masoumparast
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht 4147654919, Iran
| | - Masoud Mokhtary
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht 4147654919, Iran
| | - Hassan Kefayati
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht 4147654919, Iran
| |
Collapse
|
19
|
McLaren RL, Laycock CJ, Morgan DJ, Owen GR. Boronic acids for functionalisation of commercial multi-layer graphitic material as an alternative to diazonium salts. NEW J CHEM 2020. [DOI: 10.1039/d0nj04187d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercially obtained plasma-synthesised multi-layer graphene was functionalised with 4-(trifluoromethyl)phenyl groups utilising the corresponding boronic acid providing a safer alternative to diazonium salts.
Collapse
Affiliation(s)
| | | | - David J. Morgan
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Gareth R. Owen
- School of Applied Science
- University of South Wales
- Treforest
- UK
| |
Collapse
|
20
|
Mao JW, Chen ZD, Han DD, Ma JN, Zhang YL, Sun HB. Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties. NANOSCALE 2019; 11:20614-20619. [PMID: 31641724 DOI: 10.1039/c9nr06579b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Moisture-responsive actuators based on graphene oxide (GO) have attracted intensive research interest in recent years. However, current GO actuators suffer from low mechanical strength. Inspired by the robustness of nacre's structure, moisture-responsive actuators with high mechanical strength and self-healing properties were successfully developed based on GO and cellulose fiber (CF) hybrids. The hybrid paper demonstrated significantly improved tensile strength, ∼20 times higher than that of pure GO paper, and self-healing properties. A broken paper can be well cured under moist conditions, and the mechanical properties of the self-healed hybrid paper can still maintain similar tensile strength to the pristine one. After controllable ultraviolet light photoreduction treatment, a hybrid paper with a photoreduction gradient along the normal direction was prepared, which can act as a moisture-responsive actuator. A maximum bending curvature of ∼1.48 cm-1 can be achieved under high relative humidity (RH = 97%). As a proof-of-concept, a butterfly-like actuator that can deform itself with moisture actuation was demonstrated. Our approach may pave a new way for designing robust and self-healable graphene actuators.
Collapse
Affiliation(s)
- Jiang-Wei Mao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhao-Di Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Jia-Nan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China. and State Key Lab of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| |
Collapse
|
21
|
Huey WLB, Goldberger JE. Covalent functionalization of two-dimensional group 14 graphane analogues. Chem Soc Rev 2018; 47:6201-6223. [DOI: 10.1039/c8cs00291f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sp3-hybridized group 14 graphane analogues are a unique family of 2D materials in which every atom requires a terminal ligand for stability.
Collapse
Affiliation(s)
- Warren L. B. Huey
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | | |
Collapse
|
22
|
Shen L, Zhang L, Wang K, Miao L, Lan Q, Jiang K, Lu H, Li M, Li Y, Shen B, Zheng W. Analysis of oxidation degree of graphite oxide and chemical structure of corresponding reduced graphite oxide by selecting different-sized original graphite. RSC Adv 2018; 8:17209-17217. [PMID: 35539258 PMCID: PMC9080418 DOI: 10.1039/c8ra01486h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/04/2018] [Indexed: 12/03/2022] Open
Abstract
The thermal exfoliation and reduction of graphite oxide (GO) is the most commonly used strategy for large-scale preparation of graphene, and the oxidation degree of GO would influence the chemical structure of prepared graphene, thereby affecting its final physical and chemical properties. In addition to serving as the precursor for synthesizing graphene, GO also possesses great potential for various important applications owing to its abundant oxygen-containing groups and hybrid electronic structure. Therefore, systematically studying the influencing factors on the oxidation degree of GO and clarifying the effect of oxidation degree on the corresponding graphene is particularly important. Herein, we have studied the effect of the lateral size of the original graphite on the oxidation degree of GO in order to control the oxidation degree of GO. GOs with different degrees of oxidation were synthesized using a modified Hummers method. The results of X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and Raman spectroscopy revealed that decreased lateral size of the original graphite would lead to increased oxidation degree of GO. Furthermore, the interlayer spacing of the GO samples achieved 0.9–1.0 nm, which indicated that the modified Hummers method could make well oxidized graphite. The corresponding reduced graphite oxide (rGO) was also prepared by low-temperature exfoliation of GO at 140 °C under ambient atmosphere. It was found that a larger lateral size of GO resulted in rGO with fewer oxygen-containing functional groups, but a smaller lateral size of graphite possessed a higher exfoliation degree with a larger specific surface area. More importantly, the relationship between binding energy (EB) of photoelectron of C atom in oxygen-containing groups and the number of oxygen-containing groups in GO and rGO samples was analyzed theoretically. The thermal reduction of GO is the most commonly used strategy for preparation of rGO, and the oxidation degree of GO would influence the chemical structure of prepared rGO, thereby affecting its physical and chemical properties.![]()
Collapse
Affiliation(s)
- Lu Shen
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Lihua Zhang
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Kui Wang
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Lijing Miao
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Qiaofeng Lan
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Kemin Jiang
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Huanming Lu
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Ming Li
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Yong Li
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Bin Shen
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| | - Wenge Zheng
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Sciences (CAS)
- Ningbo
- China
| |
Collapse
|
23
|
Ashwin Karthick N, Thangappan R, Arivanandhan M, Gnanamani A, Jayavel R. A Facile Synthesis of Ferrocene Functionalized Graphene Oxide Nanocomposite for Electrochemical Sensing of Lead. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0744-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|