1
|
Alsulami QA, Hussein MA. A Sequence Study on the Enhanced Charge Transfer of SWCNTs and CuO-Reinforced Poly(o-anisidine-co-o-toluidine) Nanocomposites. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Ringgit G, Siddiquee S, Saallah S, Lal MTM, Naznin MT. Synthesized f-MWCNTs/CS/PB for determination of manganese (Mn2+) in drinking water. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Al-Gethami W, Al-Qasmi N, Ismail SH, Sadek AH. QCM-Based MgFe 2O 4@CaAlg Nanocomposite as a Fast Response Nanosensor for Real-Time Detection of Methylene Blue Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:97. [PMID: 36616006 PMCID: PMC9824339 DOI: 10.3390/nano13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Methylene blue (MB) dye is a common colorant used in numerous industries, particularly the textile industry. When methylene blue is discharged into water bodies without being properly treated, it may seriously damage aquatic and human life. As a result, a variety of methods have been established to remove dyes from aqueous systems. Thanks to their distinguishing features e.g., rapid responsiveness, cost-effectiveness, potential selectivity, portability, and simplicity, the electrochemical methods provided promising techniques. Considering these aspects, a novel quartz crystal microbalance nanosensors based on green synthesized magnesium ferrite nanoparticles (QCM-Based MgFe2O4 NPs) and magnesium ferrite nanoparticles coated alginate hydrogel nanocomposite (QCM-Based MgFe2O4@CaAlg NCs) were designed for real-time detection of high concentrations of MB dye in the aqueous streams at different temperatures. The characterization results of MgFe2O4 NPs and MgFe2O4@CaAlg NCs showed that the MgFe2O4 NPs have synthesized in good crystallinity, spherical shape, and successfully coated by the alginate hydrogel. The performance of the designed QCM-Based MgFe2O4 NPs and MgFe2O4@CaAlg NCs nanosensors were examined by the QCM technique, where the developed nanosensors showed great potential for dealing with continuous feed, very small volumes, high concentrations of MB, and providing an instantaneous response. In addition, the alginate coating offered more significant attributes to MgFe2O4 NPs and enhanced the sensor work toward MB monitoring. The sensitivity of designed nanosensors was evaluated at different MB concentrations (100 mg/L, 400 mg/L, and 800 mg/L), and temperatures (25 °C, 35 °C, and 45 °C). Where a real-time detection of 400 mg/L MB was achieved using the developed sensing platforms at different temperatures within an effective time of about 5 min. The results revealed that increasing the temperature from 25 °C to 45 °C has improved the detection of MB using the MgFe2O4@CaAlg NCs nanosensor and the MgFe2O4@CaAlg NCs nanosensor exhibited high sensitivity for different MB concentrations with more efficiency than the MgFe2O4 NPs nanosensor.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Nano Engineering-Xnem Program, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Nano Engineering-Xnem Program, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
4
|
Al-Gethami W, Alhashmialameer D, Al-Qasmi N, Ismail SH, Sadek AH. Design of a Novel Nanosensors Based on Green Synthesized CoFe 2O 4/Ca-Alginate Nanocomposite-Coated QCM for Rapid Detection of Pb(II) Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3620. [PMID: 36296809 PMCID: PMC9610289 DOI: 10.3390/nano12203620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pb(II) is a significant contaminant that is known to have negative effects on both humans and animals. Recent industrial operations have exacerbated these consequences, and their release of several contaminants, including lead ions, has drawn attention to the potential effects on human health. Therefore, there is a lot of interest in the rapid, accurate, and selective detection of lead ions in various environmental samples. Sensors-based nanomaterials are a significant class among the many tools and methods developed and applied for such purposes. Therefore, a novel green synthesized cobalt ferrite (CoFe2O4) nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite was designed and successfully synthesized for the fabrication of nanoparticles and nanocomposite-coated quartz crystal microbalance (QCM) nanosensors to detect the low concentrations of Pb(II) ions in the aqueous solutions at different temperatures. The structural and morphological properties of synthesized nanoparticles and nanocomposite were characterized using different tools such as X-ray diffraction (XRD), N2 adsorption-desorption isotherm, dynamic light scattering (DLS), zeta potential analyzer (ζ-potential), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The QCM results revealed that the green synthesized CoFe2O4 nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite-coated QCM nanosensors exhibited high sensitivity, stability, and rapid detection of Pb(II) ions in the aqueous solutions at different temperature. The lowest detection limit for Pb(II) ions in the aqueous solutions could reach 125 ng, which resulted in a frequency shift of 27.49 ± 0.81, 23.63 ± 0.90, and 19.57 ± 0.86 Hz (Δf) for the QCM detector coated with green synthesized CoFe2O4 nanoparticles thin films, and 25.85 ± 0.85, 33.87 ± 0.73, and 6.87 ± 0.08 Hz (Δf) for the QCM detector coated with CoFe2O4/Ca-Alg nanocomposite thin films in a real-time of about 11, 13, and 13 min at 25 °C, 35 °C, and 45 °C, respectively. In addition, the resonance frequency change results showed the superiority of functionalized CoFe2O4/Ca-alginate nanocomposite coated QCM nanosensor over CoFe2O4 nanoparticles towards Pb(II) ions detecting, which attributed to the beneficial properties of alginate biopolymer.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Dalal Alhashmialameer
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
5
|
Al-Qasmi N, Al-Gethami W, Alhashmialameer D, Ismail SH, Sadek AH. Evaluation of Green-Synthesized Cuprospinel Nanoparticles as a Nanosensor for Detection of Low-Concentration Cd(II) Ion in the Aqueous Solutions by the Quartz Crystal Microbalance Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6240. [PMID: 36143550 PMCID: PMC9502900 DOI: 10.3390/ma15186240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Cd(II) heavy metal is an extremely dangerous hazardous material for both humans and the environment. Its high toxicity is the reason behind the examination of new techniques for detecting very small concentrations of Cd(II). Recently, Quartz Crystal Microbalance (QCM) has been one of the techniques that have been widely used to detect trace heavy metal ions in solutions. It is a simple, inexpensive, portable, and sensitive gravimetric sensor due to its quality sensitivity lowest to nanograms. In this work, Cuprospinel nanoparticles were synthesized through the green synthesis approach using Psidium guajava L. leaf extract as a reducing agent, which is the first scientific description to report the preparation of these nanoparticles by this method. Subsequently, the synthesized nanoparticles were subjected to the characterization of their crystallinity, structure, and morphology by the XRD, N2 adsorption-desorption, zeta potential, DLS, AFM, SEM, and TEM analyzers. The prepared Cuprospinel nanoparticles were evaluated as a nanosensor for the detection of the very low concentration of Cd(II) ions in aqueous solutions using the QCM technique. The results of the characterization proved that the Cuprospinel nanoparticles have formed in the nanoscale with sub-spherical shapes and particles size ranging from 20 to 80 nm. The BET surface area and pore size analysis revealed that the synthesized Cuprospinel nanoparticles possess a surface area of 47.3 m2/g, an average pore size of 1.5 nm, and a micropore volume of 0.064 cc/g. The QCM results demonstrated the success of the Cuprospinel nanoparticles sensor in detecting the tiny amounts of Cd(II) ions in the aqueous solutions with concentrations reaching about 3.6 ng/L.
Collapse
Affiliation(s)
- Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Dalal Alhashmialameer
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
6
|
AL-Refai HH, Ganash AA, Hussein MA. Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
AL-Refai HH, Ganash AA, Hussein MA. Polythiophene-based MWCNTCOOH@RGO nanocomposites as a modified glassy carbon electrode for the electrochemical detection of Hg(II) ions. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01864-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|