1
|
Watt AP, Lefevre C, Wong CS, Nicholas KR, Sharp JA. Insulin regulates human mammosphere development and function. Cell Tissue Res 2021; 384:333-352. [PMID: 33439347 DOI: 10.1007/s00441-020-03360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes. Microarray analysis of these mammospheres revealed an up-regulation of differentiation, cell-cell junctions, and cytoskeleton organisation functions, suggesting mammosphere formation may be regulated through ILK signalling. Comparison of insulin and IGF-1 effects on mammosphere signalling showed that although IGF-1 could induce spherical structures, the cells did not polarise correctly as shown by the absence of up-regulation of polarisation genes and did not induce the expression of milk protein genes. This study demonstrated a major role for insulin in mammary acinar development for secretory differentiation and function indicating the potential for reduced lactational efficiency in women with obesity and gestational diabetes.
Collapse
Affiliation(s)
- Ashalyn P Watt
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia.
| | - Christophe Lefevre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, 3000, Melbourne, Australia.,Peter MacCallum Cancer Research Institute, East Melbourne, 3002, Australia
| | - Cynthia S Wong
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Kevin R Nicholas
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| |
Collapse
|
2
|
The Mechanical Microenvironment in Breast Cancer. Cancers (Basel) 2020; 12:cancers12061452. [PMID: 32503141 PMCID: PMC7352870 DOI: 10.3390/cancers12061452] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
Mechanotransduction is the interpretation of physical cues by cells through mechanosensation mechanisms that elegantly translate mechanical stimuli into biochemical signaling pathways. While mechanical stress and their resulting cellular responses occur in normal physiologic contexts, there are a variety of cancer-associated physical cues present in the tumor microenvironment that are pathological in breast cancer. Mechanistic in vitro data and in vivo evidence currently support three mechanical stressors as mechanical modifiers in breast cancer that will be the focus of this review: stiffness, interstitial fluid pressure, and solid stress. Increases in stiffness, interstitial fluid pressure, and solid stress are thought to promote malignant phenotypes in normal breast epithelial cells, as well as exacerbate malignant phenotypes in breast cancer cells.
Collapse
|
3
|
Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol 2018; 73:71-81. [DOI: 10.1016/j.semcdb.2017.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|
4
|
Giménez A, Uriarte JJ, Vieyra J, Navajas D, Alcaraz J. Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy. Microsc Res Tech 2016; 80:85-96. [PMID: 27535539 DOI: 10.1002/jemt.22740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022]
Abstract
The increasing recognition that tissue elasticity is an important regulator of cell behavior in normal and pathologic conditions such as fibrosis and cancer has driven the development of cell culture substrata with tunable elasticity. Such development has urged the need to quantify the elastic properties of these cell culture substrata particularly at the nanometer scale, since this is the relevant length scale involved in cell-extracellular matrix (ECM) mechanical interactions. To address this need, we have exploited the versatility of atomic force microscopy to quantify the elastic properties of a variety of cell culture substrata used in mechanobiology studies, including floating collagen gels, ECM-coated polyacrylamide gels, and decellularized tissue sections. In this review we summarize major findings in this field from our group within the context of the state-of-the-art in the field, and provide a critical discussion on the applicability and complementarity of currently available cell culture assays with tunable elasticity. In addition, we briefly describe how the limitations of these assays provide opportunities for future research, which is expected to continue expanding our understanding of the mechanobiological aspects that support both normal and diseased conditions. Microsc. Res. Tech. 80:85-96, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alícia Giménez
- Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Juan José Uriarte
- Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Joan Vieyra
- Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, 08036, Spain.,Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, 08028, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, 28029, Spain
| | - Jordi Alcaraz
- Unitat de Biofísica i Bioenginyeria, Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, 08036, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, 28029, Spain
| |
Collapse
|
5
|
Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng Transl Med 2016; 1:63-81. [PMID: 29313007 PMCID: PMC5689508 DOI: 10.1002/btm2.10013] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
The implementation of microfluidic devices within life sciences has furthered the possibilities of both academic and industrial applications such as rapid genome sequencing, predictive drug studies, and single cell manipulation. In contrast to the preferred two‐dimensional cell‐based screening, three‐dimensional (3D) systems have more in vivo relevance as well as ability to perform as a predictive tool for the success or failure of a drug screening campaign. 3D cell culture has shown an adaptive response to the recent advancements in microfluidic technologies which has allowed better control over spheroid sizes and subsequent drug screening studies. In this review, we highlight the most significant developments in the field of microfluidic 3D culture over the past half‐decade with a special focus on their benefits and challenges down the lane. With the newer technologies emerging, implementation of microfluidic 3D culture systems into the drug discovery pipeline is right around the bend.
Collapse
Affiliation(s)
- Nilesh Gupta
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | - Jeffrey R Liu
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Deepak E Solomon
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Vivek Gupta
- School of Pharmacy Keck Graduate Institute Claremont CA 91711
| |
Collapse
|
6
|
Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 2012; 18:240-9. [PMID: 23073387 DOI: 10.1016/j.drudis.2012.10.003] [Citation(s) in RCA: 829] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/14/2012] [Accepted: 10/08/2012] [Indexed: 02/07/2023]
Abstract
Cells, grown as monolayers (2D models), are routinely used as initial model systems for evaluating the effectiveness and safety of libraries of molecules with potential as therapeutic drugs. While this initial screening precedes preclinical animal studies before advancing to human clinical trials, cultured cells frequently determine the initial, yet crucial, 'stop/go' decisions on the progressing of the development of a drug. Growing cells as three-dimensional (3D) models more analogous to their existence in vivo, for example, akin to a tumour, and possibly co-cultured with other cells and cellular components that naturally occur in their microenvironment may be more clinically relevant. Here, in the context of anti-cancer drug screening, we review 2D and 3D culture approaches, consider the strengths and relevance of each method.
Collapse
Affiliation(s)
- Susan Breslin
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
7
|
Acerbi I, Luque T, Giménez A, Puig M, Reguart N, Farré R, Navajas D, Alcaraz J. Integrin-specific mechanoresponses to compression and extension probed by cylindrical flat-ended AFM tips in lung cells. PLoS One 2012; 7:e32261. [PMID: 22384196 PMCID: PMC3285695 DOI: 10.1371/journal.pone.0032261] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/24/2012] [Indexed: 01/08/2023] Open
Abstract
Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm(2) cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca(2+) signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis.
Collapse
Affiliation(s)
- Irene Acerbi
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Laboratorio di Tecnologie Biomediche, Dipartimento di Bioingegneria, Politecnico di Milano, Milano, Italy
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
| | - Tomás Luque
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
| | - Alícia Giménez
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Marta Puig
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noemi Reguart
- CIBER de Enfermedades Respiratorias (CIBERES), Bunyola, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Bunyola, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Bunyola, Spain
| | - Jordi Alcaraz
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Bunyola, Spain
| |
Collapse
|
8
|
Alcaraz J, Mori H, Ghajar CM, Brownfield D, Galgoczy R, Bissell MJ. Collective epithelial cell invasion overcomes mechanical barriers of collagenous extracellular matrix by a narrow tube-like geometry and MMP14-dependent local softening. Integr Biol (Camb) 2011; 3:1153-66. [PMID: 21993836 DOI: 10.1039/c1ib00073j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Collective cell invasion (CCI) through interstitial collagenous extracellular matrix (ECM) is crucial to the initial stages of branching morphogenesis, and a hallmark of tissue repair and dissemination of certain tumors. The collagenous ECM acts as a mechanical barrier against CCI. However, the physical nature of this barrier and how it is overcome by cells remains incompletely understood. To address these questions, we performed theoretical and experimental analysis of mammary epithelial branching morphogenesis in 3D type I collagen (collagen-I) gels. We found that the mechanical resistance of collagen-I is largely due to its elastic rather than its viscous properties. We also identified two strategies utilized by mammary epithelial cells that can independently minimize ECM mechanical resistance during CCI. First, cells adopt a narrow tube-like geometry during invasion, which minimizes the elastic opposition from the ECM as revealed by theoretical modeling of the most frequent invasive shapes and sizes. Second, the stiffness of the collagenous ECM is reduced at invasive fronts due to its degradation by matrix metalloproteinases (MMPs), as indicated by direct measurements of collagen-I microelasticity by atomic force microscopy. Molecular techniques further specified that the membrane-bound MMP14 mediates degradation of collagen-I at invasive fronts. Thus, our findings reveal that MMP14 is necessary to efficiently reduce the physical restraints imposed by collagen-I during branching morphogenesis, and help our overall understanding of how forces are balanced between cells and their surrounding ECM to maintain collective geometry and mechanical stability during CCI.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977R225A, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
9
|
McCave EJ, Cass CAP, Burg KJL, Booth BW. The normal microenvironment directs mammary gland development. J Mammary Gland Biol Neoplasia 2010; 15:291-9. [PMID: 20824492 DOI: 10.1007/s10911-010-9190-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/23/2010] [Indexed: 11/29/2022] Open
Abstract
Normal development of the mammary gland is a multidimensional process that is controlled in part by its mammary microenvironment. The mammary microenvironment is a defined location that encompasses mammary somatic stem cells, neighboring signaling cells, the basement membrane and extracellular matrix, mammary fibroblasts as well as the intercellular signals produced and received by these cells. These dynamic signals take numerous forms including growth factors, steroids, cell-cell or cell-basement membrane physical interactions. Cellular growth and differentiation of the mammary gland throughout the developmental stages are regulated by changes in these signals and interactions. The purpose of this review is to summarize current information and research regarding the role of the mammary microenvironment during normal glandular development.
Collapse
Affiliation(s)
- Erin J McCave
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
10
|
Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 2009; 28:167-76. [PMID: 19160017 DOI: 10.1007/s10555-008-9178-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra--to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
Collapse
Affiliation(s)
- Ren Xu
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977-225A, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
11
|
Miller DS, Chirayil S, Ball HL, Luebke KJ. Manipulating cell migration and proliferation with a light-activated polypeptide. Chembiochem 2009; 10:577-84. [PMID: 19165838 DOI: 10.1002/cbic.200800679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Remote control of cells: A polypeptide has been made that stimulates proliferation and migration of cells upon photochemical activation. This light-activated polypeptide enables spatially defined control of cell populations at the scale of tissue organization; this is accomplished without physically contacting the cells or modifying their substrate. Polypeptide growth and differentiation factors modulate a wide variety of cell behaviors and can be used to manipulate cells in vitro for tissue engineering and basic studies of cell biology. To emulate in vitro the spatial aspect of growth factor function, new methods are needed to generate defined spatial gradients of activity. Polypeptide factors that are engineered to be activated with light provide a method for creating concentration gradients with the fine precision in space and time with which light can be directed. As a first test of this approach, we have chemically synthesized a polypeptide with the sequence of epidermal growth factor in which a critical glutamate is "caged" with a photoremovable group. Photolysis of this polypeptide afforded maximal mitogenic and chemokinetic activity at concentrations at which the caged factor was inactive. Spatially resolved photolysis of the factor resulted in spatial patterning of fibroblasts. This system will be useful for ex vivo tissue engineering and for investigating the interactions of cells with their matrix and the role of chemical gradients in biological pattern formation.
Collapse
Affiliation(s)
- Danielle S Miller
- Division of Translational Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9185, USA
| | | | | | | |
Collapse
|
12
|
Alcaraz J, Xu R, Mori H, Nelson CM, Mroue R, Spencer VA, Brownfield D, Radisky DC, Bustamante C, Bissell MJ. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J 2008; 27:2829-38. [PMID: 18843297 PMCID: PMC2569873 DOI: 10.1038/emboj.2008.206] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 09/15/2008] [Indexed: 01/08/2023] Open
Abstract
In the mammary gland, epithelial cells are embedded in a ‘soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for β-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of β-casein expression required both laminin signalling and a ‘soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of β-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues' unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 2008; 94:4984-95. [PMID: 18326659 DOI: 10.1529/biophysj.107.116863] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.
Collapse
|
14
|
Bissell MJ. Architecture Is the Message: The role of extracellular matrix and 3-D structure in tissue-specific gene expression and breast cancer. THE PEZCOLLER FOUNDATION JOURNAL : NEWS FROM THE PEZCOLLER FOUNDATION WORLD 2007; 16:2-17. [PMID: 21132084 PMCID: PMC2995891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
I was honored to deliver the 2(nd) Stanley Korsmeyer memorial Lecture on May 9(th), 2007 in Padova, Italy. Stan will always occupy a very special place in my heart: I admired him greatly not only for his magnificent and original science but also for his integrity and his grace. This review, which summarizes my laboratory's contribution to cell and cancer biology in the last 30 years, is dedicated to Stan's memory, and to Elaine Fuchs, one of my most cherished friends without whose support this work would not have gained the degree of recognition it enjoys today. My thanks also to the Pezcoller Foundation for making that week in May, 2007 one of the most memorable in my scientific life.
Collapse
|
15
|
Holland MS, Stasko JA, Holland RE. Influence of extracellular matrix on bovine mammary gland progenitor cell growth and differentiation. Am J Vet Res 2007; 68:476-82. [PMID: 17472446 DOI: 10.2460/ajvr.68.5.476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To examine the impact of simple versus complex extracellular matrices (ECMs) on morphologic development and differentiation of bovine mammary gland progenitor cells (BMGPCs). SAMPLE POPULATION Cultures of BMGPCs. PROCEDURES BMGPCs were grown on the following extracellular matrices: collagen I, collagen IV, laminin, and a commercially available gelatinous protein mixture. Cells were examined with light microscopy and transmission electron microscopy. RESULTS Formation of organoids and production of the gap junction protein, connexin 43, were the criteria for BMGPC differentiation. The BMGPCs formed a 2-dimensional monolayer when grown on plastic, laminin, collagen I, or collagen IV. These cells did not have a network of cells forming epithelial organoids resembling a honeycomb. However, they did produce gap junction proteins. When BMGPCs were cultured on the commercially available gelatinous protein mixture, 3-dimensional epithelial organoids resembling a honeycomb formed and connexin 43 was produced. The thickness of the commercially available gelatinous protein mixture also regulated cell shape reorganization. Cell density affected the formation organoid networks and the rate at which monolayers reached confluency. CONCLUSIONS AND CLINICAL RELEVANCE When plated on a commercially available gelatinous protein mixture, the BMGPC culture system allowed us to simulate, in vitro, the interaction between epithelial cells in varying stages of differentiation and the microenvironment. Thus, a heterogeneous ECM, such as the commercially available gelatinous protein mixture, is more physiologically relevant in providing a microenvironment for BMGPC lineage pathway differentiation to mimic an in vivo environment. In contrast, BMGPCs grown on homogenous ECM, although able to produce connexin 43, are unable to form organoids.
Collapse
Affiliation(s)
- Margo S Holland
- Department of Comparative Medicine, University of Tennessee, Knoxville, TN 37996-4543, USA
| | | | | |
Collapse
|