1
|
Taheri G, Habibi M. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method. Comput Biol Med 2024; 171:108234. [PMID: 38430742 DOI: 10.1016/j.compbiomed.2024.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Breast cancer has become a severe public health concern and one of the leading causes of cancer-related death in women worldwide. Several genes and mutations in these genes linked to breast cancer have been identified using sophisticated techniques, despite the fact that the exact cause of breast cancer is still unknown. A commonly used feature for identifying driver mutations is the recurrence of a mutation in patients. Nevertheless, some mutations are more likely to occur than others for various reasons. Sequencing analysis has shown that cancer-driving genes operate across complex networks, often with mutations appearing in a modular pattern. In this work, as a retrospective study, we used TCGA data, which is gathered from breast cancer patients. We introduced a new machine-learning approach to examine gene functionality in networks derived from mutation associations, gene-gene interactions, and graph clustering for breast cancer analysis. These networks have uncovered crucial biological components in critical pathways, particularly those that exhibit low-frequency mutations. The statistical strength of the clinical study is significantly boosted by evaluating the network as a whole instead of just single gene effects. Our method successfully identified essential driver genes with diverse mutation frequencies. We then explored the functions of these potential driver genes and their related pathways. By uncovering low-frequency genes, we shed light on understudied pathways associated with breast cancer. Additionally, we present a novel Monte Carlo-based algorithm to identify driver modules in breast cancer. Our findings highlight the significance and role of these modules in critical signaling pathways in breast cancer, providing a comprehensive understanding of breast cancer development. Materials and implementations are available at: [https://github.com/MahnazHabibi/BreastCancer].
Collapse
Affiliation(s)
- Golnaz Taheri
- Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden; Science for Life Laboratory, Stockholm, Sweden.
| | - Mahnaz Habibi
- Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| |
Collapse
|
2
|
Eldehna WM, Al-Ansary GH, Al-Warhi T, Jaballah MY, Elaasser M, Rashed M. Identification of novel ureido benzothiophenes as dual VEGFR-2/EGFR anticancer agents. Bioorg Chem 2024; 143:107037. [PMID: 38134521 DOI: 10.1016/j.bioorg.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Presently, dual-targeting by a single small molecule stands out as a fruitful cancer-fighting strategy. Joining the global effort to fight cancer, a leading cause of death worldwide, we report in this study a novel set for benzothiophene-based aryl urea derivatives as potential anti-proliferative candidates endowed with dual VEGFR-2/EGFR inhibitory activities. The prepared ureido benzothiophenes 6a-r have been evaluated for their anticancer action on a panel of tumor cell lines, namely PanC-1, MCF-7, and HepG2 cells. Most newly synthesized benzo[b]thiophene ureas disclosed effective cytotoxic activities against the examined cancer cell lines. In particular, compound 6q, with an appended 4-trifluoromethoxy group on the terminal phenyl ring, exhibited the most significant cytotoxic activity in MCF-7 with IC50 3.86 ± 0.72 ug/mL; IC50 of 3.65 ± 0.18 ug/ml in PanC-1 cell line and an IC50 of 4.78 ± 0.06 ug/ml in HepG2. After that, derivatives that exhibited the most potent cytotoxic activities (6g, 6j, 6q, and 6r) were further evaluated as VEGFR-2 and EGFR inhibitors. Fortunately, they displayed low nanomolar IC50 values against both enzymes, where compound 6q emerged to possess superior inhibitory effects towards both EGFR and VEGFR-2 with IC50 46.6 nM and 11.3 nM simultaneously compared to the reference medications Erlotinib and Sorafenib, respectively. The docked structure of 6q within the catalytic region of VEGFR-2 and EGFR kinases was acquired and studied so that we could investigate potential binding mechanisms for the target ureido benzothiophenes. Hence, the benzothiophene-based aryl urea scaffold has great potential for advancing the development of highly effective dual inhibitors targeting both EGFR and VEGFR-2, which can serve as effective candidates for anticancer therapy.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Mahmoud Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
3
|
Tafti A, Shojaei S, Zali H, Karima S, Mohammadi-Yeganeh S, Mondanizadeh M. A systems biology approach and in vitro experiment indicated Rapamycin targets key cancer and cell cycle-related genes and miRNAs in triple-negative breast cancer cells. Mol Carcinog 2023; 62:1960-1973. [PMID: 37787375 DOI: 10.1002/mc.23628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/29/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023]
Abstract
An anticancer drug known as Rapamycin acts by inhibiting the mammalian target of the Rapamycin pathway. This agent has recently been investigated for its potential therapeutic benefits in sensitizing drug-resistant breast cancer (BC) treatment. The molecular mechanism underlying these effects, however, is still a mystery. Using a systems biology method and in vitro experiment, this study sought to discover essential genes and microRNAs (miRNAs) targeted by Rapamycin in triple-negative BC (TNBC) cells to aid prospective new medications with less adverse effects in BC treatment. We developed the transcription factor-miRNA-gene and protein-protein interaction networks using the freely accessible microarray data sets. FANMOD and MCODE were utilized to identify critical regulatory motifs, clusters, and seeds. Then, functional enrichment analyses were conducted. Using topological analysis and motif detection, the most important genes and miRNAs were discovered. We used quantitative real-time polymerase chain reaction (qRT-PCR) to examine the effect of Rapamycin on the expression of the selected genes and miRNAs to verify our findings. We performed flow cytometry to investigate Rapamycin's impact on cell cycle and apoptosis. Furthermore, wound healing and migration assays were done. Three downregulated (PTGS2, EGFR, VEGFA) and three upregulated (c-MYC, MAPK1, PIK3R1) genes were chosen as candidates for additional experimental verification. There were also three upregulated miRNAs (miR-92a, miR-16, miR-20a) and three downregulated miRNAs (miR-146a, miR-145, miR-27a) among the six selected miRNAs. The qRT-PCR findings in MDA-MB-231 cells indicated that c-MYC, MAPK1, PIK3R1, miR-92a, miR-16, and miR-20a expression levels were considerably elevated following Rapamycin treatment, whereas PTGS2, EGFR, VEGFA, miR-146a, and miR-145 expression levels were dramatically lowered (p < 0.05). These genes are engaged in cancer pathways, transcriptional dysregulation in cancer, and cell cycle, according to the top pathway enrichment findings. Migration and wound healing abilities of the cells declined after Rapamycin treatment, and the number of apoptotic cells increased. We demonstrated that Rapamycin suppresses cell migration and metastasis in the TNBC cell line. In addition, our data indicated that Rapamycin induces apoptosis in this cell line. The discovered vital genes and miRNAs affected by Rapamycin are anticipated to have crucial roles in the pathogenesis of TNBC and its therapeutic resistance.
Collapse
Affiliation(s)
- Ali Tafti
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Sikandar SS, Gulati GS, Antony J, Fetter I, Kuo AH, Ho WHD, Haro-Acosta V, Das S, Steen CB, Pereira TA, Qian D, Beachy PA, Dirbas FM, Red-Horse K, Rabbitts TH, Thiery JP, Newman AM, Clarke MF. Identification of a minority population of LMO2 + breast cancer cells that integrate into the vasculature and initiate metastasis. SCIENCE ADVANCES 2022; 8:eabm3548. [PMID: 36351009 PMCID: PMC10939096 DOI: 10.1126/sciadv.abm3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Shaheen S. Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gunsagar S. Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Isobel Fetter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angera H. Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - William Hai Dang Ho
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Veronica Haro-Acosta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Soumyashree Das
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chloé B. Steen
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Philip A. Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Frederick M. Dirbas
- Department of Surgery, Stanford Cancer Institute, Stanford University School of Medicine, 875 Blake Wilbur Drive, Rm CC2235, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Terence H. Rabbitts
- Division of Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Jean Paul Thiery
- Guangzhou Laboratory, International Biological Island, Guangzhou, Guangdong 510005, China
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Exercise and Prebiotic Fiber Provide Gut Microbiota-Driven Benefit in a Survivor to Germ-Free Mouse Translational Model of Breast Cancer. Cancers (Basel) 2022; 14:cancers14112722. [PMID: 35681702 PMCID: PMC9179252 DOI: 10.3390/cancers14112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women worldwide. In recent years, the community of microbes that inhabit the intestinal tract, called the gut microbiota, has been shown to influence patient response to several cancer therapies. On the other hand, treatments such as chemotherapy can disrupt the resident gut microbiota and potentially contribute to poor health outcomes. Strategies to improve the composition of the gut microbiota include dietary and exercise interventions. While diet and exercise are already established as important for breast cancer prevention, during treatment, and for reducing recurrence, little is known about the impact of these factors on the gut microbiota in the context of breast cancer. Therefore, our aim was to examine the impact of exercise and diet on the gut microbiota in breast cancer. Our findings indicate that exercise and prebiotic fiber supplementation may provide benefits to individuals with breast cancer through advantageous gut microbial changes. Our findings of a potential adjuvant of exercise and prebiotics should inspire further mechanistic and clinical investigations. Abstract The gut microbiota plays a role in shaping overall host health and response to several cancer treatments. Factors, such as diet, exercise, and chemotherapy, can alter the gut microbiota. In the present study, the Alberta Cancer Exercise (ACE) program was investigated as a strategy to favorably modify the gut microbiota of breast cancer survivors who had received chemotherapy. Subsequently, the ability of post-exercise gut microbiota, alone or with prebiotic fiber supplementation, to influence breast cancer outcomes was interrogated using fecal microbiota transplant (FMT) in germ-free mice. While cancer survivors experienced little gut microbial change following ACE, in the mice, tumor volume trended consistently lower over time in mice colonized with post-exercise compared to pre-exercise microbiota with significant differences on days 16 and 22. Beta diversity analysis revealed that EO771 breast tumor cell injection and Paclitaxel chemotherapy altered the gut microbial communities in mice. Enrichment of potentially protective microbes was found in post-exercise microbiota groups. Tumors of mice colonized with post-exercise microbiota exhibited more favorable cytokine profiles, including decreased vascular endothelial growth factor (VEGF) levels. Beneficial microbial and molecular outcomes were augmented with prebiotic supplementation. Exercise and prebiotic fiber demonstrated adjuvant action, potentially via an enhanced anti-tumor immune response modulated by advantageous gut microbial shifts.
Collapse
|
6
|
Al Kawas H, Saaid I, Jank P, Westhoff CC, Denkert C, Pross T, Weiler KBS, Karsten MM. How VEGF-A and its splice variants affect breast cancer development - clinical implications. Cell Oncol (Dordr) 2022; 45:227-239. [PMID: 35303290 PMCID: PMC9050780 DOI: 10.1007/s13402-022-00665-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Altered expression levels and structural variations in the vascular endothelial growth factor (VEGF) have been found to play important roles in cancer development and to be associated with the overall survival and therapy response of cancer patients. Particularly VEGF-A and its splice variants have been found to affect physiological and pathological angiogenic processes, including tumor angiogenesis, correlating with tumor progression, mostly caused by overexpression. This review focuses on the expression and impact of VEGF-A splice variants under physiologic conditions and in tumors and, in particular, the distribution and role of isoform VEGF165b in breast cancer. CONCLUSIONS AND PERSPECTIVES Many publications already highlighted the importance of VEGF-A and its splice variants in tumor therapy, especially in breast cancer, which are summarized in this review. Furthermore, we were able to demonstrate that cytoplasmatic VEGFA/165b expression is higher in invasive breast cancer tumor cells than in normal tissues or stroma. These examples show that the detection of VEGF splice variants can be performed also on the protein level in formalin fixed tissues. Although no quantitative conclusions can be drawn, these results may be the starting point for further studies at a quantitative level, which can be a major step towards the design of targeted antibody-based (breast) cancer therapies.
Collapse
Affiliation(s)
- Hivin Al Kawas
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Inas Saaid
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | | | - Carsten Denkert
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Therese Pross
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Maria Margarete Karsten
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Okikawa S, Morine Y, Saito Y, Yamada S, Tokuda K, Teraoku H, Miyazaki K, Yamashita S, Ikemoto T, Imura S, Shimada M. Inhibition of the VEGF signaling pathway attenuates tumor‑associated macrophage activity in liver cancer. Oncol Rep 2022; 47:71. [PMID: 35169858 PMCID: PMC8867251 DOI: 10.3892/or.2022.8282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor-associated macrophage (TAMs) are paramount for tumor progression and immune tolerance in the tumor microenvironment of various types of cancer, including liver cancer. The aim of the present study was to investigate the effect of vascular endothelial growth factor (VEGF) inhibition on TAM polarization and function during their interactions with macrophages and liver cancer cells. TAMs were induced by culturing M0 macrophages with cancer cell-conditioned medium. TAMs cultured with cancer cell-conditioned medium and vascular endothelial growth factor (VEGF) inhibitor were defined as modified TAMs, and the expression levels of TAM-associated markers and VEGF receptor 2 were evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of TAMs and modified TAMs on cancer cell proliferation and migration were investigated using conditioned medium. Programmed death-ligand 1 (PD-L1) mRNA expression in modified TAMs and cancer cells cultured in modified TAM-conditioned medium (TAM-CM) for 48 h was examined using RT-qPCR. In order to investigate signaling pathways in macrophages, western blot analysis was performed. CD163 and CD206 and M2 macrophage marker expression was upregulated in TAMs and modified TAMs. Modified TAM-CM exhibited a decreased ability to promote cancer cell proliferation and migration in comparison with the use of TAM-CM. The VEGF concentration was significantly higher in the TAMs than in M0 macrophages; however, the modified TAMs displayed a significantly lower VEGF secretion than TAMs. PD-L1 expression was decreased in modified TAMs as compared with TAMs. Western blot analysis revealed that the Akt/mTOR signaling pathway was significantly suppressed in the modified TAMs compared with TAMs. It was observed that TAMs cultured in a VEGF-depleted environment displayed lower secretion levels of cytokines involved in tumor progression and a decreased immune tolerance-inducing ability. On the whole, the results of the present study suggested that VEGF inhibition in TAMs may be a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Shohei Okikawa
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Yu Saito
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Kazunori Tokuda
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Hiroki Teraoku
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Katsuki Miyazaki
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Shoko Yamashita
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Satoru Imura
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8503, Japan
| |
Collapse
|
8
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
9
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacology-Based Dissection of the Comprehensive Molecular Mechanisms of the Herbal Prescription FDY003 Against Estrogen Receptor-Positive Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211044377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor-positive breast cancer (ERPBC) is the commonest subtype of breast cancer, with a high prevalence, incidence, and mortality. Herbal drugs are increasingly being used to treat ERPBC, although their mechanisms of action are not fully understood. Therefore, in this study, we aimed to analyze the therapeutic properties of FDY003, a herbal anti-ERPBC prescription, using a network pharmacology approach. FDY003 decreased the viability of human ERPBC cells and sensitized them to tamoxifen, an endocrine drug that is widely used in the treatment of ERPBC. The network pharmacology analysis revealed 18 pharmacologically active components in FDY003 that may interact with and regulate 66 therapeutic targets. The enriched gene ontology terms for the FDY003 targets were associated with the modulation of cell survival and death, cell proliferation and growth arrest, and estrogen-associated cellular processes. Analysis of the pathway enrichment of the targets showed that FDY003 may target a variety of ERPBC-associated pathways, including the PIK3-Akt, focal adhesion, MAPK, and estrogen pathways. Overall, these data provide a comprehensive mechanistic insight into the anti-ERPBC activity of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | | | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
10
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
11
|
Ni H, Guo M, Zhang X, Jiang L, Tan S, Yuan J, Cui H, Min Y, Zhang J, Schlisio S, Ma C, Liao W, Nister M, Chen C, Li S, Li N. VEGFR2 inhibition hampers breast cancer cell proliferation via enhanced mitochondrial biogenesis. Cancer Biol Med 2021; 18:139-154. [PMID: 33628590 PMCID: PMC7877175 DOI: 10.20892/j.issn.2095-3941.2020.0151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: Vascular endothelial growth factor (VEGF), apart from its predominant roles in angiogenesis, can enhance cancer cell proliferation, but its mechanisms remain elusive. The purpose of the present study was therefore to identify how VEGF regulates cancer cell proliferation. Methods: VEGF effects on cancer cell proliferation were investigated with the VEGF receptor 2 inhibitor, Ki8751, and the breast cancer cell lines, MCF-7 and MDA-MB-231, using flow cytometry, mass spectrometry, immunoblotting, and confocal microscopy. Data were analyzed using one-way analysis of variance followed by Tukey’s multiple comparison test. Results: VEGF blockade by Ki8751 significantly reduced cancer cell proliferation, and enhanced breast cancer cell apoptosis. Mass spectrometric analyses revealed that Ki8751 treatment significantly upregulated the expression of mitochondrial proteins, suggesting the involvement of mitochondrial biogenesis. Confocal microscopy and flow cytometric analyses showed that Ki8751 treatment robustly increased the mitochondrial masses of both cancer cells, induced endomitosis, and arrested cancer cells in the high aneuploid phase. VEGFR2 knockdown by shRNAs showed similar effects to those of Ki8751, confirming the specificity of Ki8751 treatment. Enhanced mitochondrial biogenesis increased mitochondrial oxidative phosphorylation and stimulated reactive oxygen species (ROS) production, which induced cancer cell apoptosis. Furthermore, Ki8751 treatment downregulated the phosphorylation of Akt and PGC1α, and translocated PGC1α into the nucleus. The PGC1α alterations increased mitochondrial transcription factor A (TFAM) expression and subsequently increased mitochondrial biogenesis. Conclusions: VEGF enhances cancer cell proliferation by decreasing Akt-PGC1α-TFAM signaling-mediated mitochondrial biogenesis, ROS production, and cell apoptosis. These findings suggested the anticancer potential of Ki8751 via increased mitochondrial biogenesis and ROS production.
Collapse
Affiliation(s)
- Hao Ni
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Karolinska Institutet, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm 17176, Sweden
| | - Min Guo
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Solna 17164, Sweden
| | - Xuepei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lei Jiang
- Karolinska Institutet, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm 17176, Sweden.,Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Tan
- Karolinska Institutet, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm 17176, Sweden
| | - Juan Yuan
- Department of Cell and Molecular Biology, Stockholm 17177, Sweden
| | - HuanhuanL Cui
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Solna 17164, Sweden
| | - Yanan Min
- Karolinska Institutet, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm 17176, Sweden.,Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Susanne Schlisio
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm 17177, Sweden
| | - Chunhong Ma
- Shandong University Cheeloo Medical College, School of Basic Medicine, Department of Immunology, Jinan 250000, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Monica Nister
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Solna 17164, Sweden
| | - Chunlin Chen
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuijie Li
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm 17177, Sweden
| | - Nailin Li
- Karolinska Institutet, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm 17176, Sweden
| |
Collapse
|
12
|
Abdi S, Montazeri V, Garjani A, Shayanfar A, Pirouzpanah S. Coenzyme Q10 in association with metabolism-related AMPK/PFKFB3 and angiogenic VEGF/VEGFR2 genes in breast cancer patients. Mol Biol Rep 2020; 47:2459-2473. [DOI: 10.1007/s11033-020-05310-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/07/2020] [Indexed: 11/28/2022]
|
13
|
Deng Z, Chai J, Zeng Q, Zhang B, Ye T, Chen X, Xu X. The anticancer properties and mechanism of action of tablysin-15, the RGD-containing disintegrin, in breast cancer cells. Int J Biol Macromol 2019; 129:1155-1167. [PMID: 30660566 DOI: 10.1016/j.ijbiomac.2019.01.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
αvβ3 integrin expressed on cancer cell surfaces is associated with important cancer hallmarks including survival and metastasis and is thus a potential anticancer drug target. Tablysin-15 contains the RGD motif and is a high-affinity αvβ3 integrin antagonist. The aim of this study was to investigate the antitumor effect and mechanism of action of tablysin-15 against αvβ3 integrin high-expressing breast cancer cell lines in vitro and in vivo. Tablysin-15 dose-dependently inhibited the proliferation, migration, and invasion of two breast cancer cell lines via the αvβ3 integrin in vitro. Proliferation inhibition was attributable to G0/G1 phase cell cycle arrest rather than apoptosis or necrosis. Furthermore, tablysin-15 downregulated the activity and mRNA expression of MMP-2/-9, VEGF, and COX-2 but upregulated TIMP-1/-2 mRNA in both cell lines. Further, tablysin-15 suppressed the expression of CDK2, CDK6, cyclin D1, and cyclin E, the phosphorylation of FAK, Akt, GSK-3β, and ERK, and the nuclear translocation of NF-κB while increasing the expression of the CDK inhibitor p21waf1/C1. Lastly, tablysin-15 provided effective antitumor protection in vivo. Thus, tablysin-15 inhibits the metastasis and proliferation of breast cancer cells through binding αvβ3 integrin and blocking FAK-associated signaling pathways as well as nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiaofei Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene 2017; 36:5199-5211. [PMID: 28504716 PMCID: PMC5596211 DOI: 10.1038/onc.2017.4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSC) appear to have increased metastatic potential, but mechanisms underlying this are poorly defined. Here we show that VEGFA induction of Sox2 promotes EMT and tumor metastasis. In breast lines and primary cancer culture, VEGFA rapidly upregulates SOX2 expression, leading to SNAI2 induction, EMT, increased invasion and metastasis. We show Sox2 downregulates miR-452, which acts as a novel metastasis suppressor to directly target the SNAI2 3′-untranslated region (3′-UTR). VEGFA stimulates Sox2- and Slug-dependent cell invasion. VEGFA increases lung metastasis in vivo, and this is abrogated by miR-452 overexpression. Furthermore, SNAI2 transduction rescues metastasis suppression by miR-452. Thus, in addition to its angiogenic action, VEGFA upregulates Sox2 to drive stem cell expansion, together with miR-452 loss and Slug upregulation, providing a novel mechanism whereby cancer stem cells acquire metastatic potential. Prior work showed EMT transcription factor overexpression upregulates CSC. Present work indicates that stemness and metastasis are a two-way street: Sox2, a major mediator of CSC self-renewal, also governs the metastatic process.
Collapse
|
16
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
17
|
Morales A, Morimoto S, Vilchis F, Taniyama N, Bautista CJ, Robles C, Bargalló E. Molecular expression of vascular endothelial growth factor, prokineticin receptor-1 and other biomarkers in infiltrating canalicular carcinoma of the breast. Oncol Lett 2016; 12:2720-2727. [PMID: 27703528 DOI: 10.3892/ol.2016.4961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/10/2016] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is important in the growth and metastasis of cancer cells. In 2001, another angiogenic factor, endocrine gland-derived VEGF (EG-VEGF), was characterized and sequenced. EG-VEGF activity appears to be restricted to endothelial cells derived from endocrine glands. At the molecular level, its expression is regulated by hypoxia and steroid hormones. Although VEGF and EG-VEGF are structurally different, they function in a coordinated fashion. Since the majority of mammary tumors are hormone-dependent, it was hypothesized that EG-VEGF would be expressed in these tumors, and therefore, represent a potential target for anti-angiogenic therapy. The aim of the present study was to assess the expression of VEGF, EG-VEGF and its receptor (prokineticin receptor-1), as well as that of breast cancer resistant protein, estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, in 50 breast samples of infiltrating canalicular carcinoma (ICC) and their correlation with tumor staging. The samples were analyzed using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Both angiogenic growth factors were identified in all samples. However, in 90% of the samples, the expression level of VEGF was significantly higher than that of EG-VEGF (P=0.024). There was no association between the expression of VEGF, EG-VEGF or its receptor with tumor stage. In ICC, the predominant angiogenic factor expressed was VEGF. The expression level of either factor was not correlated with the tumor-node-metastasis stage. Although ICC is derived from endothelial cells, EG-VEGF expression was not the predominant angiogenic/growth factor in ICC.
Collapse
Affiliation(s)
- Angélica Morales
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - Sumiko Morimoto
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - Felipe Vilchis
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - Natsuko Taniyama
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - Claudia J Bautista
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - Carlos Robles
- Department of Mammary Tumors, National Cancer Institute, Mexico City 14080, Mexico
| | - Enrique Bargalló
- Department of Mammary Tumors, National Cancer Institute, Mexico City 14080, Mexico
| |
Collapse
|
18
|
Choi SK, Kim HS, Jin T, Hwang EH, Jung M, Moon WK. Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A. BMC Cancer 2016; 16:570. [PMID: 27484639 PMCID: PMC4969651 DOI: 10.1186/s12885-016-2620-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/26/2016] [Indexed: 01/26/2023] Open
Abstract
Background The role of microRNA-200 (miR-200) family members in the migration and invasion of breast cancer is controversial. This study investigated the mechanisms by which the miR-200 family members modulated the migratory and invasive abilities of an aggressive triple-negative breast cancer (TNBC) cell line, MDA-MB-231. Methods The miR-200 family (miR-200b/200a/429 and miR-141/200c clusters) and green fluorescence protein (GFP) were transduced into MDA-MB-231 cells using a lentiviral system. Stable cells highly expressing the miR-200 family and GFP were isolated by puromycin selection and fluorescence-activated cell sorting. Gene expression was evaluated using real-time polymerase chain reaction (PCR) and reverse transcriptase-PCR (RT-PCR). The migratory and invasive abilities were assessed using trans-well and wound-healing assays. The secreted cytokines and growth factors in cultured media were quantified using a Bio-Plex200 multiplex array system. Western blot assays and immunofluorescence staining were conducted to investigate miR-200 family-regulated signaling pathways. The entire dataset obtained in this study was statistically evaluated using a one-way ANOVA followed by a t-test. Results The stable overexpression of the miR-200b/200a/429 or miR-141/200c cluster suppressed cell growth and significantly increased migration and invasion of MDA-MB-231 cells. miR-141/200c overexpression was more effective in decreasing cell growth and promoting migration and invasion of MDA-MB-231 cells than was miR-200b/200a/429 overexpression. In addition, the overexpression of the miR-200b/200a/429 or miR-141/200c cluster led to an increase in the phosphorylation of focal adhesion kinase (FAK) and protein kinase B (AKT). Chemical inhibitors of FAK and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT suppressed the migration and invasion of MDA-MB-231 cells that was enhanced by the overexpression of the miR-200b/200a/429 or miR-141/200c cluster. Compared to the miR-200b/200a/429 cluster-transduced MDA-MB-231 cells, the miR-141/200c cluster-transduced MDA-MB-231 cells exhibited a significant increase in vascular endothelial growth factor (VEGF)-A secretion and integrin-alphaV (integrin-αV) expression. Treatment with an anti-VEGF-A-neutralizing antibody inhibited the increase in migration and invasion in both the miR-200b/200a/429- and miR-141/200c-transduced MDA-MB-231 cells but significantly reduced the phosphorylation of FAK and AKT in only the miR-141/200c cluster-transduced MDA-MB-231 cells. Conclusions Taken together, our data demonstrate a mechanism in which the miR-141/200c cluster, through FAK- and PI3K/AKT-mediated signaling by means of increased VEGF-A secretion, promotes the migratory and invasive abilities of MDA-MB-231 cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2620-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sul Ki Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea.,Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Tiefeng Jin
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Eun Hye Hwang
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Minji Jung
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea. .,Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea.
| |
Collapse
|
19
|
Sarkar R, Mukherjee S, Biswas J, Roy M. Phenethyl isothiocyanate, by virtue of its antioxidant activity, inhibits invasiveness and metastatic potential of breast cancer cells: HIF-1α as a putative target. Free Radic Res 2015; 50:84-100. [DOI: 10.3109/10715762.2015.1108520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Hojski A, Leitgeb M, Crnjac A. Release of growth factors after mechanical and chemical pleurodesis for treatment of malignant pleural effusion: a randomized control study. Radiol Oncol 2015; 49:386-94. [PMID: 26834526 PMCID: PMC4722930 DOI: 10.1515/raon-2015-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/12/2014] [Indexed: 11/28/2022] Open
Abstract
Background Growth factors are key inducers of fibrosis but can also mediate inflammatory responses resulting in increasing pleural effusion and acute respiratory distress syndrome. The primary aim of the study was to analyse growth factors release after performing chemical and mechanical pleurodesis in the first 48 hours at the patients with malignant pleural effusion. The secondary endpoints were to evaluate the effectiveness of the both pleurodeses, symptoms release and the quality of life of patients after the treatment. Patients and methods. A prospective randomized study included 36 consecutive female patients with breast carcinoma and malignant pleural effusion in an intention-to-treat analysis. We treated 18 patients by means of thoracoscopic mechanical pleurodesis and 18 patients by chemical pleurodesis with talcum applied over a chest tube. We gathered the pleural fluid and serum samples in the following 48 hours under a dedicated protocol and tested them for growth factors levels. A quality of life and visual analogue pain score surveys were also performed. Results Median measured serum vascular endothelial growth factor (VEGF) level after chemical pleurodesis was 930.68 pg/ml (95% CI: 388.22–4656.65) and after mechanical pleurodesis 808.54 pg/ml. (95% CI: 463.20-1235.13) (p = 0.103). Median pleural levels of transforming growth factor (TGF) β1 were higher after performing mechanical pleurodesis (4814.00 pg/ml [95% CI: 2726.51–7292.94]) when compared to those after performing chemical pleurodesis (1976.50 pg/ml [95% CI: 1659.82–5136.26]) (p = 0.078). We observed similar results for fibroblast growth factor (FGF) β; the serum level was higher after mechanical pleurodesis (30.45 pg/ml [95% CI: 20.40–59.42]), compared to those after chemical pleurodesis (13.39 pg/ml [95% CI: 5.04 – 74.60]) (p = 0.076). Mechanical pleurodesis was equally effective as chemical pleurodesis in terms of hospital stay, pleural effusion re-accumulation, requiring of additional thoracentesis, median overall survival, but, it shortened the mean thoracic drainage duration (p = 0.030) and resulted in a higher symptoms release and in a better quality of life (p = 0.047). Conclusions We recorded an increase in serum VEGF levels after chemical pleurodesis, however on the contrary, an increase in the pleural fluid level of TGFβ1 and FGFβ] after mechanical pleurodesis with respect to compared group. Although the differences did not reach statistical significance, VEGF, TGFβ1 and FGFβ remain the most interesting parameters for future research. Considering the mechanisms of growth factors action, we conclude that in our study group mechanical pleurodesis might be more efficient in terms of growth factors release, thoracic drainage duration and resulted in a higher symptoms release and in a better quality of life than chemical pleurodesis.
Collapse
Affiliation(s)
- Aljaz Hojski
- Department of Thoracic Surgery, University Medical Centre Maribor, Slovenia
| | - Maja Leitgeb
- Biochemistry Division, Medical Faculty, University of Maribor, Maribor Slovenia
| | - Anton Crnjac
- Department of Thoracic Surgery, University Medical Centre Maribor, Slovenia
| |
Collapse
|
21
|
Anticancer effect of rapamycin on MCF-7 via downregulation of VEGF expression. In Vitro Cell Dev Biol Anim 2015; 52:45-8. [PMID: 26427711 DOI: 10.1007/s11626-015-9944-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022]
Abstract
The importance of mTOR signaling in tumor biology is widely accepted and a number of agents that selectively target mTOR are being developed in cancer therapy. On the other hand, it has been demonstrated that mTOR can act as an angiogenic agent. Thus, we hypothesized that the mTOR inhibitor-induced anticancer effect is affected by expression of a key angiogenic factor, vascular endothelial growth factor (VEGF) and investigated the anticancer effect underlying mTOR using an in vitro assay. The mTOR inhibitor rapamycin dose-dependently reduced the cell viability of the breast cancer cell line, MCF-7, but did not reduce the cell viability of the colon cancer cell line, HT-29. Rapamycin reduced the VEGF expression in the culture medium of MCF-7, while rapamycin did not contribute VEGF expression in the culture medium of HT-29. VEGF stimulated cell viability and VEGF inhibition reduced cell viability of MCF-7, and rapamycin dose-dependently restored the cell viability of MCF-7 reduced by rapamycin. These findings suggest that mTOR acts as a direct anticancer agent and that the mTOR-inhibitor-induced anticancer effect involved the reduced expression of VEGF in MCF-7. Our results imply that mTOR regulates the expression of VEGF and is involved in breast cancer progression.
Collapse
|
22
|
Kwon S, Kim YE, Park JA, Kim DS, Kwon HJ, Lee Y. Therapeutic effect of a TM4SF5-specific peptide vaccine against colon cancer in a mouse model. BMB Rep 2015; 47:215-20. [PMID: 24286311 PMCID: PMC4163885 DOI: 10.5483/bmbrep.2014.47.4.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/24/2013] [Accepted: 07/26/2014] [Indexed: 12/14/2022] Open
Abstract
Molecular-targeted therapy has gained attention because of its high efficacy and weak side effects. Previously, we confirmed that transmembrane 4 superfamily member 5 protein (TM4SF5) can serve as a molecular target to prevent or treat hepatocellular carcinoma (HCC). We recently extended the application of the peptide vaccine, composed of CpG-DNA, liposome complex, and TM4SF5 peptide, to prevent colon cancer in a mouse model. Here, we first implanted mice with mouse colon cancer cells and then checked therapeutic effects of the vaccine against tumor growth. Immunization with the peptide vaccine resulted in robust production of TM4SF5-specific antibodies, alleviated tumor growth, and reduced survival rate of the tumor-bearing mice. We also found that serum levels of VEGF were markedly reduced in the mice immunized with the peptide vaccine. Therefore, we suggest that the TM4SF5-specific peptide vaccine has a therapeutic effect against colon cancer in a mouse model. [BMB Reports 2014; 47(4): 215-220]
Collapse
Affiliation(s)
- Sanghoon Kwon
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Doo-Sik Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research; Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
23
|
Barr MP, Gray SG, Gately K, Hams E, Fallon PG, Davies AM, Richard DJ, Pidgeon GP, O'Byrne KJ. Vascular endothelial growth factor is an autocrine growth factor, signaling through neuropilin-1 in non-small cell lung cancer. Mol Cancer 2015; 14:45. [PMID: 25889301 PMCID: PMC4392793 DOI: 10.1186/s12943-015-0310-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/30/2015] [Indexed: 01/13/2023] Open
Abstract
Background The VEGF pathway has become an important therapeutic target in lung cancer, where VEGF has long been established as a potent pro-angiogenic growth factor expressed by many types of tumors. While Bevacizumab (Avastin) has proven successful in increasing the objective tumor response rate and in prolonging progression and overall survival in patients with NSCLC, the survival benefit is however relatively short and the majority of patients eventually relapse. The current use of tyrosine kinase inhibitors alone and in combination with chemotherapy has been underwhelming, highlighting an urgent need for new targeted therapies. In this study, we examined the mechanisms of VEGF-mediated survival in NSCLC cells and the role of the Neuropilin receptors in this process. Methods NSCLC cells were screened for expression of VEGF and its receptors. The effects of recombinant VEGF and its blockade on lung tumor cell proliferation and cell cycle were examined. Phosphorylation of Akt and Erk1/2 proteins was examined by high content analysis and confocal microscopy. The effects of silencing VEGF on cell proliferation and survival signaling were also assessed. A Neuropilin-1 stable-transfected cell line was generated. Cell growth characteristics in addition to pAkt and pErk1/2 signaling were studied in response to VEGF and its blockade. Tumor growth studies were carried out in nude mice following subcutaneous injection of NP1 over-expressing cells. Results Inhibition of the VEGF pathway with anti-VEGF and anti-VEGFR-2 antibodies or siRNA to VEGF, NP1 and NP2 resulted in growth inhibition of NP1 positive tumor cell lines associated with down-regulation of PI3K and MAPK kinase signaling. Stable transfection of NP1 negative cells with NP1 induced proliferation in vitro, which was further enhanced by exogenous VEGF. In vivo, NP1 over-expressing cells significantly increased tumor growth in xenografts compared to controls. Conclusions Our data demonstrate that VEGF is an autocrine growth factor in NSCLC signaling, at least in part, through NP1. Targeting this VEGF receptor may offer potential as a novel therapeutic approach and also support the evaluation of the role of NP1 as a biomarker predicting sensitivity or resistance to VEGF and VEGFR-targeted therapies in the clinical arena. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0310-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin, Ireland.
| | - Kathy Gately
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin, Ireland.
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Anthony Mitchell Davies
- Irish National Centre for High Content Screening & Analysis, School of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Derek J Richard
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Graham P Pidgeon
- Department of Surgery, Institute of Molecular Medicine, St James's Hospital & Trinity College Dublin, Dublin, Ireland.
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College Dublin, Dublin, Ireland. .,Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
24
|
Shilpa P, Kaveri K, Salimath BP. Anti-metastatic action of anacardic acid targets VEGF-induced signalling pathways in epithelial to mesenchymal transition. Drug Discov Ther 2015; 9:53-65. [DOI: 10.5582/ddt.2014.01042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Keshavaiah Kaveri
- Maharani’s PU College
- Department of Studies in Biotechnology, University of Mysore
| | - Bharathi P Salimath
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
- Department of Studies in Biotechnology, University of Mysore
| |
Collapse
|
25
|
Zhang HY, Fan BL, Wu XS, Mu LM, Wang WF, Zhu WL. Overexpression of the chimeric plasmin-resistant VEGF165/VEGF183 (132-158) protein in murine breast cancer induces distinct vascular patterning adjacent to tumors and retarded tumor growth. Mol Med Rep 2014; 11:1483-9. [PMID: 25373557 DOI: 10.3892/mmr.2014.2866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
A chimeric plasmin‑resistant vascular endothelial growth factor (VEGF)165/VEGF183 (132-158) protein, named as VEGF183 (according to the nomenclature of VEGF), designed by a previous study, was demonstrated to have an enhanced affinity for the extracellular matrix (ECM) amongst other bioactivities. However, it is now accepted that mutant VEGFs frequently demonstrate different angiogenic activities and produce different vascular patterning from the parental molecule. The present study hypothesized that VEGF183, due to its enhanced binding affinity to the ECM, would exhibit a different angiogenic activity and produce a different vascular patterning compared to those of VEGF165. Murine breast cancer EMT‑6 cells were manipulated to stably overexpress VEGF165 or VEGF183. These cells were then inoculated intradermally into BALB/c mice in order to monitor the formation of vascular patterning in skin proximal to tumors. In vivo angiogenesis experiments revealed that overexpression of VEGF183 in murine breast cancer cells resulted in irregular, disorganized and dense vascular patterning as well as induced a significant inhibition of tumor growth compared with that of VEGF165. In addition, allograft tumor immunochemical assays of VEGF183‑overexpressing tumors demonstrated significantly lower vascular densities than those of VEGF165‑overexpressing tumors; however, VEGF183 tumors had a significantly enlarged vascular caliber. Conversely, cell wound healing experiments revealed that VEGF183‑overexpressing EMT‑6 cells had significantly decreased migration rates compared with those of VEGF165‑overexpressing EMT‑6 cells. In conclusion, the results of the present study supported the hypothesis that the altered ECM affinity of VEGF induced structural alterations to vasculature. In addition, these results provided a novel insight into VEGF design and indirect evidence for the function of exon 8 in VEGF. [Corrected]
Collapse
Affiliation(s)
- Hui-Yong Zhang
- College of Life Science and Biotechnology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Bing-Lin Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xin-Sheng Wu
- Department of Vasculocardiology, Xinxiang 371 Central Hospital, Xinxiang, Henan 453003, P.R. China
| | - Ling-Min Mu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wen-Feng Wang
- College of Life Science and Biotechnology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wu-Ling Zhu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
26
|
Orci LA, Lacotte S, Oldani G, Morel P, Mentha G, Toso C. The role of hepatic ischemia-reperfusion injury and liver parenchymal quality on cancer recurrence. Dig Dis Sci 2014; 59:2058-68. [PMID: 24795038 DOI: 10.1007/s10620-014-3182-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/20/2014] [Indexed: 12/29/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a common clinical challenge. Despite accumulating evidence regarding its mechanisms and potential therapeutic approaches, hepatic I/R is still a leading cause of organ dysfunction, morbidity, and resource utilization, especially in those patients with underlying parenchymal abnormalities. In the oncological setting, there are growing concerns regarding the deleterious impact of I/R injury on the risk of post-surgical tumor recurrence. This review aims at giving the last updates regarding the role of hepatic I/R and liver parenchymal quality injury in the setting of oncological liver surgery, using a "bench-to-bedside" approach. Relevant medical literature was identified by searching PubMed and hand scanning of the reference lists of articles considered for inclusion. Numerous preclinical models have depicted the impact of I/R injury and hepatic parenchymal quality (steatosis, age) on increased cancer growth in the injured liver. Putative pathophysiological mechanisms linking I/R injury and liver cancer recurrence include an increased implantation of circulating cancer cells in the ischemic liver and the upregulation of proliferation and angiogenic factors following the ischemic insult. Although limited, there is growing clinical evidence that I/R injury and liver quality are associated with the risk of post-surgical cancer recurrence. In conclusion, on top of its harmful early impact on organ function, I/R injury is linked to increased tumor growth. Therapeutic strategies tackling I/R injury could not only improve post-surgical organ function, but also allow a reduction in the risk of cancer recurrence.
Collapse
Affiliation(s)
- Lorenzo A Orci
- Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland,
| | | | | | | | | | | |
Collapse
|
27
|
Chen Z, Ruan Q, Han S, Xi L, Jiang W, Jiang H, Ostrov DA, Cai J. Discovery of structure-based small molecular inhibitor of αB-crystallin against basal-like/triple-negative breast cancer development in vitro and in vivo. Breast Cancer Res Treat 2014; 145:45-59. [PMID: 24710637 DOI: 10.1007/s10549-014-2940-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/26/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Zhijuan Chen
- Department of Anatomy and Cell Biology, University of Florida, 1600 SW Archer Road, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li J, Dong L, Wei D, Wang X, Zhang S, Li H. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci 2014; 10:171-80. [PMID: 24520215 PMCID: PMC3920172 DOI: 10.7150/ijbs.7357] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/09/2013] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the role of fatty acid synthase (FASN) in the epithelial-mesenchymal transition (EMT) of breast cancer cells. MCF-7 cells and MCF-7 cells overexpressing mitogen-activated protein kinase 5 (MCF-7-MEK5) were used in this study. MCF-7-MEK5 cells showed stable EMT characterized by increased vimentin and decreased E-cadherin expression. An In vivo animal model was established using the orthotopic injection of MCF-7 or MCF-7-MEK5 cells. Real-time quantitative PCR and western blotting were used to detect the expression levels of FASN and its downstream proteins liver fatty acid-binding protein (L-FABP) and VEGF/VEGFR-2 in both in vitro and in vivo models (nude mouse tumor tissues). In MCF-7-MEK5 cells, significantly increased expression of FASN was associated with increased levels of L-FABP and VEGF/VEGFR-2. Cerulenin inhibited MCF-7-MEK5 cell migration and EMT, and reduced FASN expression and down-stream proteins L-FABP, VEGF, and VEGFR-2. MCF-7-MEK5 cells showed higher sensitivity to Cerulenin than MCF-7 cells. Immunofluorescence revealed an increase of co-localization of FASN with VEGF on the cell membrane and with L-FABP within MCF-7-MEK5 cells. Immunohistochemistry further showed that increased percentage of FASN-positive cells in the tumor tissue was associated with increased percentages of L-FABP- and VEGF-positive cells and the Cerulenin treatment could reverse the effect. Altogether, our results suggest that FASN is essential to EMT possibly through regulating L-FABP, VEGF and VEGFR-2. This study provides a theoretical basis and potential strategy for effective suppression of malignant cells with EMT.
Collapse
Affiliation(s)
- Junqin Li
- 1. Department of Basic and Forensic Medicine, Sichuan University, Sichuan Province, 610041, China
| | - Lihua Dong
- 1. Department of Basic and Forensic Medicine, Sichuan University, Sichuan Province, 610041, China
| | - Dapeng Wei
- 1. Department of Basic and Forensic Medicine, Sichuan University, Sichuan Province, 610041, China
| | - Xiaodong Wang
- 2. West China Hospital, Sichuan University, Sichuan Province, 610041, China
| | - Shuo Zhang
- 1. Department of Basic and Forensic Medicine, Sichuan University, Sichuan Province, 610041, China
| | - Hua Li
- 1. Department of Basic and Forensic Medicine, Sichuan University, Sichuan Province, 610041, China
| |
Collapse
|
29
|
Novel heterocyclic-fused pyrimidine derivatives: Synthesis, molecular modeling and pharmacological screening. Eur J Med Chem 2013; 69:498-507. [DOI: 10.1016/j.ejmech.2013.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/25/2013] [Accepted: 08/31/2013] [Indexed: 11/18/2022]
|
30
|
In vivo "MRI phenotyping" reveals changes in extracellular matrix transport and vascularization that mediate VEGF-driven increase in breast cancer metastasis. PLoS One 2013; 8:e63146. [PMID: 23650550 PMCID: PMC3641100 DOI: 10.1371/journal.pone.0063146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To gain new insights into the relationship between angiogenic factors in breast cancer and their effect on extracellular matrix (ECM) remodeling and metastasis, we characterized and validated the "metastatic signature" of human breast cancer cell lines engineered to overexpress VEGF in terms of in vivo MRI-derived angiogenesis and ECM transport parameters. METHODOLOGY MRI was used to evaluate the effects of overexpressing VEGF-A (VEGF165) on tumor angiogenesis and ECM remodeling in vivo, for two differentially metastatic human breast cancer cell lines: MCF-7 and MDA-MB-231. PRINCIPAL FINDINGS Overexpression of VEGF elevated vascular volume in both MCF-7-VEGF and MDA-MB-231-VEGF tumors relative to their wild-type counterparts, but vascular permeability was elevated only in MCF-7-VEGF tumors. A significant increase in the volume of extravascular fluid drained as well as the number of ECM drainage voxels was detected in MCF-7-VEGF tumors relative to MCF-7 tumors, but not in MDA-MB-231-VEGF versus MDA-MB-231 tumors. The angiogenic effects of VEGF overexpression in both MCF-7-VEGF and MDA-MB-231-VEGF tumors were validated histologically. MCF-7-VEGF tumors exhibited enhanced invasion and a greater fraction of cancer positive lungs and lymph nodes relative to MCF-7 tumors. CONCLUSIONS AND SIGNIFICANCE In vivo MRI and histological data demonstrate that VEGF overexpression results in the progression of noninvasive MCF-7 and invasive MDA-MB-321 tumors to a more angiogenic phenotype. However, VEGF overexpression significantly altered ECM integrity only in MCF-7 tumors, causing them to progress to an invasive and metastatic phenotype. This study for the first time demonstrates the concurrent effects of VEGF overexpression and ECM remodeling on metastasis in vivo. Collectively, these findings demonstrate that in vivo MRI can non-invasively monitor changes in the tumor microenvironment that can potentially predict a cancer's ability to metastasize.
Collapse
|
31
|
Zhao X, Zhu DM, Gan WJ, Li Z, Zhang JL, Zhao H, Zhou J, Li DC. Lentivirus-mediated shRNA interference targeting vascular endothelial growth factor inhibits angiogenesis and progression of human pancreatic carcinoma. Oncol Rep 2013; 29:1019-26. [PMID: 23254994 DOI: 10.3892/or.2012.2203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/03/2012] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is known to be essential to the survival, growth, invasion and metastasis of cancer cells. Vascular endothelial growth factor (VEGF) is an important factor regulating tumor angiogenesis. In the present study, we analyzed the effect of lentivirus-mediated shRNA interference targeting vascular endothelial growth factor (VEGF) on angiogenesis and progression in the pancreatic cancer cell line Patu8988 in vitro and in vivo. The study aimed to construct a recombinant lentivirus carrying targeted VEGF shRNA (LV-RNAi) to be used to transfect Patu8988 cells, and we investigated its anti-angiogenic and growth inhibitory effects on pancreatic cancer. VEGF expression was measured by RQ-PCR, western blotting and enzyme-linked immunosorbent assay (ELISA). In subcutaneous transplantation models, tumor volumes were determined, and the expression levels of VEGF and CD34 were assessed by immunohistochemistry. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) was used to determine apoptosis. In the orthotopic transplantation models, tumor volume and liver metastasis were determined. We successfully constructed LV-RNAi and confirmed that it knocked down the VEGF gene at the mRNA and protein levels in Patu8988 cells. In the subcutaneous transplantation models, tumors with low levels of VEGF expression exhibited reduced pancreatic carcinoma angiogenesis and growth, and the apoptotic index was significantly higher. In the orthotopic transplantation models, tumors with low levels of VEGF expression exhibited significantly reduced pancreatic carcinoma growth, but no significant difference was observed between the three mouse groups, LV-RNAi, LV-NC and the control, in regards to liver metastasis. In summary, lentivirus-mediated RNAi silencing of VEGF inhibited tumor angiogenesis and growth, and increased apoptosis of the pancreatic cancer cell line Patu8988. VEGF targeted gene silencing approach has the potential to serve as a novel treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Boyle DP, Mullan P, Salto-Tellez M. Molecular mapping the presence of druggable targets in preinvasive and precursor breast lesions: a comprehensive review of biomarkers related to therapeutic interventions. Biochim Biophys Acta Rev Cancer 2013; 1835:230-42. [PMID: 23403165 DOI: 10.1016/j.bbcan.2013.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 01/29/2023]
Abstract
The analysis of clinical breast samples using biomarkers is integral to current breast cancer management. Currently, a limited number of targeted therapies are standard of care in breast cancer treatment. However, these targeted therapies are only suitable for a subset of patients and resistance may occur. Strategies to prevent the occurrence of invasive lesions are required to reduce the morbidity and mortality associated with the development of cancer. In theory, application of targeted therapies to pre-invasive lesions will prevent their progression to invasive lesions with full malignant potential. The diagnostic challenge for pathologists is to make interpretative decisions on early detected pre-invasive lesions. Overall, only a small proportion of these pre-invasive lesions will progress to invasive carcinoma and morphological assessment is an imprecise and subjective means to differentiate histologically identical lesions with varying malignant potential. Therefore differential biomarker analysis in pre-invasive lesions may prevent overtreatment with surgery and provide a predictive indicator of response to therapy. There follows a review of established and emerging potential druggable targets in pre-invasive lesions and correlation with lesion morphology.
Collapse
Affiliation(s)
- David P Boyle
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast BT9 7BL, UK.
| | | | | |
Collapse
|
33
|
Perrot-Applanat M, Di Benedetto M. Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adh Migr 2012; 6:547-53. [PMID: 23257828 DOI: 10.4161/cam.23332] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is well known for its key roles in blood vessel growth. Although most studies on VEGF and VEGF receptors have been focused on their functions in angiogenesis and in endothelial cells, the role of VEGF in cancer biology appears as an emerging area of importance. In this context, the presence of VEGF receptors in tumor cells strongly suggests that VEGF-A also promotes a wide range of functions, both in vitro and in vivo, all autocrine functions on tumor cells, including adhesion, survival, migration and invasion. Ultimately, refining our knowledge of VEGF signaling pathways in tumor cells should help us to understand why the current used treatments targeting the VEGF pathway in cancer are not universally effective in inhibiting metastasis tumors, and it should also provide new avenues for future therapies.
Collapse
|
34
|
Dhakal HP, Naume B, Synnestvedt M, Borgen E, Kaaresen R, Schlichting E, Wiedswang G, Bassarova A, Holm R, Giercksky KE, Nesland JM. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinoma: prognostic significance and relationship with markers for aggressiveness. Histopathology 2012; 61:350-64. [PMID: 22690749 DOI: 10.1111/j.1365-2559.2012.04223.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS Vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGFR-1) and VEGF receptor 2 (VEGFR-2) play a role in breast cancer growth and angiogenesis. We examined the expression and relationship with clinical outcome and other prognostic factors. METHODS AND RESULTS Tumour sections from 468 breast cancer patients were immunostained for VEGF, VEGFR-1, and VEGFR-2, and their relationships with tumour vascularity, disseminated tumour cells (DTCs) in bone marrow and other clinicopathological parameters were evaluated. VEGF, VEGFR-1 and VEGFR-2 immunoreactivities were observed in invasive breast carcinoma cells. VEGF expression was significantly associated with VEGFR-1 and VEGFR-2 expression (P < 0.001). High-level cytoplasmic expression of VEGFR-1 was associated with significantly reduced distant disease-free survival (DDFS) (P = 0.017, log-rank) and breast cancer-specific survival (BCSS) (P = 0.005, log-rank) for all patients, and for node-negative patients without systemic treatment (DDFS, P = 0.03, log-rank; BCSS, P = 0.009, log-rank). VEGFR-1 expression was significantly associated with histopathological markers of aggressiveness (P < 0.05). Significantly reduced survival was observed in DTC-positive patients as compared with DTC-negative patients in the combined moderate/high VEGFR-1 group (P < 0.001 for DDFS and BCSS), and the same was true for DDFS in the moderate VEGFR-2 group (P = 0.006). CONCLUSIONS High-level expression of VEGFR-1 indicates reduced survival. Higher-level expression of VEGFR-1 or VEGFR-2 in primary breast carcinomas combined with the presence of DTC selects a prognostically unfavourable patient group.
Collapse
Affiliation(s)
- Hari Prasad Dhakal
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Montenegro CF, Salla-Pontes CL, Ribeiro JU, Machado AZ, Ramos RF, Figueiredo CC, Morandi V, Selistre-de-Araujo HS. Blocking αvβ3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells. Biochimie 2012; 94:1812-20. [PMID: 22561350 DOI: 10.1016/j.biochi.2012.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/19/2012] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) and αvβ3 integrin are key molecules that actively participate in tumor angiogenesis and metastasis. Some integrin-blocking molecules are currently under clinical trials for cancer and metastasis treatment. However, the mechanism of action of such inhibitors is not completely understood. We have previously demonstrated the anti-angiogenic and anti-metastatic properties of DisBa-01, a recombinant His-tag RGD-disintegrin from Bothrops alternatus snake venom in some experimental models. DisBa-01 blocks αvβ3 integrin binding to vitronectin and inhibits integrin-mediated downstream signaling cascades and cell migration. Here we add some new information on the mechanism of action of DisBa-01 in the tumor microenvironment. DisBa-01 supports the adhesion of fibroblasts and MDA-MB-231 breast cancer cells but it inhibits the adhesion of these cells to type I collagen under flow in high shear conditions, as a simulation of the blood stream. DisBa-01 does not affect the release of VEGF by fibroblasts or breast cancer cells but it strongly decreases the expression of VEGF mRNA and of its receptors, vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2) in endothelial cells. DisBa-01 at nanomolar concentrations also modulates metalloprotease 2 (MMP-2) and 9 (MMP-9) activity, the latter being decreased in fibroblasts and increased in MDA-MB-231 cells. In conclusion, these results demonstrate that αvβ3 integrin inhibitors may induce distinct effects in the cells of the tumor microenvironment, resulting in blockade of angiogenesis by impairing of VEGF signaling and in inhibition of tumor cell motility.
Collapse
Affiliation(s)
- Cyntia F Montenegro
- Dep. Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, 13565-905 Sao Carlos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Selection of Clinically useful Angiogenesis-Related Biomarkers: An Update. Int J Biol Markers 2012; 27:e65-81. [PMID: 22307386 DOI: 10.5301/jbm.2012.8989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2011] [Indexed: 11/20/2022]
Abstract
Angiogenesis is a complex phenomenon that involves interaction between growth factors/cytokines and their receptors, and proteolytic enzymes and their inhibitors, which, in addition to and in accordance with their main roles, act together during this multistep process. cancer angiogenesis is specific, because the same factors that enable angiogenesis are involved in the process of carcinogenesis. the aim of this review was to analyze the current knowledge regarding the significance of selected biomarkers in cancer angiogenesis, with emphasis on their prognostic value in the circulation.
Collapse
|
37
|
Tampouris AI, Kandiloros D, Giotakis I, Gakiopoulou H, Lazaris AC. The role of the VEGF-C/-D/flt-4 autocrine loop in the pathogenesis of salivary neoplasms. Pathol Res Pract 2012; 208:151-6. [DOI: 10.1016/j.prp.2011.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/02/2011] [Accepted: 12/28/2011] [Indexed: 01/18/2023]
|
38
|
Freimark D, Jérôme V, Freitag R. Effect of process parameters and product-host-interaction on hVEGFA-production by recombinant Chinese hamster ovary cells. Biotechnol Prog 2012; 28:762-72. [PMID: 22275108 DOI: 10.1002/btpr.1524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/12/2011] [Indexed: 11/08/2022]
Abstract
A potential producer clone was identified among recombinant, human vascular endothelial growth factor A (hVEGFA)-producing Chinese Hamster Ovary (CHO) K1 cells, using a recently established screening method. In batch spinner cultivations, the cells showed a maximum growth rate of 0.045 h(-1), a final total cell density of 5.3×10(6) mL(-1) (living cell density: 3.4×10(6) mL(-1)), and a final hVEGFA concentration of 207 μg L(-1). Living cell density and productivity in the spinner cultivations could be increased by glutamine feeding. Transfer of the process to the bioreactor (batch mode, control of pH, T, and O2) resulted in a reduction of the growth rate by roughly 50%, while overall living cell density and productivity increased, largely due to an extension of the production phase. When the bioreactor was run in the fed-batch mode, growth rates were further reduced, while productivity and living cell densities reached a maximum (hVEGFA: 358 μg L(-1), cells: 5.2×10(6) mL(-1)). In addition, the death rate of the hVEGFA-producing cells was considerably reduced compared with the parent cell line, most likely due to product-host-interaction. This hypothesis was corroborated when a second recombinant CHO cell line (antibody producer) was transfected with the hVEGFA gene and afterward consistently showed higher viable cell densities together with a significantly improved antibody titer.
Collapse
Affiliation(s)
- Denise Freimark
- Faculty of Engineering Science, Chair for Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
39
|
Vintonenko N, Pelaez-Garavito I, Buteau-Lozano H, Toullec A, Lidereau R, Perret GY, Bieche I, Perrot-Applanat M. Overexpression of VEGF189 in breast cancer cells induces apoptosis via NRP1 under stress conditions. Cell Adh Migr 2011; 5:332-43. [PMID: 21897119 DOI: 10.4161/cam.5.4.17287] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The existence of multiple VEGF-A isoforms raised the possibility that they may have distinct functions in tumor growth. We have previously published that VEGF189 and VEGF165 contribute to breast cancer progression and angiogenesis, but VEGF165 induced the most rapid tumor uptake. Since VEGF165 has been described as a survival factor for breast tumor cells, we questioned here the effects of VEGF189 on the survival/apoptosis of MDA-MB-231 cells. We used clones which overexpress VEGF189 (V189) or VEGF165 (V165) isoforms and compared them to a control one (cV). Overexpression of VEGF189 resulted in increased cell apoptosis, as determined by Annexin-V apoptosis assay, under serum starvation and doxorubicin treatment, while VEGF 165 was confirmed to be a survival factor. Since MDA-MB-231 highly express NRP1 (a co-receptor for VEGF-A), we used short hairpin RNA (shRNA) to knockdown NRP1 expression. V189shNRP1 clones were characterized by reduced apoptosis and higher necrosis, as compared to V189shCtl, under stress conditions. Unexpectedly, NRP1 knock-down had no effect on the survival or apoptosis of V165 cells. VEGF189 showed greater affinity towards NRP1 than VEGF165 using a BIAcore binding assay. Finally, since endogenously produced urokinase-type plasminogen (uPA) has been found to prevent apoptosis in breast cancers, we analyzed the level of uPA activity in our clones. An inhibition of uPA activity was observed in V189shNRP1 clones. Altogether, these results suggest a major role of NRP1 in apoptosis induced by VEGF189 in stress conditions and confirm VEGF165 as a survival factor.
Collapse
|
40
|
Liu Y, Tamimi RM, Collins LC, Schnitt SJ, Gilmore HL, Connolly JL, Colditz GA. The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the Nurses' Health Study. Breast Cancer Res Treat 2011; 129:175-84. [PMID: 21390493 DOI: 10.1007/s10549-011-1432-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 11/29/2022]
Abstract
Vascular endothelial growth factor (VEGF) is important in breast carcinogenesis. However, whether the effect of VEGF expression on survival varies with intrinsic subtypes of breast cancer remains unclear and the prognostic significance of VEGF expression in breast cancer remains controversial. Using immunostaining of tissue microarray sections, VEGF expression was determined in 1,788 primary invasive breast cancers identified from the Nurses' Health Study cohort. Cox proportional hazards models were used to estimate hazard ratios (HR) of breast cancer-specific and overall mortality and distant recurrence, adjusted for epidemiological, clinicopathological, and related molecular factors, and year of diagnosis. Overall, 72.5% of breast cancers were positive for VEGF. VEGF expression was correlated with intrinsic subtypes (P < 0.0001), with higher frequency in luminal B, HER2, and basal-like types versus luminal A type. Although VEGF expression was not significantly related to worse survival when all cases were considered together, it was significantly associated with increased risks for breast cancer-specific mortality (BCSM) (HR = 1.41, 95% CI = 1.01, 1.97) and distant recurrence (HR = 1.49, 95% CI = 1.07, 2.07) among women with luminal A tumors. In 262 women untreated systemically, VEGF expression was significantly associated with BCSM (HR = 5.58, 95% CI = 1.17, 26.66). In 902 women receiving adjuvant hormonal therapy, VEGF expression did not significantly predict clinical outcomes. The VEGF-associated increased risk of BCSM is limited to luminal A tumors. VEGF expression is a prognostic but not predictive marker of hormonal response in non-metastatic invasive breast cancer.
Collapse
Affiliation(s)
- Ying Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee JS, Kim Y, Kim IS, Kim B, Choi HJ, Lee JM, Shin HJR, Kim JH, Kim JY, Seo SB, Lee H, Binda O, Gozani O, Semenza GL, Kim M, Kim KI, Hwang D, Baek SH. Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell 2010; 39:71-85. [PMID: 20603076 DOI: 10.1016/j.molcel.2010.06.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/11/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Lysine methylation within histones is crucial for transcriptional regulation and thus links chromatin states to biological outcomes. Although recent studies have extended lysine methylation to nonhistone proteins, underlying molecular mechanisms such as the upstream signaling cascade that induces lysine methylation and downstream target genes modulated by this modification have not been elucidated. Here, we show that Reptin, a chromatin-remodeling factor, is methylated at lysine 67 in hypoxic conditions by the methyltransferase G9a. Methylated Reptin binds to the promoters of a subset of hypoxia-responsive genes and negatively regulates transcription of these genes to modulate cellular responses to hypoxia.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tai W, Qin B, Cheng K. Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol Pharm 2010; 7:543-56. [PMID: 20047302 DOI: 10.1021/mp9002514] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overexpression of HER-2 accounts for approximately 25% of all breast cancer cases, while 87.7% of HER-2 positive breast cancers are associated with upregulated VEGF. The objective of this study is to explore the combination therapy of blocking HER-2 and VEGF expressions simultaneously using siRNA. This is the first report to examine the effect of dual silencing of HER-2 and VEGF genes on tumor growth and invasiveness. We have designed nine HER-2 siRNAs and ten VEGF siRNAs, and identified potent siRNA which can silence the target gene up to 75-83.5%. The most potent HER-2 and VEGF siRNAs were used to conduct functional studies in HER-2 positive breast cancer cells. Tumor invasiveness properties including cell morphology change, in vitro migration, cell spreading, and adhesion to ECM were evaluated. In addition, cell proliferation and apoptosis were examined after the siRNA treatment. Our data demonstrated for the first time that HER-2 siRNA could inhibit cell migration and invasion abilities. Combination of HER-2 and VEGF siRNAs exhibited synergistic silencing effect on VEGF. Both HER-2 siRNA and VEGF siRNA showed significant inhibition on cell migration and proliferation. HER-2 siRNA also demonstrated dramatic suppression on cell spreading and adhesion to ECM, as well as induction of apoptosis. Dual silencing of HER-2 and VEGF exhibited significant cell morphology change, and substantial suppression on migration, spreading, cell adhesion, and proliferation. Our observations suggested that HER-2 positive breast cancer may be more effectively treated by dual inhibition of HER-2 and VEGF gene expressions using siRNA.
Collapse
Affiliation(s)
- Wanyi Tai
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2454 Charlotte Street, Kansas City, Missouri 64108, USA
| | | | | |
Collapse
|
43
|
Basu B, Biswas S, Wrigley J, Sirohi B, Corrie P. Angiogenesis in cutaneous malignant melanoma and potential therapeutic strategies. Expert Rev Anticancer Ther 2010; 9:1583-98. [PMID: 19895243 DOI: 10.1586/era.09.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metastatic melanoma (MM) carries a dismal prognosis, as it is largely resistant to conventional cytotoxic chemotherapy, biochemotherapy and immunotherapy. There is, therefore, a pressing need to identify new, effective treatments to improve outcomes from MM. Innovative approaches in oncology drug development include anti-angiogenic strategies, in the form of monoclonal antibodies and small-molecule kinase inhibitors. In this review we aim to present current concepts and controversies surrounding the role of angiogenesis and anti-angiogenic therapies in MM, alluding to other tumor types in which increasing knowledge may supply avenues for future directions in melanoma research and management. An overview of angiogenesis and its importance in melanoma progression is presented, highlighting the key molecules that represent potential therapeutic targets. The results of using anti-angiogenic strategies in preclinical and clinical trials are discussed and future perspectives for anti-angiogenic therapies in MM are considered.
Collapse
Affiliation(s)
- Bristi Basu
- Department of Oncology, Oncology Centre, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | |
Collapse
|
44
|
Lagadec C, Romon R, Tastet C, Meignan S, Com E, Page A, Bidaux G, Hondermarck H, Le Bourhis X. Ku86 is important for TrkA overexpression-induced breast cancer cell invasion. Proteomics Clin Appl 2010; 4:580-90. [PMID: 21137076 DOI: 10.1002/prca.200900148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/07/2009] [Accepted: 11/08/2009] [Indexed: 11/08/2022]
Abstract
PURPOSE We have recently shown that breast tumors express high levels of TrkA compared with normal breast tissues, with TrkA overexpression enhancing breast cancer cell invasion in vitro and metastasis in animal models. In this study, we tried to identify molecules involved in TrkA overexpression-mediated biological effects in breast cancer cells. EXPERIMENTAL DESIGN We used a proteomic-based approach to identify proteins involved in TrkA overexpression-stimulated invasion of MDA-MB-231 breast cancer cells. Proteins from control and TrkA overexpressing cells were separated using a cup-loading two-dimensional electrophoresis system before MALDI and LC-MS/MS mass spectrometry analysis. RESULTS Among several putative regulated proteins, Ku86 was found increased in TrkA overexpressing cells. Moreover, Ku86 was co-immunoprecipitated with TrkA, suggesting the interaction of these two proteins in TrkA overexpressing cells. Interestingly, inhibition with small-interfering RNA and neutralizing antibodies showed that Ku86 was required for TrkA-stimulated cell invasion. CONCLUSIONS AND CLINICAL RELEVANCE These data allowed the identification of Ku86 as a new player involved in metastasis in breast cancer cells. Our findings suggest that TrkA and its down stream signaling pathways should be regarded as potential new targets for the development of future breast cancer therapy.
Collapse
Affiliation(s)
- Chann Lagadec
- Signalisation des facteurs de croissance dans le cancer du sein. Proteomique fonctionnelle, Université Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bilotas M, Meresman G, Buquet R, Sueldo C, Barañao RI. Effect of vascular endothelial growth factor and interleukin-1β on apoptosis in endometrial cell cultures from patients with endometriosis and controls. J Reprod Immunol 2010; 84:193-8. [DOI: 10.1016/j.jri.2009.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 11/18/2009] [Accepted: 12/01/2009] [Indexed: 11/28/2022]
|
46
|
Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O'Brien T, Kerin MJ. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2010; 124:317-26. [PMID: 20087650 DOI: 10.1007/s10549-010-0734-1] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are known to specifically migrate to and engraft at tumour sites. Understanding interactions between cancer cells and MSCs has become fundamental to determining whether MSC-tumour interactions should be harnessed for delivery of therapeutic agents or considered a target for intervention. Breast Cancer Cell lines (MDA-MB-231, T47D & SK-Br3) were cultured alone or on a monolayer of MSCs, and retrieved using epithelial specific magnetic beads. Alterations in expression of 90 genes associated with breast tumourigenicity were analysed using low-density array. Expression of markers of epithelial-mesenchymal transition (EMT) and array results were validated using RQ-PCR. Co-cultured cells were analysed for changes in protein expression, growth pattern and morphology. Gene expression and proliferation assays were also performed on indirect co-cultures. Following direct co-culture with MSCs, breast cancer cells expressed elevated levels of oncogenes (NCOA4, FOS), proto-oncogenes (FYN, JUN), genes associated with invasion (MMP11), angiogenesis (VEGF) and anti-apoptosis (IGF1R, BCL2). However, universal downregulation of genes associated with proliferation was observed (Ki67, MYBL2), and reflected in reduced ATP production in response to MSC-secreted factors. Significant upregulation of EMT specific markers (N-cadherin, Vimentin, Twist and Snail) was also observed following co-culture with MSCs, with a reciprocal downregulation in E-cadherin protein expression. These changes were predominantly cell contact mediated and appeared to be MSC specific. Breast cancer cell morphology and growth pattern also altered in response to MSCs. MSCs may promote breast cancer metastasis through facilitation of EMT.
Collapse
Affiliation(s)
- F T Martin
- Department of Surgery, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang S, Zhau HE, Osunkoya AO, Iqbal S, Yang X, Fan S, Chen Z, Wang R, Marshall FF, Chung LWK, Wu D. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol Cancer 2010; 9:9. [PMID: 20085644 PMCID: PMC2820018 DOI: 10.1186/1476-4598-9-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 01/19/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Myeloid cell leukemia-1 (Mcl-1) is a member of the Bcl-2 family, which inhibits cell apoptosis by sequestering pro-apoptotic proteins Bim and Bid. Mcl-1 overexpression has been associated with progression in leukemia and some solid tumors including prostate cancer (PCa). However, the regulatory mechanism for Mcl-1 expression in PCa cells remains elusive. RESULTS Immunohistochemical analyses revealed that Mcl-1 expression was elevated in PCa specimens with high Gleason grades and further significantly increased in bone metastasis, suggesting a pivotal role of Mcl-1 in PCa metastasis. We further found that vascular endothelial growth factor (VEGF) is a novel regulator of Mcl-1 expression in PCa cells. Inhibition of endogenous Mcl-1 induced apoptosis, indicating that Mcl-1 is an important survival factor in PCa cells. Neuropilin-1 (NRP1), the "co-receptor" for VEGF165 isoform, was found to be highly expressed in PCa cells, and indispensible in the regulation of Mcl-1. Intriguingly, VEGF165 promoted physical interaction between NRP1 and hepatocyte growth factor (HGF) receptor c-MET, and facilitated c-MET phosphorylation via a NRP1-dependent mechanism. VEGF165 induction of Mcl-1 may involve rapid activation of Src kinases and signal transducers and activators of transcription 3 (Stat3). Importantly, NRP1 overexpression and c-MET activation were positively associated with progression and bone metastasis in human PCa specimens and xenograft tissues. CONCLUSIONS This study demonstrated that Mcl-1 overexpression is associated with PCa bone metastasis. Activation of VEGF165-NRP1-c-MET signaling could confer PCa cells survival advantages by up-regulating Mcl-1, contributing to PCa progression.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adeboye O Osunkoya
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA,Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shareen Iqbal
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaojian Yang
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ruoxiang Wang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Fray F Marshall
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Leland WK Chung
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daqing Wu
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
48
|
Perez EA, Hillman DW, Dentchev T, Le-Lindqwister NA, Geeraerts LH, Fitch TR, Liu H, Graham DL, Kahanic SP, Gross HM, Patel TA, Palmieri FM, Dueck AC. North Central Cancer Treatment Group (NCCTG) N0432: phase II trial of docetaxel with capecitabine and bevacizumab as first-line chemotherapy for patients with metastatic breast cancer. Ann Oncol 2009; 21:269-274. [PMID: 19901014 DOI: 10.1093/annonc/mdp512] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Docetaxel (T; Taxotere) with capecitabine (X) is active against metastatic breast cancer (MBC); bevacizumab (BV) has demonstrated efficacy with taxanes in the first-line setting. This study was conducted to assess the safety and efficacy of TX-BV in patients with MBC. PATIENTS AND METHODS In this single-arm, multicenter phase II study, patients received first-line bevacizumab 15 mg/kg and docetaxel 75 mg/m(2) on day 1 and capecitabine 825 mg/m(2) twice per day on days 1-14 every 21 days. Primary and secondary end points were tumor response rate (RR), overall survival (OS), progression-free survival (PFS), and toxicity. RESULTS A total of 45 assessable patients received TX-BV for a median of seven cycles. Two complete and 20 partial responses were observed (overall RR 49%); nine patients had stable disease >6 months, for a clinical benefit rate of 69%. Median response duration was 11.8 months. Median OS and PFS were 28.4 and 11.1 months, respectively. Grade 3/4 adverse events included hand-foot syndrome (29%), fatigue (20%), febrile neutropenia (18%), and diarrhea (18%). In cycles 3-10, median dose levels of docetaxel and capecitabine were 60 mg/m(2) and 660 mg/m(2), respectively. CONCLUSION TX-BV demonstrated significant activity; dose modifications were required to manage drug-related toxic effects.
Collapse
Affiliation(s)
- E A Perez
- Multidisciplinary Breast Clinic and Breast Cancer Program, Mayo Clinic, Jacksonville, FL.
| | | | | | - N A Le-Lindqwister
- Illinois Oncology Research Association Community Clinical Oncology Program, Peoria, IL
| | - L H Geeraerts
- Community Clinical Oncology Program, MeritCare Hospital, Fargo, ND
| | | | - H Liu
- Mayo Clinic, Rochester, MN
| | | | - S P Kahanic
- Siouxland Hematology-Oncology Associates, Sioux City, IA
| | - H M Gross
- Hematology and Oncology of Dayton, Inc., Dayton, OH, USA
| | - T A Patel
- Multidisciplinary Breast Clinic and Breast Cancer Program, Mayo Clinic, Jacksonville, FL
| | - F M Palmieri
- Multidisciplinary Breast Clinic and Breast Cancer Program, Mayo Clinic, Jacksonville, FL
| | | |
Collapse
|
49
|
Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R, Toillon RA, Oxombre B, Hondermarck H, Le Bourhis X. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 2009; 28:1960-70. [PMID: 19330021 DOI: 10.1038/onc.2009.61] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Trk family of neurotrophin tyrosine kinase receptors is emerging as an important player in carcinogenic progression in non-neuronal tissues. Here, we show that breast tumors present high levels of TrkA and phospho-TrkA compared to normal breast tissues. To further evaluate the precise functions of TrkA overexpression in breast cancer development, we have performed a series of biological tests using breast cancer cells that stably overexpress TrkA. We show that (1) TrkA overexpression promoted cell growth, migration and invasion in vitro; (2) overexpression of TrkA per se conferred constitutive activation of its tyrosine kinase activity; (3) signal pathways including PI3K-Akt and ERK/p38 MAP kinases were activated by TrkA overexpression and were required for the maintenance of a more aggressive cellular phenotype; and (4) TrkA overexpression enhanced tumor growth, angiogenesis and metastasis of xenografted breast cancer cells in immunodeficient mice. Moreover, recovered metastatic cells from the lungs exhibited enhanced anoikis resistance that was abolished by the pharmacological inhibitor K252a, suggesting that TrkA-promoted breast tumor metastasis could be mediated at least in part by enhancing anoikis resistance. Together, these results provide the first direct evidence that TrkA overexpression enhances the tumorigenic properties of breast cancer cells and point to TrkA as a potential target in breast cancer therapy.
Collapse
Affiliation(s)
- C Lagadec
- INSERM U908, Growth factor signaling in breast cancer, Functional proteomics, University Lille 1, IFR-147, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Visigalli D, Palmieri D, Strangio A, Astigiano S, Barbieri O, Casartelli G, Zicca A, Manduca P. The carboxyl terminal trimer of procollagen I induces pro-metastatic changes and vascularization in breast cancer cells xenografts. BMC Cancer 2009; 9:59. [PMID: 19226458 PMCID: PMC2652491 DOI: 10.1186/1471-2407-9-59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/18/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The COOH terminal peptide of Pro-collagen type I (PICP, also called C3) is chemotactic for endothelial melanoma and breast cancer cells. PICP induces the expression of Metalloproteinases-2 and -9, of Vascular endothelial growth factor and of the chemokine CXCL-12 receptor CXCR4 in MDA MB231 breast carcinoma cells in vitro. METHODS We used a model of xenografts in BalbC/nude mice obtaining tumors by implanting in contro-lateral subcutaneous positions MDA MB231 cells added or not with purified PICP and studied the earlier phases of tumor development, up to 48 days from implant, by histology, immunostain and in situ hybridization. RESULTS Addition of PICP promotes rapid vascularization of the tumors while does not affect mitotic and apoptotic indexes and overall tumor growth. PICP-treated, relative to control tumors, show up-modulation of Vascular endothelial factor, Metalloproteinase-9 and CXCR4, all tumor prognostic genes; they also show down-modulation of the endogenous Metalloproteinase inhibitor, reversion-inducing-cysteine-rich protein with kazal motifs, and a different pattern of modulation of Tissue Inhibitor of Metalloproteinase-2. These changes occur in absence of detectable expression of CXCL-12, up to 38 days, in control and treated tumors. CONCLUSION PICP has an early promoting effect in the acquisition by the tumors of prometastatic phenotype. PICP may be play a relevant role in the productive interactions between stroma and tumor cells by predisposing the tumor cells to respond to the proliferation stimuli ensuing the activation of signaling by engagement of CXCR4 by cytokines and by fostering their extravasion, due to the induction of increased vascular development.
Collapse
Affiliation(s)
- Davide Visigalli
- Dip Biologia, Laboratorio di Genetica, Università di Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|