1
|
Abdel-Razeq H, Tamimi F, Iweir S, Sharaf B, Abdel-Razeq S, Salama O, Edaily S, Bani Hani H, Azzam K, Abaza H. Genetic counseling and genetic testing for pathogenic germline mutations among high-risk patients previously diagnosed with breast cancer: a traceback approach. Sci Rep 2024; 14:12820. [PMID: 38834641 DOI: 10.1038/s41598-024-63300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Genetic counseling and testing are more accessible than ever due to reduced costs, expanding indications and public awareness. Nonetheless, many patients missed the opportunity of genetic counseling and testing due to barriers that existed at that time of their cancer diagnoses. Given the identified implications of pathogenic mutations on patients' treatment and familial outcomes, an opportunity exists to utilize a 'traceback' approach to retrospectively examine their genetic makeup and provide consequent insights to their disease and treatment. In this study, we identified living patients diagnosed with breast cancer (BC) between July 2007 and January 2022 who would have been eligible for testing, but not tested. Overall, 422 patients met the eligibility criteria, 282 were reached and invited to participate, and germline testing was performed for 238, accounting for 84.4% of those invited. The median age (range) was 39.5 (24-64) years at BC diagnosis and 49 (31-75) years at the date of testing. Genetic testing revealed that 25 (10.5%) patients had pathogenic/likely pathogenic (P/LP) variants; mostly in BRCA2 and BRCA1. We concluded that long overdue genetic referral through a traceback approach is feasible and effective to diagnose P/LP variants in patients with history of BC who had missed the opportunity of genetic testing, with potential clinical implications for patients and their relatives.
Collapse
Affiliation(s)
- Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan.
- School of Medicine, The University of Jordan, Amman, Jordan.
| | - Faris Tamimi
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | - Sereen Iweir
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
- CRDF Global, Global Health Mission Area, Amman, Jordan
| | - Baha Sharaf
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | | | - Osama Salama
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | - Sarah Edaily
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | - Hira Bani Hani
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | - Khansa Azzam
- Department of Internal Medicine, King Hussein Cancer Center, 202 Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | - Haneen Abaza
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
2
|
Alonso N, Menao S, Lastra R, Arruebo M, Bueso MP, Pérez E, Murillo ML, Álvarez M, Alonso A, Rebollar S, Cruellas M, Arribas D, Ramos M, Isla D, Galano-Frutos JJ, García-Cebollada H, Sancho J, Andrés R. Association between missense variants of uncertain significance in the CHEK2 gene and hereditary breast cancer: a cosegregation and bioinformatics analysis. Front Genet 2024; 14:1274108. [PMID: 38476463 PMCID: PMC10927753 DOI: 10.3389/fgene.2023.1274108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/06/2023] [Indexed: 03/14/2024] Open
Abstract
Inherited mutations in the CHEK2 gene have been associated with an increased lifetime risk of developing breast cancer (BC). We aim to identify in the study population the prevalence of mutations in the CHEK2 gene in diagnosed BC patients, evaluate the phenotypic characteristics of the tumor and family history, and predict the deleteriousness of the variants of uncertain significance (VUS). A genetic study was performed, from May 2016 to April 2020, in 396 patients diagnosed with BC at the University Hospital Lozano Blesa of Zaragoza, Spain. Patients with a genetic variant in the CHEK2 gene were selected for the study. We performed a descriptive analysis of the clinical variables, a bibliographic review of the variants, and a cosegregation study when possible. Moreover, an in-depth bioinformatics analysis of CHEK2 VUS was carried out. We identified nine genetic variants in the CHEK2 gene in 10 patients (two pathogenic variants and seven VUS). This supposes a prevalence of 0.75% and 1.77%, respectively. In all cases, there was a family history of BC in first- and/or second-degree relatives. We carried out a cosegregation study in two families, being positive in one of them. The bioinformatics analyses predicted the pathogenicity of six of the VUS. In conclusion, CHEK2 mutations have been associated with an increased risk for BC. This risk is well-established for foundation variants. However, the risk assessment for other variants is unclear. The incorporation of bioinformatics analysis provided supporting evidence of the pathogenicity of VUS.
Collapse
Affiliation(s)
- Natalia Alonso
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, Hospital San Pedro, Logroño, Spain
| | - Sebastián Menao
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Biochemistry Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - Rodrigo Lastra
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - María Arruebo
- Biochemistry Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - María P. Bueso
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - Esther Pérez
- Breast Unit, University Hospital Lozano Blesa, Zaragoza, Spain
| | - M. Laura Murillo
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - María Álvarez
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - Alba Alonso
- Biochemistry Department, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Soraya Rebollar
- Biochemistry Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - Mara Cruellas
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, University Hospital of Valld’Hebron, and Valld’Hebron Institute of Oncology, Barcelona, Spain
| | - Dolores Arribas
- General Surgery Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - Mónica Ramos
- Biochemistry Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - Dolores Isla
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, University Hospital Lozano Blesa, Zaragoza, Spain
| | - Juan José Galano-Frutos
- Department of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, Zaragoza, Spain
- Biocomputation and Complex Systems Physics Institute (BIFI), Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, University of Zaragoza, Zaragoza, Spain
| | - Helena García-Cebollada
- Department of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, Zaragoza, Spain
- Biocomputation and Complex Systems Physics Institute (BIFI), Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, University of Zaragoza, Zaragoza, Spain
| | - Javier Sancho
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Department of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, Zaragoza, Spain
- Biocomputation and Complex Systems Physics Institute (BIFI), Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, University of Zaragoza, Zaragoza, Spain
| | - Raquel Andrés
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- Medical Oncology Department, University Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
3
|
Pathogenesis and Potential Therapeutic Targets for Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13122978. [PMID: 34198652 PMCID: PMC8232221 DOI: 10.3390/cancers13122978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous tumor characterized by early recurrence, high invasion, and poor prognosis. Currently, its treatment includes chemotherapy, which shows a suboptimal efficacy. However, with the increasing studies on TNBC subtypes and tumor molecular biology, great progress has been made in targeted therapy for TNBC. The new developments in the treatment of breast cancer include targeted therapy, which has the advantages of accurate positioning, high efficiency, and low toxicity, as compared to surgery, radiotherapy, and chemotherapy. Given its importance as cancer treatment, we review the latest research on the subtypes of TNBC and relevant targeted therapies.
Collapse
|
4
|
Investigation of monogenic causes of familial breast cancer: data from the BEACCON case-control study. NPJ Breast Cancer 2021; 7:76. [PMID: 34117267 PMCID: PMC8196173 DOI: 10.1038/s41523-021-00279-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
Breast cancer (BC) has a significant heritable component but the genetic contribution remains unresolved in the majority of high-risk BC families. This study aims to investigate the monogenic causes underlying the familial aggregation of BC beyond BRCA1 and BRCA2, including the identification of new predisposing genes. A total of 11,511 non-BRCA familial BC cases and population-matched cancer-free female controls in the BEACCON study were investigated in two sequencing phases: 1303 candidate genes in up to 3892 cases and controls, followed by validation of 145 shortlisted genes in an additional 7619 subjects. The coding regions and exon–intron boundaries of all candidate genes and 14 previously proposed BC genes were sequenced using custom designed sequencing panels. Pedigree and pathology data were analysed to identify genotype-specific associations. The contribution of ATM, PALB2 and CHEK2 to BC predisposition was confirmed, but not RAD50 and NBN. An overall excess of loss-of-function (LoF) (OR 1.27, p = 9.05 × 10−9) and missense (OR 1.27, p = 3.96 × 10−73) variants was observed in the cases for the 145 candidate genes. Leading candidates harbored LoF variants with observed ORs of 2–4 and individually accounted for no more than 0.79% of the cases. New genes proposed by this study include NTHL1, WRN, PARP2, CTH and CDK9. The new candidate BC predisposition genes identified in BEACCON indicate that much of the remaining genetic causes of high-risk BC families are due to genes in which pathogenic variants are both very rare and convey only low to moderate risk.
Collapse
|
5
|
Ellsworth DL, Turner CE, Ellsworth RE. A Review of the Hereditary Component of Triple Negative Breast Cancer: High- and Moderate-Penetrance Breast Cancer Genes, Low-Penetrance Loci, and the Role of Nontraditional Genetic Elements. JOURNAL OF ONCOLOGY 2019; 2019:4382606. [PMID: 31379942 PMCID: PMC6652078 DOI: 10.1155/2019/4382606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022]
Abstract
Triple negative breast cancer (TNBC), representing 10-15% of breast tumors diagnosed each year, is a clinically defined subtype of breast cancer associated with poor prognosis. The higher incidence of TNBC in certain populations such as young women and/or women of African ancestry and a unique pathological phenotype shared between TNBC and BRCA1-deficient tumors suggest that TNBC may be inherited through germline mutations. In this article, we describe genes and genetic elements, beyond BRCA1 and BRCA2, which have been associated with increased risk of TNBC. Multigene panel testing has identified high- and moderate-penetrance cancer predisposition genes associated with increased risk for TNBC. Development of large-scale genome-wide SNP assays coupled with genome-wide association studies (GWAS) has led to the discovery of low-penetrance TNBC-associated loci. Next-generation sequencing has identified variants in noncoding RNAs, viral integration sites, and genes in underexplored regions of the human genome that may contribute to the genetic underpinnings of TNBC. Advances in our understanding of the genetics of TNBC are driving improvements in risk assessment and patient management.
Collapse
Affiliation(s)
| | - Clesson E. Turner
- Murtha Cancer Center/Research Program, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Rachel E. Ellsworth
- Murtha Cancer Center/Research Program, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
6
|
Brandão RD, Mensaert K, López‐Perolio I, Tserpelis D, Xenakis M, Lattimore V, Walker LC, Kvist A, Vega A, Gutiérrez‐Enríquez S, Díez O, de la Hoya M, Spurdle AB, De Meyer T, Blok MJ. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Int J Cancer 2019; 145:401-414. [PMID: 30623411 PMCID: PMC6635756 DOI: 10.1002/ijc.32114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.
Collapse
Affiliation(s)
- Rita D. Brandão
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Klaas Mensaert
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
| | - Irene López‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Demis Tserpelis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Markos Xenakis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical SciencesLund UniversityLundSweden
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐Servicio Galgo de SaúdeGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | | | - Orland Díez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital of Vall d'HebronBarcelonaSpain
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
- CRIG (Cancer Research Institute Ghent)Ghent UniversityGhentBelgium
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| |
Collapse
|
7
|
Abstract
Only a few breast cancer histologic subtypes harbor distinct genetic alterations that are associated with a specific morphology (genotype-phenotype correlation). Secretory carcinomas and adenoid cystic carcinomas are each characterized by recurrent translocations, and invasive lobular carcinomas frequently have CDH1 mutations. Solid papillary carcinoma with reverse polarity is a rare breast cancer subtype with a distinctive morphology and recently identified IDH2 mutations. We review the clinical and pathologic features and underlying genetic alterations of those breast cancer subtypes with established genotype-phenotype correlations and discuss the phenotypes associated with germline mutations in genes associated with hereditary breast cancer.
Collapse
Affiliation(s)
- Jonathan D Marotti
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755-1404, USA
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Yotsukura S, Karasuyama M, Takigawa I, Mamitsuka H. Exploring phenotype patterns of breast cancer within somatic mutations: a modicum in the intrinsic code. Brief Bioinform 2017; 18:619-633. [PMID: 27197545 DOI: 10.1093/bib/bbw040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 11/12/2022] Open
Abstract
Triple-negative (TN) breast cancer (BC) patients have limited treatment options and poor prognosis even after extant treatments and standard chemotherapeutic regimens. Linking TN patients to clinically known phenotypes with appropriate treatments is vital. Location-specific sequence variants are expected to be useful for this purpose by identifying subgroups within a disease population. Single gene mutational signatures have been widely reported, with related phenotypes in literature. We thoroughly survey currently available mutations (and mutated genes), linked to BC phenotypes, to demonstrate their limited performance as sole predictors/biomarkers to assign phenotypes to patients. We then explore mutational combinations, as a pilot study, using The Cancer Genome Atlas Research Network mutational data of BC and three machine learning methods: association rules (limitless arity multiple procedure), decision tree and hierarchical disjoint clustering. The study results in a patient classification scheme through combinatorial mutations in Phosphatidylinositol-4,5-Bisphosphate 3-Kinase and tumor protein 53, being consistent with all three methods, implying its validity from a diverse viewpoint. However, it would warrant further research to select multi-gene signatures to identify phenotypes specifically and be clinically used routinely.
Collapse
|
9
|
Gargiulo P, Pensabene M, Milano M, Arpino G, Giuliano M, Forestieri V, Condello C, Lauria R, De Placido S. Long-term survival and BRCA status in male breast cancer: a retrospective single-center analysis. BMC Cancer 2016; 16:375. [PMID: 27377827 PMCID: PMC4932666 DOI: 10.1186/s12885-016-2414-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
Background Male breast cancer (MBC) is rare. Given the paucity of randomized trials, treatment is generally extrapolated from female breast cancer guidelines. Methods This is a retrospective analysis of all male patients presenting with MBC at the Department of Oncology at University Federico II of Naples between January 1989 and January 2014. We recorded the following data: baseline characteristics (age, height, weight, body mass index, risk factors, family history), tumor characteristics (side affected, stage, histotype, hormonal and HER2 status, and Ki-67 expression), treatment (type of surgery, chemotherapy, endocrine therapy, and/or radiotherapy), BRCA1/2 mutation status (if available), other tumors, and long-term survival. Results Forty-seven patients were analyzed. Median age was 62.0 [55.0–72.0]. Among risk factors, obesity and family history of breast cancer were associated with 21 % and 30 % of MBC cases, respectively. The majority of tumors were diagnosed at an early stage: stage I (34.0 %) and stage II (44.7 %). Infiltrating ductal carcinoma was the most frequent histologic subtype (95.8 %). Hormone receptors were generally positive (88.4 % of cases were Estrogen receptor [ER] positive and 81.4 % Progesteron receptor [PgR] positive). Human epidermal growth factor receptor 2 (HER2) was positive in 26.8 % of cases; 7.0 % of MBCs were triple negative. The tumor had high proliferation index (Ki67 ≥ 20 %) in 64.7 %. Surgery was predominantly mastectomy (85.1 %), whereas quadrantectomy was performed in 14.9 % of patients. Adjuvant chemotherapy was administered to 70.7 % of patients, endocrine therapy to 90.2 %, trastuzumab to 16.7 % and radiotherapy to 32.6 %. BRCA status was available for 17 patients: 10 wild-type, 1 BRCA1 carrier, 5 BRCA2 carriers, 1 unknown variant sequence. The overall estimated long-term survival was about 90 % at 5 years, 80 % at 10 years and 70 % at 20 years. Patients carrying a BRCA mutation had a significantly lower survival than patients with wild-type BRCA (p = 0.04). Conclusions Long-term survival was high in MBC patients referred to our clinical unit. Survival was poorer in BRCA-mutated patients than in patients with wild-type BRCA.
Collapse
Affiliation(s)
- Piera Gargiulo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Matilde Pensabene
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Monica Milano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.,Lester and Sue Smith Breast Center at Baylor College of Medicine, Houston, Tx, USA
| | - Valeria Forestieri
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Caterina Condello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Rossella Lauria
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
10
|
Madaras L, Balint N, Gyorffy B, Tokes AM, Barshack I, Yosepovich A, Friedman E, Paluch-Shimon S, Zippel D, Baghy K, Timar J, Kovalszky I, Kulka J, Szasz AM. BRCA Mutation-Related and Claudin-Low Breast Cancer: Blood Relatives or Stepsisters? Pathobiology 2015; 83:1-12. [DOI: 10.1159/000439135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022] Open
|
11
|
Wittersheim M, Büttner R, Markiefka B. Genotype/Phenotype correlations in patients with hereditary breast cancer. Breast Care (Basel) 2015; 10:22-6. [PMID: 25960721 DOI: 10.1159/000380900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Of all breast cancer cases, 5-10% can be attributed to germline mutations, and the high-susceptibility genes BRCA1 and BRCA2 account for about 25-28% of these cases. For the remainder, several genes of moderate and low penetrance have been discovered. Histopathologic characteristics have been studied in small cohorts, but for most of the known non-BRCA1/2-associated hereditary breast cancers, the histologic and immunohistochemical phenotypes are not yet identified. Particularly BRCA1 tumors are associated with a distinct morphology and immunohistochemical characteristics that differ from sporadic breast cancer of age-matched controls. The recognition of features characteristic of these mutations can be helpful to identify patients likely to carry a germline mutation and to assess which gene should be screened for first, in families with a high occurrence of breast and ovarian cancer.
Collapse
|
12
|
Aloraifi F, Alshehhi M, McDevitt T, Cody N, Meany M, O'Doherty A, Quinn C, Green A, Bracken A, Geraghty J. Phenotypic analysis of familial breast cancer: Comparison of BRCAx tumors with BRCA1-, BRCA2-carriers and non-familial breast cancer. Eur J Surg Oncol 2015; 41:641-6. [DOI: 10.1016/j.ejso.2015.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 01/21/2023] Open
|
13
|
Larsen MJ, Thomassen M, Gerdes AM, Kruse TA. Hereditary breast cancer: clinical, pathological and molecular characteristics. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2014; 8:145-55. [PMID: 25368521 PMCID: PMC4213954 DOI: 10.4137/bcbcr.s18715] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/02/2023]
Abstract
Pathogenic mutations in BRCA1 or BRCA2 are only detected in 25% of families with a strong history of breast cancer, though hereditary factors are expected to be involved in the remaining families with no recognized mutation. Molecular characterization is expected to provide new insight into the tumor biology to guide the search of new high-risk alleles and provide better classification of the growing number of BRCA1/2 variants of unknown significance (VUS). In this review, we provide an overview of hereditary breast cancer, its genetic background, and clinical implications, before focusing on the pathologically and molecular features associated with the disease. Recent transcriptome and genome profiling studies of tumor series from BRCA1/2 mutation carriers as well as familial non-BRCA1/2 will be discussed. Special attention is paid to its association with molecular breast cancer subtypes as well as the latest advances in predicting BRCA1/2 involvement (BRCAness) using molecular signatures, for improved diagnostics and selection of patients sensitive to targeted therapeutics.
Collapse
Affiliation(s)
- Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Senkus E, Szade J, Pieczyńska B, Zaczek A, Świerblewski M, Biernat W, Jassem J. Are bilateral breast cancers and breast cancers coexisting with ovarian cancer different from solitary tumors? A pair-matched immunohistochemical analysis aimed at intrinsic tumor phenotype. Pathol Int 2014; 64:508-17. [PMID: 25296577 DOI: 10.1111/pin.12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
Patients with bilateral breast cancer (BBC) and breast-ovarian cancer syndrome (BOCS) constitute populations potentially enriched for molecular defects involved in the pathomechanisms of these malignancies. The aim of our study was to compare tumor morphology and expression of estrogen and progesterone receptor, HER2, Ki67, cytokeratin 5/6, E-cadherin, vimentin and epidermal growth factor receptor in tissue microarrays from 199 tumors from BBC or BOCS patients and 199 age-matched solitary tumors. Compared to controls, BBC and BOCS considered jointly had lower incidence of DCIS, lower expression of PgR and HER2, and higher expression of Ki67 and vimentin. BOCS tumors were of higher grade, had lower expression of ER and PgR and higher expression of Ki67, CK5/6, vimentin and EGFR. BBC had less DCIS component, lower HER2 expression and higher Ki67 expression. Metachronous BBC (mBBC) had lower expression of ER, PgR and HER2, and higher expression of Ki67 and vimentin. Synchronous BBC (sBBC) had less DCIS component, higher expression of ER, and lower expression of CK5/6, EGFR and E-cadherin. BBC and breast cancers in BOCS differ in many aspects from solitary tumors. BBC are a heterogeneous group of tumors, differing between sBBC and mBBC. mBBC phenotype shares many features with BOCS tumors.
Collapse
Affiliation(s)
- Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
15
|
Rizzolo P, Silvestri V, Tommasi S, Pinto R, Danza K, Falchetti M, Gulino M, Frati P, Ottini L. Male breast cancer: genetics, epigenetics, and ethical aspects. Ann Oncol 2014; 24 Suppl 8:viii75-viii82. [PMID: 24131976 DOI: 10.1093/annonc/mdt316] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND STUDY DESIGN Male breast cancer (MBC) is a rare disease compared with female BC and our current understanding regarding breast carcinogenesis in men has been largely extrapolated from the female counterpart. We focus on differences between the ethical issues related to male and female BC patients. A systematic literature search by using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), was carried out to provide a synopsis of the current research in the field of MBC genetics, epigenetics and ethics. Original articles and reviews published up to September 2012 were selected by using the following search key words to query the PubMed website: 'male breast cancer', 'male breast cancer and genetic susceptibility', 'male breast cancer and epigenetics', 'male breast cancer and methylation', 'male breast cancer and miRNA', 'male breast cancer and ethics'. RESULTS AND CONCLUSIONS As in women, three classes of breast cancer genetic susceptibility (high, moderate, and low penetrance) are recognized in men. However, genes involved and their impact do not exactly overlap in female and male BC. Epigenetic alterations are currently scarcely investigated in MBC, however, the different methylation and miRNA expression profiles identified to date in female and male BCs suggest a potential role for epigenetic alterations as diagnostic biomarkers. Overall, much still needs to be learned about MBC and, because of its rarity, the main effort is to develop large consortia for moving forward in understanding MBC and improving the management of MBC patients on a perspective of gender medicine.
Collapse
Affiliation(s)
- P Rizzolo
- Department of Molecular Medicine, 'Sapienza' University of Rome, Rome
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Larsen MJ, Thomassen M, Tan Q, Lænkholm AV, Bak M, Sørensen KP, Andersen MK, Kruse TA, Gerdes AM. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families. BMC Med Genomics 2014; 7:9. [PMID: 24479546 PMCID: PMC3909442 DOI: 10.1186/1755-8794-7-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/24/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar underlying pathophysiological mechanisms. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. METHODS In the current study we analyzed a collection of 70 frozen breast tumor biopsies from a total of 58 families by global RNA profiling and promoter methylation analysis. RESULTS We show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist among non-BRCA1/2 breast cancers. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. CONCLUSIONS Our finding indicates involvement of hereditary factors in non-BRCA1/2 breast cancer families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. This is the first study to provide a biological link between breast cancers from family members of high-risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to search for new high penetrance susceptibility genes.
Collapse
Affiliation(s)
- Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Sdr, Boulevard 29, Odense 5000, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Should BRCA2 mutation carriers avoid neoadjuvant chemotherapy? Med Oncol 2014; 31:850. [DOI: 10.1007/s12032-014-0850-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
|
18
|
Senkus E, Szade J, Pieczyńska B, Żaczek A, Brożek I, Radecka B, Kowalczyk A, Wełnicka-Jaśkiewicz M, Jassem J. Are bilateral breast cancers different from breast cancers coexisting with ovarian cancer? An immunohistochemical analysis aimed at intrinsic tumor phenotype. Breast 2013; 22:425-30. [PMID: 23642527 DOI: 10.1016/j.breast.2013.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/19/2013] [Accepted: 04/03/2013] [Indexed: 11/24/2022] Open
Abstract
RATIONALE Bilateral breast cancers (BBC) and breast cancers coexisting with ovarian cancer (BOCS) are associated with genetic predisposition more frequently than sporadic cases. We compared the phenotypes of these tumors to better understand their pathomechanisms and aid the guiding of their clinical management. MATERIALS AND METHODS Tumor morphology and expression of ER, PgR, HER2, Ki67, CK5/6, E-cadherin, vimentin and EGFR were assessed in a tissue microarray containing cores from 174 BBC, 23 BOCS and 2 BBC + BOCS. RESULTS BOCS tumors were characterized by higher incidence of EGFR expression, HER2 negativity and lower incidence of intraductal component. HER2-positive phenotypes were marginally more frequent in the BBC group and triple negative tumors - in BOCS. CONCLUSION Breast cancers from BOCS patients are characterized by more aggressive phenotype, most probably related to their more frequent association with BRCA1 mutation.
Collapse
Affiliation(s)
- Elżbieta Senkus
- Department of Oncology & Radiotherapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The complex genetic landscape of familial breast cancer. Hum Genet 2013; 132:845-63. [PMID: 23552954 DOI: 10.1007/s00439-013-1299-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023]
Abstract
Familial breast cancer represents a minor percentage of all human breast cancers. Mutations in two high susceptibility genes BRCA1 and BRCA2 explain around 25 % of familial breast cancers, while other high, moderate and low susceptibility genes explain up to 20 % more of breast cancer families. Thus, it is important to decipher the genetic architecture of families that show no mutations to improve genetic counselling. The comprehensive description of familial breast cancer using different techniques and platforms has shown to be very valuable for better patient diagnosis, tumour surveillance, and ultimately patient treatment. This review focuses on the complex landscape of pathological, protein, genetic and genomic features associated with BRCA1-, BRCA2-, and non-BRCA1/BRCA2-related cancers described up to date. Special emphasis deserves the coexistence of distinct molecular breast cancer subtypes, the development of tumour classifiers to predict BRCA1/2 mutations, and the last insights from recent whole genome sequencing studies and miRNA profiling.
Collapse
|
20
|
Im KS, Kim IH, Kim NH, Lim HY, Kim JH, Sur JH. Breed-related differences in altered BRCA1 expression, phenotype and subtype in malignant canine mammary tumors. Vet J 2013; 195:366-72. [DOI: 10.1016/j.tvjl.2012.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/18/2012] [Accepted: 07/11/2012] [Indexed: 01/26/2023]
|
21
|
Saponaro C, Malfettone A, Ranieri G, Danza K, Simone G, Paradiso A, Mangia A. VEGF, HIF-1α expression and MVD as an angiogenic network in familial breast cancer. PLoS One 2013; 8:e53070. [PMID: 23326384 PMCID: PMC3543407 DOI: 10.1371/journal.pone.0053070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/28/2012] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, which plays an important role in tumor growth and progression of breast cancer, is regulated by a balance between pro- and anti-angiogenic factors. Expression of vascular endothelial growth factor (VEGF) is up-regulated during hypoxia by hypoxia-inducible factor-1α (HIF-1α). It is known that there is an interaction between HIF-1α and BRCA1 carrier cancers, but little has been reported about angiogenesis in BRCA1-2 carrier and BRCAX breast cancers. In this study, we investigated the expression of VEGF and HIF-1α and microvessel density (MVD) in 26 BRCA1-2 carriers and 58 BRCAX compared to 77 sporadic breast cancers, by immunohistochemistry. VEGF expression in BRCA1-2 carriers was higher than in BRCAX cancer tissues (p = 0.0001). Furthermore, VEGF expression was higher in both BRCA1-2 carriers and BRCAX than the sporadic group (p<0.0001). VEGF immunoreactivity was correlated with poor tumor grade (p = 0.0074), hormone receptors negativity (p = 0.0206, p = 0.0002 respectively), and MIB-1-labeling index (p = 0.0044) in familial cancers (BRCA1-2 and BRCAX). The percentage of nuclear HIF-1α expression was higher in the BRCA1-2 carriers than in BRCAX cancers (p<0.05), and in all familial than in sporadic tumor tissues (p = 0.0045). A higher MVD was observed in BRCA1-2 carrier than in BRCAX and sporadic cancer tissues (p = 0.002, p = 0.0001 respectively), and in all familial tumors than in sporadic tumors (p = 0.01). MVD was positively related to HIF-1α expression in BRCA1-2 carriers (r = 0.521, p = 0.006), and, in particular, we observed a highly significant correlation in the familial group (r = 0.421, p<0.0001). Our findings suggest that angiogenesis plays a crucial role in BRCA1-2 carrier breast cancers. Prospective studies in larger BRCA1-2 carrier series are needed to improve the best therapeutic strategies for this subgroup of breast cancer patients.
Collapse
Affiliation(s)
- Concetta Saponaro
- Functional Biomorphology Laboratory, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Andrea Malfettone
- Functional Biomorphology Laboratory, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Girolamo Ranieri
- Unit of Interventional Radiology, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Katia Danza
- Molecular Genetics Laboratory, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Giovanni Simone
- Pathology Department, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Angelo Paradiso
- Scientific Direction, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, National Cancer Research Centre, Istituto Tumori “Giovanni Paolo II”, Bari, Italy
- * E-mail:
| |
Collapse
|
22
|
Ottini L, Silvestri V, Rizzolo P, Falchetti M, Zanna I, Saieva C, Masala G, Bianchi S, Manoukian S, Barile M, Peterlongo P, Varesco L, Tommasi S, Russo A, Giannini G, Cortesi L, Viel A, Montagna M, Radice P, Palli D. Clinical and pathologic characteristics of BRCA-positive and BRCA-negative male breast cancer patients: results from a collaborative multicenter study in Italy. Breast Cancer Res Treat 2012; 134:411-8. [PMID: 22527108 DOI: 10.1007/s10549-012-2062-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
Abstract
Recently, the number of studies on male breast cancer (MBC) has been increasing. However, as MBC is a rare disease there are difficulties to undertake studies to identify specific MBC subgroups. At present, it is still largely unknown whether BRCA-related breast cancer (BC) in men may display specific characteristics as it is for BRCA-related BC in women. To investigate the clinical-pathologic features of MBC in association with BRCA mutations we established a collaborative Italian Multicenter Study on MBC with the aim to recruit a large series of MBCs. A total of 382 MBCs, including 50 BRCA carriers, were collected from ten Italian Investigation Centres covering the whole country. In MBC patients, BRCA2 mutations were associated with family history of breast/ovarian cancer (p<0.0001), personal history of other cancers (p=0.044) and contralateral BC (p=0.001). BRCA2-associated MBCs presented with high tumor grade (p=0.001), PR-(p=0.026) and HER2+ (p=0.001) status. In a multivariate logistic model BRCA2 mutations showed positive association with personal history of other cancers (OR 11.42, 95% CI 1.79-73.08) and high tumor grade (OR 4.93, 95% CI 1.02-23.88) and inverse association with PR+ status (OR 0.19, 95% CI 0.04-0.92). Based on immunohistochemical (IHC) profile, four molecular subtypes of MBC were identified. Luminal A was the most common subtype (67.7%), luminal B was observed in 26.5% of the cases and HER2 positive and triple negative were represented by 2.1% and 3.7% of tumors, respectively. Intriguingly, we found that both luminal B and HER2 positive subtypes were associated with high tumor grade (p=0.003 and 0.006, respectively) and with BRCA2 mutations (p=0.016 and 0.001, respectively). In conclusion, our findings indicate that BRCA2-related MBCs represent a subgroup of tumors with a peculiar phenotype characterized by aggressive behavior. The identification of a BRCA2-associated phenotype might define a subset of MBC patients eligible for personalized clinical management.
Collapse
Affiliation(s)
- Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|