1
|
Panigrahi M, Rajawat D, Nayak SS, Jain K, Nayak A, Rajput AS, Sharma A, Dutt T. A comprehensive review on genomic insights and advanced technologies for mastitis prevention in dairy animals. Microb Pathog 2025; 199:107233. [PMID: 39694196 DOI: 10.1016/j.micpath.2024.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Mastitis is a multi-etiological disease that significantly impacts milk production and reproductive efficiency. It is highly prevalent in dairy populations subjected to intensive selection for higher milk yield and where inbreeding is common. The issue is amplified by climate change and poor hygiene management, making disease control challenging. Key obstacles include antibiotic resistance, maximum residue levels, horizontal gene transfer, and limited success in breeding for resistance. Predictive genomics offers a promising solution for mastitis prevention by identifying genetic traits linked with susceptibility to mastitis. This review compiles the research and findings on genomics and its allied approaches, such as pan-genomics, epigenetics, proteomics, and transcriptomics, for diagnosing, understanding, and treating mastitis. In dairy production, artificial intelligence (AI), particularly deep learning (DL) techniques like convolutional neural networks (CNNs), has demonstrated significant potential to enhance milk production and improve farm profitability. It highlights the integration of advanced technologies like machine learning (ML), CRISPR, and pan-genomics to improve our knowledge of mastitis epidemiology, pathogen evolution, and the development of more effective diagnostic, preventive and therapeutic strategies for dairy herds. Genomic advancements provide critical insights into the complexities of mastitis, offering new avenues for understanding its dynamics. Integrating these findings with key predisposing factors can drive targeted prevention and more effective disease management.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Ambika Nayak
- Division of Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Atul Singh Rajput
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
2
|
Laghouaouta H, Fraile LJ, Pena RN. Selection for Resilience in Livestock Production Systems. Int J Mol Sci 2024; 25:13109. [PMID: 39684818 DOI: 10.3390/ijms252313109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Selective breeding for improved animal resilience is becoming critical to increase the sustainability of production systems. Despite the existence of a genetic component for resilience, breeding for improved resilience has been limited by the absence of a consensus on its definition and quantifying method. In this work, we provide a review of (i) the definition of resilience and related concepts such as robustness, resistance, and tolerance; (ii) possible quantifying methods for resilience; (iii) its genetic background; and (iv) insights about its improvement through selective breeding. We suggest that a resilient animal may be defined as an individual that is able to cope with a perturbation(s) and rapidly bounce back to normal functioning if altered. Furthermore, since challenging conditions lead to trade-offs and, consequently, deviations between basic physiological functions, we suggest using these deviations as indicators for resilience. These resilience indicators may also be used as proxies to study the genetic determinism and background of resilience in livestock species. Finally, we discuss possible strategies to improve resilience and review the implementation of associated genetic markers for resilience indicators in selection schemes.
Collapse
Affiliation(s)
- Houda Laghouaouta
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Catalonia, Spain
| | - Lorenzo J Fraile
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Catalonia, Spain
| | - Ramona N Pena
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
3
|
Juozaitienė V, Jonikė V, Mardosaitė-Busaitienė D, Griciuvienė L, Kaminskienė E, Radzijevskaja J, Venskutonis V, Riškevičius V, Paulauskas A. Application of cold plasma therapy for managing subclinical mastitis in cows induced by Streptococcus agalactiae, Streptococcus uberis and Escherichia coli. Vet Anim Sci 2024; 25:100378. [PMID: 39148640 PMCID: PMC11325390 DOI: 10.1016/j.vas.2024.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The primary objective of this study was to assess the effectiveness of cold plasma therapy in managing subclinical mastitis in cows caused by Streptococcus agalactiae, Streptococcus uberis and Escherichia coli. After detection of mastitis pathogens, 38 cows were selected for cold plasma therapy for five days. On the fifth day of treatment, the mastitis agents were re-examined and no causative agents were identified. An additional evaluation conducted 28 days later confirmed the absence of mastitis. Cow productivity, milk composition and quality indicators were assessed at the beginning of the experiment and 32 days from the start (28 days after treatment cessation). After the mastitis treatment, the somatic cell count decreased significantly by between 2.89 and 7.09 times, and the milk yield of the cows at the end of the experiment increased from 0.63 kg per day to 2.82 kg per day (P < 0.01). These results highlight the potential of this innovative approach for managing a prevalent disease that causes substantial losses in the dairy industry. Furthermore, they lay the groundwork for expanded research involving larger sample sizes.
Collapse
Affiliation(s)
- Vida Juozaitienė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Vesta Jonikė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Dalytė Mardosaitė-Busaitienė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Loreta Griciuvienė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Evelina Kaminskienė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Jana Radzijevskaja
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Vilius Venskutonis
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Vitas Riškevičius
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| | - Algimantas Paulauskas
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
| |
Collapse
|
4
|
Wagner P, Brügemann K, Yin T, Engel P, König S. Inferring Causalities of Environmental and Genetic Factors for Differential Somatic Cell Count and Mastitis Pathogens in Dairy Cows Using Structural Equation Modelling. Genes (Basel) 2023; 14:2102. [PMID: 38003045 PMCID: PMC10671585 DOI: 10.3390/genes14112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to establish and evaluate a structural equation model to infer causal relationships among environmental and genetic factors on udder health. For this purpose, 537 Holstein Friesian cows were genotyped, and milk samples were analyzed for novel traits including differential somatic cell counts and specific mastitis pathogens. In the structural model, four latent variables (intramammary infection (IMI), production, time and genetics) were defined, which were explained using manifest measurable variables. The measurable variables included udder pathogens and somatic differential cell counts, milk composition, as well as significant SNP markers from previous genome-wide associations for major and minor pathogens. The housing system effect (i.e., compost-bedded pack barns versus cubicle barns) indicated a small influence on IMI with a path coefficient of -0.05. However, housing system significantly affected production (0.37), with ongoing causal effects on IMI (0.17). Thus, indirect associations between housing and udder health could be inferred via structural equation modeling. Furthermore, genotype by environment interactions on IMI can be represented, i.e., the detection of specific latent variables such as significant SNP markers only for specific housing systems. For the latent variable genetics, especially one SNP is of primary interest. This SNP is located in the EVA1A gene, which plays a fundamental role in the MAPK1 signaling pathway. Other identified genes (e.g., CTNNA3 and CHL1) support results from previous studies, and this gene also contributes to mechanisms of the MAPK1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany
| |
Collapse
|
5
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Essa B, Al-Sharif M, Abdo M, Fericean L, Ateya A. New Insights on Nucleotide Sequence Variants and mRNA Levels of Candidate Genes Assessing Resistance/Susceptibility to Mastitis in Holstein and Montbéliarde Dairy Cows. Vet Sci 2023; 10:vetsci10010035. [PMID: 36669036 PMCID: PMC9861242 DOI: 10.3390/vetsci10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
A major factor in the propagation of an infectious disease is host genetics. In this study, 180 dairy cows (90 of each breed: Holstein and Montbéliarde) were used. Each breed's tested dairy cows were divided into two groups of comparable size (45 cows each), mastitis-free and mastitis-affected groups. Each cow's jugular vein was punctured to obtain blood samples for DNA and RNA extraction. In the examined Holstein and Montbéliarde dairy cows, single nucleotide polymorphisms (SNPs) related with mastitis resistance/susceptibility were found in the RASGRP1, NFkB, CHL1, MARCH3, PDGFD, MAST3, EPS15L1, C1QTNF3, CD46, COX18, NEURL1, PPIE, and PTX3 genes. Chi-square analysis of identified SNPs revealed a significant difference in gene frequency between mastitic and healthy cows. Except for CHL1, mastitic dairy cows of two breeds had considerably higher mRNA levels of the examined genes than did healthy ones. Marker-assisted selection and monitoring of dairy cows' susceptibility to mastitis may be accomplished through the use of discovered SNPs and changes in the gene expression profile of the studied genes. These findings also point to a possible method for reducing mastitis in dairy cows through selective breeding of animals using genetic markers linked to an animal's ability to resist infection.
Collapse
Affiliation(s)
- Bothaina Essa
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +20-10-0354-1921; Fax: +20-502372592
| |
Collapse
|
7
|
Zemanova M, Langova L, Novotná I, Dvorakova P, Vrtkova I, Havlicek Z. Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows. Arch Anim Breed 2022; 65:371-384. [PMID: 36415759 PMCID: PMC9673033 DOI: 10.5194/aab-65-371-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is one of the most important diseases of the mammary gland. The increased incidence of this disease in cows is due to the breeding of dairy cattle for higher yields, which is accompanied by an increased susceptibility to mastitis. Therefore, the difficulty involved with preventing this disease has increased. An integral part of current research is the elimination of mastitis in order to reduce the consumption of antibiotic drugs, thereby reducing the resistance of microorganisms and decreasing companies' economic losses due to mastitis (i.e. decreased milk yield, increased drug costs, and reduced milk supply). Susceptibility to mastitis is based on dairy cows' immunity, health, nutrition, and welfare. Thus, it is important to understand the immune processes in the body in order to increase the resistance of animals. Recently, various studies have focused on the selection of mastitis resistance genes. An important point is also the prevention of mastitis. This publication aims to describe the physiology of the mammary gland along with its immune mechanisms and to approximate their connection with potential mastitis resistance genes. This work describes various options for mastitis elimination and focuses on genetic selection and a closer specification of resistance genes to mastitis. Among the most promising resistance genes for mastitis, we consider CD14, CXCR1, lactoferrin, and lactoglobulin.
Collapse
|
8
|
Igoshin AV, Romashov GA, Chernyaeva EN, Elatkin NP, Yudin NS, Larkin DM. Comparative analysis of allele frequencies for DNA polymorphisms associated with disease and economically important traits in the genomes of Russian and foreign cattle breeds. Vavilovskii Zhurnal Genet Selektsii 2022; 26:298-307. [PMID: 35774360 PMCID: PMC9167823 DOI: 10.18699/vjgb-22-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
The genetic makeup of a breed including its genetic differences from other breeds determines its appearance and characteristics, including economically important traits and resistance to pathologies. To date, many loci controlling significant phenotypes have been identified, which is successfully used in the world practice of marker-assisted selection to improve breed properties. The aim of this study was a comparative analysis of frequencies for known causative nucleotide substitutions, insertions and deletions associated with disease and economically important traits in Russian and foreign cattle breeds. As a result, we identified frequencies of these DNA polymorphisms in the populations of Russian cattle breeds, compared them with those of foreign populations of the same breed, as well as other foreign breeds. Our results indicate similarities in frequencies for most of such alleles within breeds (populations of Russian and foreign breeding), as well as the relationship between the causative allele prevalence and the presence of phenotypic traits under the effect. We also found an excess of some undesirable alleles in the Russian cattle populations, which should be paid attention to when designing breeding programs. We found that the alleles increasing fertility in the Hereford breed have a higher frequency in the Russian Hereford population compared to the foreign counterpart. Interestingly, unlike for the European breeds, for Asian Turano-Mongolian Wagyu and Yakut cattle, there was a less clear link between phenotypic traits and frequencies of known causative alleles. Our work points to specific genetic variants that could be used to improve and/or maintain the performance of certain cattle breeds bred in the Russian Federation.
Collapse
Affiliation(s)
- A. V. Igoshin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - G. A. Romashov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | | | | | - N. S. Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | | |
Collapse
|
9
|
Ali A, Rehman MU, Ahmad SM, Mehraj T, Hussain I, Nadeem A, Mir MUR, Ganie SA. In Silico Tools for Analysis of Single-Nucleotide Polymorphisms in the Bovine Transferrin Gene. Animals (Basel) 2022; 12:ani12060693. [PMID: 35327090 PMCID: PMC8944579 DOI: 10.3390/ani12060693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy cattle with a high milk yield are susceptible to many infectious diseases, such as mastitis. Subclinical mastitis (SCM) is the most prevalent form of mastitis that predominantly affects animal health, and causes adverse effects on the quality and quantity of milk. In dairy animals, subclinical mastitis often remains undetected, as no gross changes in udder characteristics are visible. In the present study, 135 Holstein Friesian dairy animals were selected and screened as healthy (n = 25) and mastitic (n = 110) based on diagnostic tests such as the California mastitis test, pH, electrical conductivity, and somatic cell count. In this study, the somatic cell count was used as a gold-standard test in differentiating subclinical mastitis animals from healthy ones. The present study was carried out to study polymorphisms in the bovine transferrin gene in cows (with subclinical mastitis and healthy). For the early detection of resistant/or susceptible animals, a useful marker could be provided by the detection of single-nucleotide polymorphisms (SNPs) in the transferrin gene, which are often associated with mammary innate immune response. The sequencing results revealed three nucleotide substitutions: two transversions (230 A > C, 231 C > A) and one transition (294 A > G) in susceptible cows as compared to disease-free subjects. The nucleotide variations at position 230 (GAC > GCA) and 231 (GAC > GCA) were nonsynonymous, and corresponded to an amino acid change from aspartic acid to alanine; whereas at position 294 (GAA > GAG), the mutation was synonymous. In the present study, many in silico tools were taken into consideration to determine the effect of SNPs on protein structure and function. The PROVEAN tool found the amino acid substitution to be neutral and deleterious. PolyPhen-2 revealed the amino acid variations at positions 320 and 321 to most likely be damaging; and at the 341 position, the variations were benign. The I-Mutant and MUpro tools found that the protein stability decreased for nonsynonymous variations. The SIFT tool revealed the protein function was likely to be affected in nonsynonymous variations, with no change in the case of synonymous ones. Phylogenetic analysis of the bovine transferrin gene revealed a close relation of the CA allele with the Bos taurus transferrin, while the G allele was closely related to a cross of Bos indicus × Bos taurus serotransferrins, followed by the Bison bison transferrin. The least relation was shown by both alleles to Capra hircus, Ovis aries, and Bubalus bubalis.
Collapse
Affiliation(s)
- Aarif Ali
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India;
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India; (I.H.); (M.U.R.M.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (M.U.R.); (S.A.G.)
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India;
| | - Tabish Mehraj
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India; (I.H.); (M.U.R.M.)
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Manzoor Ur Rahman Mir
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama Campus (Alusteng), Ganderbal 190006, J&K, India; (I.H.); (M.U.R.M.)
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India;
- Correspondence: (M.U.R.); (S.A.G.)
| |
Collapse
|
10
|
Chen H, Liu C, Xiang M, Yu J, Xia Y, Hu X, Wang D, Tao B, Zhang Y, Cheng L. Contribution of the mutation rs8193069 in TLR4 to mastitis resistance and performance in Holstein cows in southern China. Vet Med Sci 2021; 8:357-366. [PMID: 34812595 PMCID: PMC8788991 DOI: 10.1002/vms3.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bovine mastitis has become increasingly important issues for farmers and consumers, leading to large economic losses in the dairy industry worldwide. Because treatment of mastitis is difficult and costly, improved mastitis resistance through selective breeding would be advantageous. The toll-like receptor 4 (TLR4) is an important player in recognising pathogens and activating immune responses. However, its roles in mastitis occurrence and the underlying molecular mechanisms are unclear. In this study, a single nucleotide polymorphism, rs8193069 (T → C) in TLR4 gene was detected in a Holstein cow resource population in southern China. Association analysis with 5-year production traits, haematology, and biochemistry parameters revealed that individuals with genotype CC had significantly lower somatic cell counts (SCC), lower fat percentage, but higher 305-day milk (p < 0.05) and total milk yield (p < 0.01). Both genotypes CC and CT had lower lymphocyte counts (#LYMPH) (p < 0.01) and basophil counts (#BASO) (p < 0.05) than TT. Genotype CC had a less level of triglyceride (p < 0.01) and creatine kinase (p < 0.05) than CT. Further analysis based on the production data revealed significant positive correlations between SCC and #LYMPH. Analysis of TLR4 protein structure and properties suggested that the missense mutation on the 674th amino acid from Thr to Ile reduced the flexibility and hydrophilicity of TIR domain, implying a weakened binding ability of TLR4 to its adaptors. In conclusion, allele C of rs8193069 was the major allele in Holstein cows that indicated a greater genetic potential to mastitis resistance and milk yields, probably via the LPS-TLR4 inflammatory signalling. This study offers a marker to improve mastitis resistance in the dairy cow population in southern China.
Collapse
Affiliation(s)
- Hongbo Chen
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Min Xiang
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Jie Yu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Yu Xia
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Xiuzhong Hu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Dingfa Wang
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Bifei Tao
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Yongjin Zhang
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, P.R. China
| |
Collapse
|
11
|
Wagner P, Yin T, Brügemann K, Engel P, Weimann C, Schlez K, König S. Genome-Wide Associations for Microscopic Differential Somatic Cell Count and Specific Mastitis Pathogens in Holstein Cows in Compost-Bedded Pack and Cubicle Farming Systems. Animals (Basel) 2021; 11:ani11061839. [PMID: 34205623 PMCID: PMC8234204 DOI: 10.3390/ani11061839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary New free walk housing systems such as compost-bedded pack barns might positively influence animal welfare. However, udder health can be negatively affected due to the microbial environment in the pack. Udder health depends on many factors, such as the environment, the feed, the pathogen species, and the genetic mechanisms of the cow’s immune system. For a more precise evaluation of udder health, we examined novel traits including specific mastitis pathogens and differential somatic cell fractions in milk. In order to identify possible candidate genes for udder health, a genome-wide association study, including single-nucleotide polymorphisms (SNP) by housing system interactions (compost-bedded pack barn and conventional cubicle barn), was performed. We identified two potential candidate genes for the interaction effect in relation to udder health. The identified potential candidate gene HEMK1 (HemK methyltransferase family member 1) is involved in immune system development, and CHL1 (cell adhesion molecule L1 like) has an immunosuppressive effect during stress conditions. The results suggest housing system-specific breeding strategies in order to improve udder health in compost-bedded pack and conventional cubicle barns. Abstract The aim of the present study was to detect significant SNP (single-nucleotide polymorphism) effects and to annotate potential candidate genes for novel udder health traits in two different farming systems. We focused on specific mastitis pathogens and differential somatic cell fractions from 2198 udder quarters of 537 genotyped Holstein Friesian cows. The farming systems comprised compost-bedded pack and conventional cubicle barns. We developed a computer algorithm for genome-wide association studies allowing the estimation of main SNP effects plus consideration of SNPs by farming system interactions. With regard to the main effect, 35 significant SNPs were detected on 14 different chromosomes for the cell fractions and the pathogens. Six SNPs were significant for the interaction effect with the farming system for most of the udder health traits. We inferred two possible candidate genes based on significant SNP interactions. HEMK1 plays a role in the development of the immune system, depending on environmental stressors. CHL1 is regulated in relation to stress level and influences immune system mechanisms. The significant interactions indicate that gene activity can fluctuate depending on environmental stressors. Phenotypically, the prevalence of mastitis indicators differed between systems, with a notably lower prevalence of minor bacterial indicators in compost systems.
Collapse
Affiliation(s)
- Patricia Wagner
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
- Correspondence: ; Tel.: +49-(0)-641-99-37675
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Petra Engel
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Christina Weimann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Karen Schlez
- Landesbetrieb Hessisches Landeslabor, Schubertstraße 60, D-35392 Gießen, Germany;
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| |
Collapse
|
12
|
Freitas TMS, Dias JM, Guimarães LKP, Peixoto SV, da Silva RHS, Badr KR, Moura MI, do Carmo AS, Landi V, Fioravanti MCS. Genomic Association between SNP Markers and Diseases in the "Curraleiro Pé-Duro" Cattle. Genes (Basel) 2021; 12:genes12060806. [PMID: 34070451 PMCID: PMC8228838 DOI: 10.3390/genes12060806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Susceptibility to diseases is inherited and can be transmitted between populations. Single-nucleotide polymorphism (SNPs) in genes related to immune response is associated with diseases in cattle. This study investigated SNPs in the genomic region of cytokines in 702 samples of Curraleiro Pé-Duro cattle and associated them with the occurrence of antibodies in brucellosis, leptospirosis, neosporosis, leukosis, infectious bovine rhinotracheitis (IBR), and bovine viral diarrhea (BVD) tests. DNA samples were evaluated by the kompetitive allele-specific polymerase chain reaction (KASP) method to identify polymorphisms. The gametic phase and SNP haplotypes were determined with the help of PHASE 2.1.1 software. Haplotypes were associated with serological results against Brucella abortus, Leptospira sp., Neospora caninum, leukosis, infectious rhinotracheitis, and BVD using univariate analysis followed by logistic regression. Haplotype 2 of TLR2 was present in 70% of the animals that tested positive for N. caninum infection. Haplotypes of TLR10 and TLR6 and IL10RA were more common in seronegative animals. Haplotypes related to the gene IL10RA were associated with animals negative to all infections. Curraleiro Pé-Duro cattle presented polymorphisms related to resistance to bacterial, viral, and N. caninum infections.
Collapse
Affiliation(s)
- Thais Miranda Silva Freitas
- School of Veterinary and Animal Science, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil; (J.M.D.); (L.K.P.G.); (S.V.P.); (R.H.S.d.S.); (A.S.d.C.); (M.C.S.F.)
- Correspondence: ; Tel.: +55-62-996518687
| | - Juliana Moraes Dias
- School of Veterinary and Animal Science, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil; (J.M.D.); (L.K.P.G.); (S.V.P.); (R.H.S.d.S.); (A.S.d.C.); (M.C.S.F.)
| | - Luanna Kim Pires Guimarães
- School of Veterinary and Animal Science, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil; (J.M.D.); (L.K.P.G.); (S.V.P.); (R.H.S.d.S.); (A.S.d.C.); (M.C.S.F.)
| | - Sáudio Vieira Peixoto
- School of Veterinary and Animal Science, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil; (J.M.D.); (L.K.P.G.); (S.V.P.); (R.H.S.d.S.); (A.S.d.C.); (M.C.S.F.)
| | - Rayanne Henrique Santana da Silva
- School of Veterinary and Animal Science, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil; (J.M.D.); (L.K.P.G.); (S.V.P.); (R.H.S.d.S.); (A.S.d.C.); (M.C.S.F.)
| | - Kareem Rady Badr
- Environmental Virology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Maria Ivete Moura
- Course in Veterinary Medicine, Pontifical Catholic University of Goiás, Av. Engler, Jardim Mariliza, Goiânia, Goiás 74885-460, Brazil;
| | - Adriana Santana do Carmo
- School of Veterinary and Animal Science, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil; (J.M.D.); (L.K.P.G.); (S.V.P.); (R.H.S.d.S.); (A.S.d.C.); (M.C.S.F.)
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. per Casamassima, Km 3, 70010 Valenzano, BA, Italy;
| | - Maria Clorinda Soares Fioravanti
- School of Veterinary and Animal Science, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil; (J.M.D.); (L.K.P.G.); (S.V.P.); (R.H.S.d.S.); (A.S.d.C.); (M.C.S.F.)
| |
Collapse
|
13
|
Čítek J, Brzáková M, Hanusová L, Hanuš O, Večerek L, Samková E, Jozová E, Hoštičková I, Trávníček J, Klojda M, Hasoňová L. Somatic cell score: gene polymorphisms and other effects in Holstein and Simmental cows. Anim Biosci 2021; 35:13-21. [PMID: 33902174 PMCID: PMC8738924 DOI: 10.5713/ab.20.0720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/02/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The aim of the study was to evaluate the influence of gene polymorphisms and nongenetic factors on the somatic cell score (SCS) in the milk of Holstein (n = 148) and Simmental (n = 73) cows and their crosses (n = 6). Methods The SCS was calculated by the formula SCS = log2(SCC/100,000)+3, where SCC is the somatic cell count. Polymorphisms in the casein alpha S1 (CSN1S1), beta-casein (CSN2), kappa-casein (CSN3), beta-lactoglobulin (LGB), acyl-CoA diacylglycerol transferase 1 (DGAT1), leptin (LEP), fatty acid synthase (FASN), stearoyl CoA desaturase 1 (SCD1), and 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6) genes were genotyped, and association analysis to the SCS in the cow’s milk was performed. Further, the impact of breed, farm, year, month of the year, lactation stage and parity on the SCS were analysed. Phenotype correlations among SCS and milk constituents were computed by Pearson correlation coefficients. Results Only CSN2 genotypes A1/A2 were found to have significant association with the SCS (p<0.05), and alleles of CSN1S1 and DGAT1 genes (p<0.05). Other polymorphisms were not found to be significant. SCS had significant association with the combined effect of farm and year, lactation stage and month of the year. Lactation parity and breed had not significant association with SCS. The phenotypic correlation of SCS to lactose content was negative and significant, while the correlation to protein content was positive and significant. The correlations of SCS to fat, casein, nonfat solids, urea, citric acid, acetone and ketones contents were very low and not significant. Conclusion Only CSN2 genotypes, CSN1S1 and DGAT1 alleles did show an obvious association to the SCS. The results confirmed the importance of general quality management of farms on the microbial milk quality, and effects of lactation stage and month of the year. The lactose content in milk reflects the health status of the udder.
Collapse
Affiliation(s)
- Jindřich Čítek
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Michaela Brzáková
- Institute of Animal Science, Department Genetic and animal breeding, CZ104 00 Prague, Czech Republic
| | - Lenka Hanusová
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Oto Hanuš
- Dairy Research Institute, CZ16000 Prague, Czech Republic
| | - Libor Večerek
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Eva Samková
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Eva Jozová
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Irena Hoštičková
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Jan Trávníček
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Martin Klojda
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| | - Lucie Hasoňová
- South Bohemia University, Faculty of Agriculture, CZ37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
14
|
Capoferri R, Cremonesi P, Castiglioni B, Pisoni G, Roccabianca P, Riva F, Filipe J, Del Corvo M, Stella A, Williams JL, Rupp R, Moroni P. Comparison of the response of mammary gland tissue from two divergent lines of goat with high and low milk somatic cell scores to an experimental Staphylococcus aureus infection. Vet Immunol Immunopathol 2021; 234:110208. [PMID: 33640660 DOI: 10.1016/j.vetimm.2021.110208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Mastitis represents one of the major economic and health threats to the livestock sector associated with reduction in milk quality, loss of production and is a major reason for culling. Somatic cell score (SCS) is used as a criterion in breeding programmes to select cows genetically less susceptible to mastitis. The relevance of SCS as a predictor of udder health and susceptibility to mastitis is still untested in goats. In this study, two lines of French Alpine goats selected for extreme breeding values for somatic cell scores, one line with high SCS (HSCS) and the other with low SCS (LSCS), were used to test the hypothesis that the mammary response and function differed between the lines. The aim of the present study was to investigate differences in the early immune response in caprine mammary gland tissues challenged with Staphylococcus aureus, one of the main pathogens responsible for the intra-mammary infection in small ruminants, using transcriptomic and histopathology analyses. The comparison between HSCS and LSCS goat lines, showed differences in the response at the histological level for inflammation, presence of neutrophils and micro-abscess formation, and at the molecular level in the expression of CXCL8, IL-6, NFKBIZ and IL-1β. CXCL8 and CXCL2 genes, which showed a higher level of expression in the experimentally infected HSCS line. The molecular data and histopathology both suggested that following S. aureus infection, mobilization, recruitment, infiltration, and chemotaxis of neutrophil, leads to a more severe inflammation in the HSCS compared to LSCS animals. Our results represent an initial basis for further studies to unravel the genetic basis of early mastitis inflammatory responses and the selection of dairy animals more resistant to bacterial mastitis.
Collapse
Affiliation(s)
- Rossana Capoferri
- Istituto Sperimentale Italiano "L. Spallanzani" Località La Quercia 26027 Rivolta d'Adda, Cremona, Italy
| | - Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Lodi, Italy.
| | - Bianca Castiglioni
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Lodi, Italy
| | - Giuliano Pisoni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Via dell'Università, 6, 26900 Lodi, Italy
| | - Paola Roccabianca
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Via dell'Università, 6, 26900 Lodi, Italy
| | - Federica Riva
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Via dell'Università, 6, 26900 Lodi, Italy
| | - Joel Filipe
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Via dell'Università, 6, 26900 Lodi, Italy
| | - Marcello Del Corvo
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Lodi, Italy
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia; Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Rachel Rupp
- INRA, UR631, Station d'Amèlioration Gènètique des Animaux, Castanet-Tolosan F-31326, France
| | - Paolo Moroni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, Via dell'Università, 6, 26900 Lodi, Italy; Cornell University, Animal Heath Diagnostic Center, Quality Milk Production Services, Ithaca, NY, USA
| |
Collapse
|
15
|
McConnel CS, Crisp SA, Biggs TD, Ficklin SP, Parrish LM, Trombetta SC, Sischo WM, Adams-Progar A. A Fixed Cohort Field Study of Gene Expression in Circulating Leukocytes From Dairy Cows With and Without Mastitis. Front Vet Sci 2020; 7:559279. [PMID: 33195534 PMCID: PMC7554338 DOI: 10.3389/fvets.2020.559279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Specifically designed gene expression studies can be used to prioritize candidate genes and identify novel biomarkers affecting resilience against mastitis and other diseases in dairy cattle. The primary goal of this study was to assess whether specific peripheral leukocyte genes expressed differentially in a previous study of dairy cattle with postpartum disease, also would be expressed differentially in peripheral leukocytes from a diverse set of different dairy cattle with moderate to severe clinical mastitis. Four genes were selected for this study due to their differential expression in a previous transcriptomic analysis of circulating leukocytes from dairy cows with and without evidence of early postpartum disease. An additional 15 genes were included based on their cellular, immunologic, and inflammatory functions associated with resistance and tolerance to mastitis. This fixed cohort study was conducted on a conventional dairy in Washington state. Cows >50 days in milk (DIM) with mastitis (n = 12) were enrolled along with healthy cows (n = 8) selected to match the DIM and lactation numbers of mastitic cows. Blood was collected for a complete blood count (CBC), serum biochemistry, leukocyte isolation, and RNA extraction on the day of enrollment and twice more at 6 to 8-days intervals. Latent class analysis was performed to discriminate healthy vs. mastitic cows and to describe disease resolution. RNA samples were processed by the Primate Diagnostic Services Laboratory (University of Washington, Seattle, WA). Gene expression analysis was performed using the Nanostring System (Nanostring Technologies, Seattle, Washington, USA). Of the four genes (C5AR1, CATHL6, LCN2, and PGLYRP1) with evidence of upregulation in cows with mastitis, three of those genes (CATHL6, LCN2, and PGLYRP1) were investigated due to their previously identified association with postpartum disease. These genes are responsible for immunomodulatory molecules that selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses. Although further research is warranted to explain their functional mechanisms and bioactivity in cattle, our findings suggest that these conserved elements of innate immunity have the potential to bridge disease states and target tissues in diverse dairy populations.
Collapse
Affiliation(s)
- Craig S McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sierra A Crisp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tyler D Biggs
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Stephen P Ficklin
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Lindsay M Parrish
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sophie C Trombetta
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - William M Sischo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Amber Adams-Progar
- Department of Animal Sciences, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
16
|
Ellis J, DeLong KL, Lambert DM, Schexnayder S, Krawczel P, Oliver S. Analysis of closed versus operating dairies in the southeastern United States. J Dairy Sci 2020; 103:5148-5161. [PMID: 32331874 DOI: 10.3168/jds.2019-17516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/01/2020] [Indexed: 11/19/2022]
Abstract
This study analyzed differences between dairies that have closed compared with dairies still operating in the southeastern United States. Significant changes have occurred in the US dairy industry in the last decade, involving the number of dairy farms, herd size, milk quality, and management practices, yet the dairy industry remains the fourth leading agricultural sector in the United States, with $38 billion of milk sales in 2017. Although the number of dairy cows in the United States has remained relatively constant over the past decade, at approximately 9 million head, the number of dairy operations has decreased by 30%, resulting in larger dairies. This trend is even more prevalent in the southeastern United States, where the number of dairies has decreased by 39% from 5,315 in 2008 to only 3,235 in 2017. Additionally, downward pressure on bulk tank somatic cell count, which is used as a milk quality metric and has implications regarding animal health, intensified with US processors' introduction of incentive and penalty systems for quality milk production, necessitating better management of mastitis in dairy herds. In this context, this study examines factors that affect southeastern US dairy farms' persistence in the industry by using primary survey data collected in 2013 through a mail survey of Grade A dairies in Georgia, Mississippi, Kentucky, North Carolina, South Carolina, Tennessee, and Virginia. Dairies that were no longer operational had exited the industry from 2007 through 2014. A probit regression was used to determine which farm and operator characteristics were associated with the dairy's operational status. Dairy farms with more cows and higher average milk production per cow were more likely to be operational. For an additional 10 kg/d of milk production per cow, the dairy was 1.5% more likely to be operational. For each 100 additional cows a dairy had, it was 4% more likely to be operational. The analysis also identifies nonpecuniary determinants of operational status for southeastern US dairies, such as mastitis management practices. Findings suggest that operations capable of leveraging scale effects are more likely to remain operational, with results affirming the consolidation of the US dairy industry and demonstrating that more productive farms are more likely to stay in operation. Results also suggest that factors other than farm size affect a dairy's operational status.
Collapse
Affiliation(s)
- Jade Ellis
- Department of Agricultural and Resource Economics, University of Tennessee, Knoxville 37996
| | - Karen L DeLong
- Department of Agricultural and Resource Economics, University of Tennessee, Knoxville 37996.
| | - Dayton M Lambert
- Department of Agricultural Economics, Oklahoma State University, Stillwater 74078
| | - Susan Schexnayder
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville 37996
| | - Peter Krawczel
- Department of Animal Science, University of Tennessee, Knoxville 37996
| | - Steve Oliver
- Department of Animal Science, University of Tennessee, Knoxville 37996
| |
Collapse
|
17
|
Pokorska J, Kułaj D, Ochrem A. Impact of bovine lipocalin-2 haplotype on milk composition, somatic cell score and incidence of mastitis in Polish Holstein-Friesian cattle. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1726354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Joanna Pokorska
- Department of Cattle Breeding, Institute of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - Dominika Kułaj
- Department of Cattle Breeding, Institute of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - Andrzej Ochrem
- Department of Cattle Breeding, Institute of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
18
|
Derakhshani H, Fehr KB, Sepehri S, Francoz D, De Buck J, Barkema HW, Plaizier JC, Khafipour E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J Dairy Sci 2018; 101:10605-10625. [PMID: 30292553 DOI: 10.3168/jds.2018-14860] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/05/2018] [Indexed: 12/13/2022]
Abstract
Various body sites of vertebrates provide stable and nutrient-rich ecosystems for a diverse range of commensal, opportunistic, and pathogenic microorganisms to thrive. The collective genomes of these microbial symbionts (the microbiome) provide host animals with several advantages, including metabolism of indigestible carbohydrates, biosynthesis of vitamins, and modulation of innate and adaptive immune systems. In the context of the bovine udder, however, the relationship between cow and microbes has been traditionally viewed strictly from the perspective of host-pathogen interactions, with intramammary infections by mastitis pathogens triggering inflammatory responses (i.e., mastitis) that are often detrimental to mammary tissues and cow physiology. This traditional view has been challenged by recent metagenomic studies indicating that mammary secretions of clinically healthy quarters can harbor genomic markers of diverse bacterial groups, the vast majority of which have not been associated with mastitis. These observations have given rise to the concept of "commensal mammary microbiota," the ecological properties of which can have important implications for understanding the pathogenesis of mastitis and offer opportunities for development of novel prophylactic or therapeutic products (or both) as alternatives to antimicrobials. Studies conducted to date have suggested that an optimum diversity of mammary microbiota is associated with immune homeostasis, whereas the microbiota of mastitic quarters, or those with a history of mastitis, are considerably less diverse. Whether disruption of the diversity of udder microbiota (dysbiosis) has a role in determining mastitis susceptibility remains unknown. Moreover, little is known about contributions of various biotic and abiotic factors in shaping overall diversity of udder microbiota. This review summarizes current understanding of the microbiota within various niches of the udder and highlights the need to view the microbiota of the teat apex, teat canal, and mammary secretions as interconnected niches of a highly dynamic microbial ecosystem. In addition, host-associated factors, including physiological and anatomical parameters, as well as genetic traits that may affect the udder microbiota are briefly discussed. Finally, current understanding of the effect of antimicrobials on the composition of intramammary microbiota is discussed, highlighting the resilience of udder microbiota to exogenous perturbants.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Kelsey B Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Shadi Sepehri
- Children Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4 Canada
| | - David Francoz
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Montréal, QC, J2S 2M2 Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9 Canada.
| |
Collapse
|
19
|
DeLong KL, Lambert DM, Schexnayder S, Krawczel P, Fly M, Garkovich L, Oliver S. Farm business and operator variables associated with bulk tank somatic cell count from dairy herds in the southeastern United States. J Dairy Sci 2017; 100:9298-9310. [DOI: 10.3168/jds.2017-12767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/08/2017] [Indexed: 01/19/2023]
|
20
|
Siebert L, Headrick S, Lewis M, Gillespie B, Young C, Wojakiewicz L, Kerro-Dego O, Prado ME, Almeida R, Oliver SP, Pighetti GM. Genetic variation in CXCR1 haplotypes linked to severity of Streptococcus uberis infection in an experimental challenge model. Vet Immunol Immunopathol 2017; 190:45-52. [DOI: 10.1016/j.vetimm.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/09/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
21
|
Reducing Foodborne Pathogen Persistence and Transmission in Animal Production Environments: Challenges and Opportunities. Microbiol Spectr 2017; 4. [PMID: 27726803 DOI: 10.1128/microbiolspec.pfs-0006-2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preharvest strategies to reduce zoonotic pathogens in food animals are important components of the farm-to-table food safety continuum. The problem is complex; there are multiple pathogens of concern, multiple animal species under different production and management systems, and a variety of sources of pathogens, including other livestock and domestic animals, wild animals and birds, insects, water, and feed. Preharvest food safety research has identified a number of intervention strategies, including probiotics, direct-fed microbials, competitive exclusion cultures, vaccines, and bacteriophages, in addition to factors that can impact pathogens on-farm, such as seasonality, production systems, diet, and dietary additives. Moreover, this work has revealed both challenges and opportunities for reducing pathogens in food animals. Animals that shed high levels of pathogens and predominant pathogen strains that exhibit long-term persistence appear to play significant roles in maintaining the prevalence of pathogens in animals and their production environment. Continued investigation and advancements in sequencing and other technologies are expected to reveal the mechanisms that result in super-shedding and persistence, in addition to increasing the prospects for selection of pathogen-resistant food animals and understanding of the microbial ecology of the gastrointestinal tract with regard to zoonotic pathogen colonization. It is likely that this continued research will reveal other challenges, which may further indicate potential targets or critical control points for pathogen reduction in livestock. Additional benefits of the preharvest reduction of pathogens in food animals are the reduction of produce, water, and environmental contamination, and thereby lower risk for human illnesses linked to these sources.
Collapse
|
22
|
Fang L, Hou Y, An J, Li B, Song M, Wang X, Sørensen P, Dong Y, Liu C, Wang Y, Zhu H, Zhang S, Yu Y. Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus. Front Cell Infect Microbiol 2016; 6:193. [PMID: 28083515 PMCID: PMC5183581 DOI: 10.3389/fcimb.2016.00193] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/09/2016] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is problematic for lactating mammals and public health. Understanding of mechanisms by which the hosts respond to severe invasion of S. aureus remains elusive. In this study, the genome-wide expression of mRNAs and miRNAs in bovine mammary gland cells were interrogated at 24 h after intra-mammary infection (IMI) with high or low concentrations of S. aureus. Compared to the negative control quarters, 194 highly-confident responsive genes were identified in the quarters with high concentration (109 cfu/mL) of S. aureus, which were predominantly implicated in pathways and biological processes pertaining to innate immune system, such as cytokine-cytokine receptor interaction and inflammatory response. In contrast, only 21 highly-confident genes were significantly differentially expressed in face of low concentration (106 cfu/mL) of S. aureus, which slightly perturbed the cell signaling and invoked corresponding responses like vasoconstriction, indicating limited perturbations and immunological evading. Additionally, the significant up-regulations of bta-mir-223 and bta-mir-21-3p were observed in the quarters infected by high concentration of S. aureus. Network analysis suggested that the two miRNAs' pivotal roles in defending hosts against bacterial infection probably through inhibiting CXCL14 and KIT. The significant down-regulation of CXCL14 was also observed in bovine mammary epithelial cells at 24 h post-infection of S. aureus (108 cfu/mL) in vitro. Integrated analysis with QTL database further suggested 28 genes (e.g., CXCL14, KIT, and SLC4A11) as candidates of bovine mastitis. This study first systematically revealed transcriptional and post-transcriptional responses of bovine mammary gland cells to invading S. aureus in a dosage-dependent pattern, and highlighted a complicated responsive mechanism in a network of miRNA-gene-pathway interplay.
Collapse
Affiliation(s)
- Lingzhao Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural UniversityBeijing, China; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus UniversityTjele, Denmark
| | - Yali Hou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jing An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Bingjie Li
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University Tjele, Denmark
| | - Minyan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Xiao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural UniversityBeijing, China; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus UniversityTjele, Denmark
| | - Peter Sørensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University Tjele, Denmark
| | - Yichun Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Chao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Huabin Zhu
- Department of Animal Biotechnology and Reproduction, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University Beijing, China
| |
Collapse
|
23
|
Wojdak-Maksymiec K, Mikołajczyk K, Prüffer K. Association of <i>TLR4</i> and <i>CARD15/NOD2</i> polymorphisms with SCC in Holstein–Friesian cattle. Arch Anim Breed 2015. [DOI: 10.5194/aab-58-293-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract. Mastitis is one of the most important dairy cattle diseases which results in economic losses in dairy production. Mastitis cases can be classified as subclinical or clinical. All forms of mastitis lead to changes in milk composition and induce an increase in somatic cell count (SCC). SCC is a very important and basic indicator of udder health. An increase in SCC is usually caused by the immune response to the invasion of pathogens contributing to mastitis. The aim of this study was to investigate associations between the polymorphisms of selected genes (TLR4 and CARD15/NOD2) whose products are involved in the identification of pathogen-associated molecular patterns (PAMPs) during the innate immune response to infection, and immunity to mastitis expressed as SCC. The genes under study were also examined for epistatic effects as well as effects of interactions with parity and stages of lactation. In all the studied classes, allele G of TLR4 had a favourable additive effect with negative values, contributing to a lower lnSCC. Allele A of CARD15/NOD2 had a desirable additive effect which varied with time and the changing internal environment during lactation. With regard to the dominance effect, allele A of CARD15/NOD2 was found to be significantly associated with a higher SCC in milk in the first lactation and in the third stage of each single lactation. Moreover, statistically significant epistatic effects were found, in particular additive–additive and dominance–additive interactions were favourably associated with SCC which was lower than expected in the case of no epistasis.
Collapse
|
24
|
Reactive oxygen species generation by bovine blood neutrophils with different CXCR1 (IL8RA) genotype following Interleukin-8 incubation. BMC Vet Res 2015; 11:104. [PMID: 25944115 PMCID: PMC4419500 DOI: 10.1186/s12917-015-0418-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/26/2015] [Indexed: 11/22/2022] Open
Abstract
Background Associations between polymorphisms in the bovine CXCR1 gene, encoding the chemokine (C-X-C motif) receptor 1 (IL8RA), and neutrophil traits and mastitis have been described. In the present study, blood neutrophils were isolated from 20 early lactating heifers with different CXCR1 genotype at position 735 or 980. The cells were incubated with different concentrations of recombinant bovine IL-8 (rbIL-8) for 2 or 6 h and stimulated with phorbol 12-myristate 13-acetate (PMA) or opsonized zymosan particles (OZP). Potential association between CXCR1 genotype and production of reactive oxygen species (ROS) was studied. Results Although on single nucleotide polymorphisms (SNPs) may potentially affect CXCR1 function, SNPs c.735C > G and c.980A > G showed no association with ROS production with or without incubation of rbIL-8. Neutrophils incubated with rbIL-8 for 2 or 6 h showed higher PMA- and lower OZP-induced ROS production compared to control without rbIL-8. Conclusions In the present study no association could be detected between superoxide production by isolated bovine neutrophils during early lactation and CXCR1 gene polymorphism. IL-8 showed to possess inhibitory effects on ROS generation in bovine neutrophils.
Collapse
|
25
|
Verbeke J, Piccart K, Piepers S, Van Poucke M, Peelman L, De Visscher A, De Vliegher S. Somatic cell count and milk neutrophil viability of dairy heifers with specific CXCR1 genotypes following experimental intramammary infection with Staphylococcus chromogenes originating from milk. Vet J 2015; 204:322-6. [PMID: 25933826 DOI: 10.1016/j.tvjl.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/04/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Previous observational studies suggest an association between polymorphism c.980A>G in the CXCR1 gene, encoding the chemokine (C-X-C motif) receptor 1, and the innate immunity and infection status of the mammary gland. Mammary glands of eight Holstein heifers were experimentally infected with a Staphylococcus chromogenes isolate originating from a chronic intramammary infection (IMI) to study differences between CXCR1 genotypes c.980AG and c.980GG. Quarters from heifers with genotypes c.980AG and c.980GG developed subclinical mastitis but showed differences in the early response at 6-18 h post challenge. Bacterial count at 18 h post challenge tended to be higher in quarters from c.980AG heifers compared to c.980GG heifers. Somatic cell count (SCC) was higher at 6 h post challenge and tended to be higher at 9 h post challenge in c.980AG heifers compared to c.980GG heifers. Milk production decreased similarly. Milk neutrophils of c.980AG heifers showed more apoptosis at 9 h post challenge and tended to show more necrosis at 6, 9 and 12 h post challenge than c.980GG heifers. Differences were less pronounced in the later stage (>18 h) of infection. The results demonstrate that CXCR1 polymorphism can influence SCC and milk neutrophil viability following experimental IMI.
Collapse
Affiliation(s)
- Joren Verbeke
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Kristine Piccart
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Sofie Piepers
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Mario Van Poucke
- Animal Genetics Laboratory, Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke 9820, Belgium
| | - Luc Peelman
- Animal Genetics Laboratory, Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke 9820, Belgium
| | - Anneleen De Visscher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| |
Collapse
|
26
|
Tiezzi F, Parker-Gaddis KL, Cole JB, Clay JS, Maltecca C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PLoS One 2015; 10:e0114919. [PMID: 25658712 PMCID: PMC4319771 DOI: 10.1371/journal.pone.0114919] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022] Open
Abstract
Clinical mastitis (CM) is one of the health disorders with large impacts on dairy farming profitability and animal welfare. The objective of this study was to perform a genome-wide association study (GWAS) for CM in first-lactation Holstein. Producer-recorded mastitis event information for 103,585 first-lactation cows were used, together with genotype information on 1,361 bulls from the Illumina BovineSNP50 BeadChip. Single-step genomic-BLUP methodology was used to incorporate genomic data into a threshold-liability model. Association analysis confirmed that CM follows a highly polygenic mode of inheritance. However, 10-adjacent-SNP windows showed that regions on chromosomes 2, 14 and 20 have impacts on genetic variation for CM. Some of the genes located on chromosome 14 (LY6K, LY6D, LYNX1, LYPD2, SLURP1, PSCA) are part of the lymphocyte-antigen-6 complex (LY6) known for its neutrophil regulation function linked to the major histocompatibility complex. Other genes on chromosome 2 were also involved in regulating immune response (IFIH1, LY75, and DPP4), or are themselves regulated in the presence of specific pathogens (ITGB6, NR4A2). Other genes annotated on chromosome 20 are involved in mammary gland metabolism (GHR, OXCT1), antibody production and phagocytosis of bacterial cells (C6, C7, C9, C1QTNF3), tumor suppression (DAB2), involution of mammary epithelium (OSMR) and cytokine regulation (PRLR). DAVID enrichment analysis revealed 5 KEGG pathways. The JAK-STAT signaling pathway (cell proliferation and apoptosis) and the 'Cytokine-cytokine receptor interaction' (cytokine and interleukines response to infectious agents) are co-regulated and linked to the 'ABC transporters' pathway also found here. Gene network analysis performed using GeneMania revealed a co-expression network where 665 interactions existed among 145 of the genes reported above. Clinical mastitis is a complex trait and the different genes regulating immune response are known to be pathogen-specific. Despite the lack of information in this study, candidate QTL for CM were identified in the US Holstein population.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
- * E-mail:
| | - Kristen L. Parker-Gaddis
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705–2350, United States of America
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705–2350, United States of America
| | - John S. Clay
- Dairy Records Management Systems, Raleigh, NC, 27603, United States of America
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
| |
Collapse
|
27
|
Chen X, Cheng Z, Zhang S, Werling D, Wathes DC. Combining Genome Wide Association Studies and Differential Gene Expression Data Analyses Identifies Candidate Genes Affecting Mastitis Caused by Two Different Pathogens in the Dairy Cow. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojas.2015.54040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Eight SNVs in NF-κB pathway genes and their different performances between subclinical mastitis and mixed Chinese Holstein cows. Gene 2014; 555:242-9. [PMID: 25447913 DOI: 10.1016/j.gene.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/21/2022]
Abstract
The nuclear factor-kappa B (NF-κB) pathway proteins are key players in controlling both innate and adaptive immunity. However, the information on NF-κB pathway genes is very limited in mastitis resistance and milk production of Chinese Holstein cows. In this study, we examine the association of the NF-κB pathway gene variants with milk quality traits and somatic cell score (SCS) in Chinese Holstein cows. Eight single nucleotide variants (SNVs) were identified within the bovine NF-κB pathway genes, using DNA pooled sequencing, PCR-RFLP, and forced PCR-RFLP methods. These SNVs include SNV1: g. 536 C>T (exon 10 of Rel), SNV2: g. 94 G>A (exon 20 of p100), SNV3: g. 43 T>C (intron 6 of p105), SNV4: g. 2397 T>G (intron 9 of p105), SNV5: g. 382 G>C (intron 1 of IκBδ), SNV6: g. 21 C>T (exon 5 of IκBζ), SNV7: g. 272 G>A (intron 6 of IκBζ), and SNV8: g. 18 C>T (intron 10 of IκBζ). The association analysis in mixed Chinese Holstein population showed that SNV1 was significantly or highly significantly associated (P<0.01 and P<0.05) with fat rate, protein rate and SCS. Furthermore, the SNV1-CC (wild genotype) determined serine showed the significantly lower SCS and higher milk production traits compared to TT and TC. SNV2 was significantly associated (P<0.05) with SCS; SNV3 was significantly associated (P<0.05) with fat rate; and SNV4 was significantly associated (P<0.05) with fat rate and SCS. In 199 subclinical mastitis Chinese Holstein cows, the statistical results absolutely differed from the mixed Chinese Holstein individuals. Splice-site prediction by SplicePort showed that single nucleotide difference at eight SNVs results in the acceptor score and donor score changing obviously that may lead to alternative splicing. In brief, SNV1, SNV2, SNV3 and SNV4 could be useful genetic markers for mastitis resistance selection and breeding in Chinese Holstein cows. Furthermore, whether these SNVs lead to alternative splicing need further research.
Collapse
|
29
|
Verbeke J, Van Poucke M, Peelman L, Piepers S, De Vliegher S. Associations between CXCR1 polymorphisms and pathogen-specific incidence rate of clinical mastitis, test-day somatic cell count, and test-day milk yield. J Dairy Sci 2014; 97:7927-39. [PMID: 25459910 DOI: 10.3168/jds.2014-8216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023]
Abstract
The CXCR1 gene plays an important role in the innate immunity of the bovine mammary gland. Associations between single nucleotide polymorphisms (SNP) CXCR1c.735C>G and c.980A>G and udder health have been identified before in small populations. A fluorescent multiprobe PCR assay was designed specifically and validated to genotype both SNP simultaneously in a reliable and cost-effective manner. In total, 3,106 cows from 50 commercial Flemish dairy herds were genotyped using this assay. Associations between genotype and detailed phenotypic data, including pathogen-specific incidence rate of clinical mastitis (IRCM), test-day somatic cell count, and test-day milk yield (MY) were analyzed. Staphylococcus aureus IRCM tended to associate with SNP c.735C>G. Cows with genotype c.735GG had lower Staph. aureus IRCM compared with cows with genotype c.735CC (rate ratio = 0.35, 95% confidence interval = 0.14–0.90). Additionally, a parity-specific association between Staph. aureus IRCM and SNP c.980A>G was detected. Heifers with genotype c.980GG had a lower Staph. aureus IRCM compared with heifers with genotype c.980AG (rate ratio = 0.15, 95% confidence interval = 0.04–0.56). Differences were less pronounced in multiparous cows. Associations between CXCR1 genotype and somatic cell count were not detected. However, MY was associated with SNP c.735C>G. Cows with genotype c.735GG out-produced cows with genotype c.735CC by 0.8 kg of milk/d. Results provide a basis for further research on the relation between CXCR1 polymorphism and pathogen-specific mastitis resistance and MY.
Collapse
Affiliation(s)
- Joren Verbeke
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Thompson-Crispi K, Atalla H, Miglior F, Mallard BA. Bovine mastitis: frontiers in immunogenetics. Front Immunol 2014; 5:493. [PMID: 25339959 PMCID: PMC4188034 DOI: 10.3389/fimmu.2014.00493] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022] Open
Abstract
Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow's natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the high immune response (HIR) technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk, and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity(+)™ sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favorable production levels to feed a growing population.
Collapse
Affiliation(s)
- Kathleen Thompson-Crispi
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Heba Atalla
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Department of Biomedical Science, University of Guelph, Guelph, ON, Canada
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada
| | - Filippo Miglior
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Canadian Dairy Network, Guelph, ON, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
31
|
Quaderi MAAL, Husain M, Alam MGS, Khatun M, Hossain MA. Prevalence of sub-clinical mastitis in dairy farms. ACTA ACUST UNITED AC 2014. [DOI: 10.3329/bvet.v30i2.18257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A total of 560 lactating cows belonging to Bangladesh Agricultural University dairy farm (n = 59): Local Zebu (L), Local × Friesian (L × F), Local × Jersey (L × J), Local × Red Chittagong Cattle (L × RCC), Local × Sahiwal (L × SL), Red Chittagong Cattle (RCC); and Central Cattle Breeding Station and Dairy Farm (n = 501): Local Zebu, L × F, SL × F, Sahiwal and Australian Friesian Sahiwal (AFS) were selected to measure prevalence of subclinical mastitis (SM). The California Mastitis Test was done and the prevalence of SM was 68% on cow basis and 57% on quarter basis. The prevalence rate was significantly higher in L × F (87%, P < 0.05), SL × F (88%, P < 0.05), L × J (100%, P < 0.01), AFS (89%, P< 0.05) and SL (100%, P < 0.01). The local Zebu (31%) and RCC (28%) were least susceptible to SM. SM was significantly higher in multiparous (P < 0.05) and older cows (P < 0.05). The front quarters were more prone to SM than the rear. Factors such as breed, age, parity and management may have been responsible for high prevalence of SM in both farms. DOI: http://dx.doi.org/10.3329/bvet.v30i2.18257 Bangl. vet. 2013. Vol. 30, No. 2, 70-77
Collapse
|
32
|
Evaluating somatic cell scores with a Bayesian Gaussian linear state-space model. Animal 2014; 8:477-83. [PMID: 24387939 DOI: 10.1017/s1751731113002371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because accurate characterization of health state is important for managing dairy herds, we propose to validate the use of a linear state-space model (LSSM) for evaluating monthly somatic cell scores (SCSs). To do so, we retrieved SCS from a dairy database and collected reports on clinical mastitis collected in 20 farms, during the period from January 2008 to December 2011 in the Walloon region of Belgium. The dependent variable was the SCS, and the independent variables were the number of days from calving, year of calving and parity. The LSSM also incorporated an error-free underlying variable that described the trend across time as a function of previous clinical and subclinical status. We computed the mean sum of squared differences between observed SCS and median values of the posterior SCS distribution and constructed the receiver operating characteristic (ROC) curve for SCS thresholds going from 0 to 6. Our results show SCS estimates are close to observed SCS and area under the ROC curve is higher than 90%. We discuss the meaning of the parameters in light of our current knowledge of the disease and propose methods to incorporate, in LSSM, this knowledge often expressed in the form of ordinary differential equations.
Collapse
|
33
|
Khatun M, Sørensen P, Jørgensen HBH, Sahana G, Sørensen LP, Lund MS, Ingvartsen KL, Buitenhuis AJ, Vilkki J, Bjerring M, Thomasen JR, Røntved CM. Effects of Bos taurus autosome 9-located quantitative trait loci haplotypes on the disease phenotypes of dairy cows with experimentally induced Escherichia coli mastitis. J Dairy Sci 2013; 96:1820-33. [PMID: 23357017 DOI: 10.3168/jds.2012-5528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 11/28/2012] [Indexed: 01/08/2023]
Abstract
Several quantitative trait loci (QTL) affecting mastitis incidence and mastitis-related traits such as somatic cell score exist in dairy cows. Previously, QTL haplotypes associated with susceptibility to Escherichia coli mastitis in Nordic Holstein-Friesian (HF) cows were identified on Bos taurus autosome 9. In the present study, we induced experimental E. coli mastitis in Danish HF cows to investigate the effect of 2 E. coli mastitis-associated QTL haplotypes on the cows' disease phenotypes and recovery in early lactation. Thirty-two cows were divided in 2 groups bearing haplotypes with either low (HL) or high (HH) susceptibility to E. coli. In addition, biopsies (liver and udder) were collected from half of the cows (n=16), resulting in a 2 × 2 factorial design, with haplotype being one factor (HL vs. HH) and biopsy being the other factor (biopsies vs. no biopsies). Each cow was inoculated with a low E. coli dose (20 to 40 cfu) in one front quarter at time 0 h. Liver biopsies were collected at -144, 12, 24, and 192 h; udder biopsies were collected at 24h and 192 h post-E. coli inoculation. The clinical parameters: feed intake, milk yield, body temperature, heart rate, respiration rate, rumen motility; and the paraclinical parameters: bacterial counts, somatic cell count (SCC), and milk amyloid A levels in milk; and white blood cell count, polymorphonuclear neutrophilic leukocyte (PMNL) count, and serum amyloid A levels in blood were recorded at different time points post-E. coli inoculation. Escherichia coli inoculation changed the clinical and paraclinical parameters in all cows except one that was not infected. Clinically, the HH group tended to have higher body temperature and heart rate than the HL group did. Paraclinically, the HL group had faster PMNL recruitment and SCC recovery than the HH group did. However, we also found interactions between the effects of haplotype and biopsy for body temperature, heart rate, and PMNL. In conclusion, when challenged with E. coli mastitis, HF cows with the specific Bos taurus autosome 9-located QTL haplotypes were associated with differences in leukocyte kinetics, with low-susceptibility cows having faster blood PMNL recruitment and SCC recovery and a tendency for a milder clinical response than the high-susceptibility cows did.
Collapse
Affiliation(s)
- M Khatun
- Department of Animal Science, Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, PO Box 50, DK-8300 Tjele, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|