1
|
Takashima M, Kurita M, Terai H, Zhao FQ, Suzuki JI. S-allylmercaptocysteine inhibits TLR4-mediated inflammation through enhanced formation of inhibitory MyD88 splice variant in mammary epithelial cells. Sci Rep 2024; 14:29627. [PMID: 39609525 PMCID: PMC11604973 DOI: 10.1038/s41598-024-81304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Mastitis is an inflammatory disease affecting mammary tissues caused by bacterial infection that negatively affects milk quality and quantity. S-Allylmercaptocysteine (SAMC), a sulfur compound in aged garlic extract (AGE), suppresses lipopolysaccharide (LPS)-induced inflammation in mouse models and cell cultures. However, the mechanisms underlying this anti-inflammatory effect remain unclear. In this study, we demonstrated that oral administration of AGE suppressed the LPS-induced immune response in a mastitis mouse model and that SAMC inhibited LPS-induced interleukin-6 production and nuclear factor κB p65 subunit activation in HC11 mammary epithelial cells. Global phosphoproteomic analysis revealed that SAMC treatment downregulated 910 of the 1,304 phosphorylation sites upregulated by LPS stimulation in mammary cells, including those associated with toll-like receptor 4 (TLR4) signaling. Additionally, SAMC decreased the phosphorylation of 26 proteins involved in pre-mRNA splicing, particularly the U2 small nuclear ribonucleoprotein complex. Furthermore, we found that SAMC increased the production of the myeloid differentiation factor 88 short form (MyD88-S), an alternatively spliced form of MyD88 that negatively regulates TLR4 signaling. These findings suggest that SAMC inhibits TLR4-mediated inflammation via alternative pre-mRNA splicing, thus promoting MyD88-S production in mammary epithelial cells. Therefore, SAMC may alleviate various inflammatory diseases, such as mastitis, by modulating immune responses.
Collapse
Affiliation(s)
- Miyuki Takashima
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan.
| | - Masahiro Kurita
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Haruhi Terai
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, 102 Terrill, 570 Main Street, Burlington, VT, 05405, USA
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| |
Collapse
|
2
|
Badewy R, Glogauer M, Connor KL, Sgro M, Lai JY, Bazinet RP, Tenenbaum HC, Azarpazhooh A. The unrevealed links: periodontal health, human milk composition, and infant gut microbiome dynamics. Prim Health Care Res Dev 2024; 25:e62. [PMID: 39540631 DOI: 10.1017/s1463423624000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
AIM This review aims to identify the mechanistic relationships related to periodontal diseases and its possible association with changes in human milk composition and the composition and function of infants' gut microbiome. BACKGROUND Maternal health conditions, especially inflammatory, are associated with altered human milk composition. It is not known whether maternal oral inflammatory diseases, including periodontal diseases, deleteriously affect human milk composition. METHODS A narrative review was conducted according to SANRA, the Scale for the Assessment of Narrative Review Articles, guidelines. PubMed, Google Scholar, and Cochrane database of systematic reviews were searched from September 2019 up to December 2023 using keywords such as breast/human milk, maternal health/infections, and periodontal diseases. Reference lists of relevant articles were also screened. Our primary outcome of interest was human milk composition (i.e., any changes in macronutrients, immunological components, etc.). Secondary outcomes included changes in human milk microbiome and subsequent changes in the infant gut microbiome. Outcomes were synthesized using a narrative approach where the existing evidence and current literature were summarized. No risk of bias assessment of the studies was performed in this review. FINDINGS The search yielded no studies investigating the relationship between periodontal diseases in nursing mothers and changes in human milk composition. However, a dose-response relationship exists between the severity of periodontal diseases and the risk of adverse pregnancy outcomes such as preterm birth. Mastitis and diabetes affected milk lipids. Immunoglobulin A (sIgA) was increased in mastitis, whereas reduced concentrations were reported in diabetes. Potential biological pathways through which periodontal diseases can negatively affect human milk composition include the systemic dissemination of inflammatory cytokines like IL-6, PGE2, and tumor necrosis factor (TNF)-β that can be up-regulated by bacterial by-products. This biological plausibility needs to be investigated, given the potentially negative impact on the quality of human milk that could be caused by periodontal inflammation.
Collapse
Affiliation(s)
- Rana Badewy
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Michael Sgro
- Department of Pediatrics, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Pediatrics, Division of Neonatology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jim Yuan Lai
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Vickers R, Porter W. Immune Cell Contribution to Mammary Gland Development. J Mammary Gland Biol Neoplasia 2024; 29:16. [PMID: 39177859 PMCID: PMC11343902 DOI: 10.1007/s10911-024-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.
Collapse
Affiliation(s)
- Ramiah Vickers
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston Porter
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Zhou D, Sun L, Li J, Yang Y. Schisandrin B inhibits inflammation and ferroptosis in S.aureus-induced mastitis through regulating SIRT1/p53/SLC7A11 signaling pathway. Int Immunopharmacol 2024; 137:112430. [PMID: 38852519 DOI: 10.1016/j.intimp.2024.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Mastitis, one of the most significant problems in women, is commonly caused by pathogens, especially Staphylococcus aureus (S.aureus). Schisandrin B (SCB), the main abundant derivatives from Schisandra chinensis, has been proven to have the ability to inhibiting inflammation and bacteria. However, few relevant researches systematically illustrate the role SCB in the treatment of mastitis. The aim of the present study is to demonstrate the mechanism that SCB functions in reducing pathological injury to the mammary gland in treating S.aureus-induced mastitis. H&E staining was used to identify pathological changes and injuries in mastitis. The levels of cytokines associated with inflammation were detected by ELISA. Key signals relevant to ferroptosis and Nrf2 signaling pathway were tested by western blot analysis and iron assay kit. Compared with the control group, inflammation-associated factors, such as IL-1β, TNF-α, MPO activity, increased significantly in S. aureus-treated mice. However, these changes were inhibited by SCB. Ferroptosis-associated factors Fe2+ and MDA increased significantly, and GSH, GPX4 and ferritin expression decreased markedly in S. aureus-treated mice. SCB treatment could attenuate S.aureus-induced ferroptosis. Furthermore, SCB increase SIRT1 and SLC7A11 expression and down-regulated p53 expression and NF-κB activation. In conclusion, SCB alleviates S.aureus-induced mastitis via up-regulating SIRT1/p53/SLC7A11 signaling pathway, attenuating the activation of inflammation-associated cytokines and ferroptosis in the mammary gland tissues.
Collapse
Affiliation(s)
- Di Zhou
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Liang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jun Li
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Yang Yang
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
5
|
Douglas P. Does the Academy of Breastfeeding Medicine's Clinical Protocol #36 'The Mastitis Spectrum' promote overtreatment and risk worsened outcomes for breastfeeding families? Commentary. Int Breastfeed J 2023; 18:51. [PMID: 37670315 PMCID: PMC10481477 DOI: 10.1186/s13006-023-00588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND In 2022 the Academy of Breastfeeding Medicine (ABM) published Clinical Protocol #36: The Mastitis Spectrum, which aims to update clinical approaches to management of benign lactation-related breast inflammation. The protocol has been timely because of the exponential increase in knowledge about the human milk microbiome over the past decade. This Commentary aims to continue respectful debate amongst clinicians and researchers within the Academy of Breastfeeding Medicine and more broadly, confident that we share a fundamental commitment to promote breastfeeding and support the well-being of lactating women, their infants and their families. ANALYSIS Although Clinical Protocol #36 offers advances, it does not fulfil the principles of best practice implementation science for translation of evidence into clinical guidelines. Clinical Protocol #36 inaccurately represents studies; misrepresents theoretical models as proven aetiologies; does not consistently attribute sources; does not reliably apply the SORT taxonomy; and relies upon single case reports. As a result, various recommendations in Clinical Protocol #36 lack an evidence-base or credible underlying theoretical model. This includes recommendations to use 'lymphatic drainage' massage, therapeutic ultrasound, and oral lecithin. Similarly, based on a contestable theoretical model which is presented as fact, Clinical Protocol #36 makes the recommendation to either reduce frequency of milk removal or to maintain current frequency of milk removal during an episode of breast inflammation. Although Clinical Protocol #36 limits this advice to cases of 'hyperlactation', the diagnosis 'hyperlactation' itself is undefinable. As a result, this recommendation may put breastfeeding women who present with breast inflammation at risk of worsened inflammation and decreased breast milk production. CONCLUSION Clinical Protocol #36 offers some advances in the management of breast inflammation. However, Clinical Protocol #36 also exposes clinicians to two international trends in healthcare which undermine health system sustainability: overdiagnosis, including by over-definition, which increases risk of overtreatment; and antibiotic over-use, which worsens the crisis of global antimicrobial resistance. Clinical Protocol #36 also recommends unnecessary or ineffective interventions which may be accessed by affluent patients within advanced economies but are difficult to access for the global majority. The Academy of Breastfeeding Medicine may benefit from a review of processes for development of Clinical Protocols.
Collapse
Affiliation(s)
- Pamela Douglas
- The School of Nursing and Midwifery, Griffith University, Brisbane, Australia.
- General Practice Clinical Unit, The University of Queensland, Brisbane, Australia.
- Medical Director, The NDC Institute, ndcinstitute.com.au, Brisbane, Australia.
| |
Collapse
|
6
|
Zhao L, Jin L, Yang B. Protocatechuic acid inhibits LPS-induced mastitis in mice through activating the pregnane X receptor. J Cell Mol Med 2023; 27:2321-2327. [PMID: 37328960 PMCID: PMC10424283 DOI: 10.1111/jcmm.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Mastitis refers to the inflammation in the mammary gland caused by various reasons. Protocatechuic acid (PCA) exerts anti-inflammatory effect. However, no studies have shown the protective role of PCA on mastitis. We investigated the protective effect of PCA on LPS-induced mastitis in mice and elucidated its possible mechanism. LPS-induced mastitis model was established by injection of LPS into the mammary gland. The pathology of mammary gland, MPO activity and inflammatory cytokine production were detected to evaluate the effects of PCA on mastitis. In vivo, PCA significantly attenuated LPS-induced mammary pathological changes, MPO activity, TNF-α and IL-1β production. In vitro, the production of inflammatory cytokines TNF-α and IL-1β was significantly reduced by PCA. Furthermore, LPS-induced NF-κB activation was also inhibited by PCA. In addition, PCA was found to activate pregnane X receptor (PXR) transactivation and PCA dose-dependently increased the expression of PXR downstream molecule CYP3A4. In addition, the inhibitory effect of PCA on inflammatory cytokine production was also reversed when PXR was knocked down. In conclusion, the protective effects of PCA on LPS-induced mastitis in mice through regulating PXR.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Lei Jin
- Department of AnesthesiologyChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Bin Yang
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| |
Collapse
|
7
|
Jin LH, Zheng HL, Lin YX, Yang Y, Liu JL, Li RL, Ye HJ. Lactation breast abscess treated with Gualou Xiaoyong decoction and painless lactation manipulation: A case report and review of literature. World J Clin Cases 2023; 11:1847-1856. [PMID: 36970011 PMCID: PMC10037288 DOI: 10.12998/wjcc.v11.i8.1847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Breast abscess during lactation is a severe complication of acute mastitis, which can lead to discomfort, high fever, breast fistula, sepsis, septic shock, breast damage, disease persistence and frequent hospitalization. Breast abscesses may also lead the mother to discontinue breastfeeding, thereby harming the infant’s health. The predominant pathogenic bacteria are Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus. The incidence of breastfeeding abscesses in breastfeeding women ranges between 4.0% and 11.0%. In cases of breast abscess, the rate of cessation of lactation is 41.0%. In instances of breast fistula, the rate of cessation of lactation is very high (66.7%). Furthermore, 50.0% of women with breast abscesses must be hospitalized and treated with intravenous antibiotics. Treatment includes antibiotics, abscess puncture and surgical incision and drainage. The patients suffer from stress, pain and easily induced breast scarring; the disease’s progression is prolonged and recurrent, interfering with infant feeding. Consequently, it is crucial to discover an adequate cure.
CASE SUMMARY A 28-year-old woman with a breast abscess was treated with Gualou Xiaoyong decoction and painless breast opening manipulation 24 d after cesarean delivery. On the 2nd d of treatment, the patient’s breast mass was significantly reduced, the pain was significantly reduced, and the general asthenia was improved. All conscious symptoms disappeared after 3 d, breast abscesses faded after 12 d of treatment, inflammation images disappeared after 27 d, and normal lactation images were restored.
CONCLUSION In treating breast abscesses during breastfeeding, the combination of Gualou Xiaoyong decoction and painless lactation provides a positive therapeutic impact. This disease’s treatment offers the advantages of a short course of treatment, no need to discontinue breastfeeding and the ability to rapidly mitigate symptoms, which can be used as a reference in clinical practice.
Collapse
Affiliation(s)
- Li-Hua Jin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| | - Hui-Ling Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| | - Yun-Xia Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| | - Yi Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| | - Jia-Li Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| | - Rui-Lan Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| | - Hui-Jun Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou 310005, Zhejiang Province, China
| |
Collapse
|
8
|
Human Milk-Derived Levels of let-7g-5p May Serve as a Diagnostic and Prognostic Marker of Low Milk Supply in Breastfeeding Women. Nutrients 2023; 15:nu15030567. [PMID: 36771276 PMCID: PMC9920885 DOI: 10.3390/nu15030567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Low milk supply (LMS) is associated with early breastfeeding cessation; however, the biological underpinnings in the mammary gland are not understood. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally downregulate gene expression, and we hypothesized the profile of miRNAs secreted into milk reflects lactation performance. Longitudinal changes in milk miRNAs were measured using RNAseq in women with LMS (n = 47) and adequate milk supply (AMS; n = 123). Relationships between milk miRNAs, milk supply, breastfeeding outcomes, and infant weight gain were assessed, and interactions between milk miRNAs, maternal diet, smoking status, and BMI were determined. Women with LMS had lower milk volume (p = 0.003), were more likely to have ceased breast feeding by 24 wks (p = 0.0003) and had infants with a lower mean weight-for-length z-score (p = 0.013). Milk production was significantly associated with milk levels of miR-16-5p (R = -0.14, adj p = 0.044), miR-22-3p (R = 0.13, adj p = 0.044), and let-7g-5p (R = 0.12, adj p = 0.046). Early milk levels of let-7g-5p were significantly higher in mothers with LMS (adj p = 0.0025), displayed an interaction between lactation stage and milk supply (p < 0.001), and were negatively related to fruit intake (p = 0.015). Putative targets of let-7g-5p include genes important to hormone signaling, RNA regulation, ion transport, and the extracellular matrix, and down-regulation of two targets (PRLR and IGF2BP1/IMP1) was confirmed in mammary cells overexpressing let-7g-5p in vitro. Our data provide evidence that milk-derived miRNAs reflect lactation performance in women and warrant further investigation to assess their utility for predicting LMS risk and early breastfeeding cessation.
Collapse
|
9
|
Du W, Zhang ZF, Xiao JY, Wang Y, Liu WY, Zheng HL. 5-Hydroxytryptophan inhibits β-casein biosynthesis and promotes goat mammary epithelial cell apoptosis through the JAK2/STAT5a axis and the HTR7. J Anim Sci 2023; 101:skad089. [PMID: 36964762 PMCID: PMC10132817 DOI: 10.1093/jas/skad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
5-Hydroxytryptamine (5-HT) is an amine produced in both the mammary gland and the central nervous system. Tryptophan hydroxylase 1 (TPH1) catalyzes the conversion of 5-hydroxytryptophan (5-HTP) into l-tryptophan, which is then converted into 5-HT by monoamine-oxidase (MAO-A). In the mammary gland, 5-HT has been shown to have a variety of paracrine-autocrine actions, including suppressing lactation, controlling the destiny of mammary epithelial cells, and maintaining calcium homeostasis throughout the transition from pregnancy to lactation. To examine the effects of 5-HT on the composition of colostrum and milk, a total of 30 transition Guan Zhong dairy goats were intramuscularly injected with 5-HTP (1.0 mg/kg) every morning before feeding from 10 d before the projected parturition date to the day of parturition. The average number of days animals received injections was 8.2 ± 3.2 d. 5-HTP treatment increased serum 5-HT concentration from days 5 to 2 relative to parturition (P < 0.05), and decreased the casein concentration of colostrum (P < 0.05). In the in vitro experiment, mammary epithelial cells isolated from three individual goats' mammary glands were separately treated with 200 μM 5-HTP, 30 μM PCPA (the specific inhibitor of TPH1), or 200 μM 5-HTP + 50 μM SB269970 (the selective antagonist of 5-HTR7). The results showed that 200 μM 5-HTP inhibited the expression of β-casein, downregulated the activity of the JAK2/ STAT5a signaling pathway, and promoted the apoptosis of goat mammary epithelial cells (GMECs) (P < 0.05). When GMECs were treated with 30 μM Four-chloro-dl-phenylalanine (PCPA), a specific inhibitor of 5-HT synthesis, the mRNA expression of STAT5a and the phosphorylated STAT5a protein level were upregulated. The 50 μM SB269970 treatment rescued the effects of 5-HTP on GMECs (P < 0.05). Taken together, the results indicated that 5-HTP exerted an inhibitory effect on β-casein synthesis and a proapoptotic effect in GMECs via HTR7 and the JAK2/STAT5a axis.
Collapse
Affiliation(s)
- Wei Du
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Zhi Fei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jia Ying Xiao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Ying Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Weng Yi Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Hui Ling Zheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Huang Q, Zheng XM, Zhang ML, Ning P, Wu MJ. Lactation mastitis: Promising alternative indicators for early diagnosis. World J Clin Cases 2022; 10:11252-11259. [PMID: 36387788 PMCID: PMC9649554 DOI: 10.12998/wjcc.v10.i31.11252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 02/05/2023] Open
Abstract
Although lactation mastitis (LM) has been extensively researched, the incidence rate of LM remains a salient clinical problem. To reduce this incidence rate and achieve a better prognosis, early and specific quantitative indicators are particularly important. It has been found that milk electrolyte concentrations (chloride, potassium, and sodium) and electrical conductivity (EC) significantly change in the early stages of LM in an animal model. Several studies have evaluated EC for the detection of subclinical mastitis in cows. EC, chloride, and sodium content of milk were more accurate for predicting infection status than were other variables. In the early stages of LM, lactic sodium, chloride, and EC increase, but potassium decreases. However, these indicators have not been reported in the diagnosis of LM in humans. This review summarizes the pathogenesis and the mechanism of LM in terms of milk electrolyte concentration and EC, and aim to provide new ideas for the detection of sub-clinical mastitis in humans.
Collapse
Affiliation(s)
- Qian Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Xue-Mei Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Mao-Lin Zhang
- Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, Sichuan Province, China
| | - Ping Ning
- Department of Breast, Chengdu Women's and Children's Central Hospital, Chengdu 610000, Sichuan Province, China
| | - Meng-Jun Wu
- Department of Anesthesiology, Chengdu Women's and Children's Central Hospital, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
11
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
12
|
Yu Q, Xu C, Wang M, Zhu J, Yu L, Yang Z, Liu S, Gao X. The preventive and therapeutic effects of probiotics on mastitis: A systematic review and meta-analysis. PLoS One 2022; 17:e0274467. [PMID: 36084006 PMCID: PMC9462749 DOI: 10.1371/journal.pone.0274467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/27/2022] [Indexed: 11/19/2022] Open
Abstract
Acute mastitis is one of the main reasons why breastfeeding women stop breastfeeding, and medication should be used with caution. Considering the uncertainty of mastitis infection and the indications of antibiotic use, as well as the problem of drug resistance and the safety of medication during lactation, probiotics have become an alternative treatment choice. However, a meta-analysis of the effects of probiotics in preventing and treating lactational mastitis is still lacking. Therefore, we searched six electronic databases and the sites of clinical trial registration, a total of six randomized controlled trials were included in this meta-analysis, which showed that oral probiotics during pregnancy can reduce the incidence of mastitis (RR: 0.49, 95% CI: 0.35 to 0.69; p<0.0001). After oral administration of probiotics, the counts of bacteria in the milk of healthy people and mastitis patients were both significantly reduced (in healthy people: MD: -0.19, 95% CI: -0.23 to -0.16, p<0.00001; in mastitis patients: MD: -0.89, 95% CI: -1.34 to -0.43, p = 0.0001). These indicate that to a certain extent, probiotics are beneficial in reducing the incidence rate of mastitis during lactation and some related mastitis symptoms. However, high-quality multicenter clinical trials are still needed to support this result.
Collapse
Affiliation(s)
- Qinghong Yu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chuchu Xu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengqian Wang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiayan Zhu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linghong Yu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zimei Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shan Liu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiufei Gao
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Li L, Niu H, Zhan J, Tu Y, Jiang L, Zhao Y. Matrine attenuates bovine mammary epithelial cells inflammatory responses induced by Streptococcus agalactiae through inhibiting NF-κB and MAPK signaling pathways. Int Immunopharmacol 2022; 112:109206. [PMID: 36058035 DOI: 10.1016/j.intimp.2022.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae is one of the main pathogens associated with bovine mastitis. The invasion of S. agalactiae in bovine mammary epithelial cells (BMECs) has been implicated as a key event in the pathogenesis of mastitis. Matrine is known for its various pharmacological activities, such as immune response regulation and anti-inflammation. The primary aim of the research was to investigate the preventive effect of matrine on S. agalactiae-induced inflammation in BMECs along with underlying molecular mechanisms. Our data showed matrine at the concentrations of 50-100 μg/mL promoted BMECs proliferation without infection, and decreased cytotoxicity induced by S. agalactiae. Subsequently, BMECs were pre-treated with matrine (50, 75, or 100 μg/mL) for 24 h, followed by the infection with S. agalactiae for an additional 6 h. Pretreatment with matrine followed by S. agalactiae treatment decreased cell apoptosis of BMECs. Also, pretreatment of matrine to BMECs prevented the invasion of S. agalactiae. The mRNA abundances of IL-1β, IL-6, IL-8, and TNF-α were down-regulated in S. agalactiae-infected cells pretreated with matrine. In addition, the greater ratios of protein NF-κB p-p65/p65, p-IκBα/IκBα, p-38/38, and p-ERK/ERK induced by S. agalactiae were attenuated due to matrine treatment. Furthermore, pretreatment of BMECs with matrine impeded the degradation of TAK1 induced by S. agalactiae infection. These results suggest matrine could be a potential modulator in immune response of the mammary gland. In conclusion, matrine prevents cellular damage due to S. agalactiae infection by the modulation of NF-κB and MAPK signaling pathways and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Niu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jingwei Zhan
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; Beijing Beinong Enterprise Management Co., Ltd., Beijing 102206, China.
| |
Collapse
|
14
|
Wang JJ, Wang X, Xian YE, Chen ZQ, Sun YP, Fu YW, Wu ZK, Li PX, Zhou ES, Yang ZT. The JMJD3 histone demethylase inhibitor GSK-J1 ameliorates lipopolysaccharide-induced inflammation in a mastitis model. J Biol Chem 2022; 298:102017. [PMID: 35526564 PMCID: PMC9168612 DOI: 10.1016/j.jbc.2022.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
|
15
|
Huang F, Teng K, Liu Y, Wang T, Xia T, Yun F, Zhong J. Nisin Z attenuates lipopolysaccharide-induced mastitis by inhibiting the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways. J Dairy Sci 2022; 105:3530-3543. [PMID: 35181137 DOI: 10.3168/jds.2021-21356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Nisin Z is a possible alternative for treating bovine mastitis by inhibiting mastitis-causing pathogens and having anti-inflammatory activity. However, the anti-inflammatory mechanism of nisin Z on mastitis is unknown. Our study aimed to investigate the mechanisms of nisin Z on mastitis. Our results showed that nisin Z inhibited the activation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) signaling pathway, decreased the release of pro-inflammatory cytokines (i.e., tumor necrosis factor-α, IL-1β, and IL-6), and increased the anti-inflammatory cytokine (IL-10) in lipopolysaccharide (LPS)-induced MCF10A cells. After intraperitoneal injection, nisin Z significantly decreased inflammatory cell infiltration in the mammary gland, as well as decreased myeloperoxidase and pro-inflammatory cytokines in serum and mammary gland. Western blot analysis revealed that nisin Z also dramatically suppressed the activation of the ERK1/2 and p38 MAPK signaling pathways in LPS-induced mastitis mice. We also found that nisin Z treatment could enhance the blood-milk barrier. In summary, our study demonstrated that nisin Z exerted an anti-inflammatory effect by inhibiting the ERK1/2 and p38 MAPK signaling pathway and promoting the blood-milk barrier on LPS-induced mastitis.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfei Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Xiang K, Shen P, Gao Z, Liu Z, Hu X, Liu B, Fu Y. Formononetin Protects LPS-Induced Mastitis Through Suppressing Inflammation and Enhancing Blood-Milk Barrier Integrity via AhR-Induced Src Inactivation. Front Immunol 2022; 13:814319. [PMID: 35185907 PMCID: PMC8850474 DOI: 10.3389/fimmu.2022.814319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Formononetin (FOR), a natural flavonoid derived from Radix Astragali, has been reported to have anti-inflammatory and anti-oxidative effects. However, its protective mechanism against mastitis is still unknown. Nuclear factor kappa-B (NF-κB) signaling pathway plays an important role in inflammation, especially mastitis. Aryl hydrocarbon receptor (AhR) is involved in inflammatory regulation and defense against diseases. We investigated the protective effect of FOR on LPS-induced mastitis in mice and the effect of Ahr and NF-κB signaling pathways on the development of mastitis. In this study, mastitis model was induced by LPS injection through the nipple duct. Protective effect of FOR on LPS-induced mastitis was assessed by FOR pretreatment. The protective mechanism of FOR against mastitis was further investigated using LPS stimulation on mouse mammary epithelial cells EpH4-Ev. The results showed that LPS-induced mammary histological injury was inhibited by FOR. FOR significantly inhibited LPS-induced MPO activity. FOR administration enhanced the integrity of blood-milk barrier. In vitro and in vivo experiments showed that FOR inhibited LPS-induced NF-κB signaling pathway activation and the production of inflammatory factors TNF-α and IL-1ß. Moreover, FOR increased the expression of tight junction protein and enhanced blood-milk barrier integrity. LPS activated AhR and Src expression. But FOR induced significant increase in AhR inhibited Src phosphorylation to exert anti-inflammatory effects. In addition, AhR antagonist CH223191 reversed the inhibition of FOR on Src expression. And the inhibition of FOR on NF-κB activation and inflammatory cytokine production were reversed by AhR antagonist CH223191. In conclusion, FOR had protective effects against LPS-induced mastitis via suppressing inflammation and enhancing blood-milk barrier integrity via AhR-induced Src inactivation.
Collapse
Affiliation(s)
- Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Clinical Veterinary Medicine, College of Agriculture, Eastern Liaoning University, Dandong, China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyang Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, First Hospital of Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
17
|
Grzeskowiak LE, Saha MR, Ingman WV, Nordeng H, Ystrom E, Amir LH. Incidence, antibiotic treatment and outcomes of lactational mastitis: Findings from The Norwegian Mother, Father and Child Cohort Study (MoBa). Paediatr Perinat Epidemiol 2022; 36:254-263. [PMID: 34841537 DOI: 10.1111/ppe.12824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mastitis is a common and distressing maternal postpartum condition, but the relationship between mastitis timing and antibiotic treatment and breastfeeding outcomes and postnatal mental health is unclear. OBJECTIVES To describe the incidence of mastitis and treatment with antibiotics in first 6 months postpartum, and to investigate the impact of mastitis timing and antibiotic treatment on breastfeeding practices and postnatal mental health. METHODS This study is based on 79,985 mother-infant dyads in the Norwegian Mother, Father and Child Cohort Study (MoBa). Women were classified according to self-reported mastitis within first month ('early') or 1-6 months ('later') postpartum and antibiotic treatment. Breastfeeding outcomes included predominant or any breastfeeding and abrupt breastfeeding cessation until 6 months postpartum. Maternal mental health was assessed by self-report at 6 months postpartum. RESULTS The incidence of mastitis was 18.8%, with 36.8% reporting treatment with antibiotics. Women reporting early mastitis were less likely to report predominant breastfeeding (adjustedd relative risk [aRR] 0.92, 95% confidence interval [CI] 0.86, 0.99) and any breastfeeding for 6 months (aRR 0.97, 95% CI 0.96, 0.98) than women who did not report mastitis, and more likely to report abrupt breastfeeding cessation (aRR 1.37, 95% CI 1.23, 1.53). Late-onset mastitis was not associated with poorer breastfeeding outcomes. Among women reporting mastitis, the risk of abrupt breastfeeding cessation was higher in those also reporting antibiotic use. Mastitis was associated with an increased risk of mental health problems postpartum which was highest among those reporting no antibiotic use (aRR 1.29, 95% CI 1.18, 1.41), in contrast to those also reporting antibiotic use (aRR 1.08, 95% CI 0.96, 1.22). CONCLUSIONS Lactational mastitis and its associated treatment with antibiotics are common. Early (<1 month postpartum) mastitis appears to be a modest risk factor for suboptimal breastfeeding outcomes. In addition, mastitis is associated with poorer mental health.
Collapse
Affiliation(s)
- Luke E Grzeskowiak
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Moni R Saha
- Judith Lumley Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Wendy V Ingman
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hedvig Nordeng
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, and PharmaTox Strategic Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Eivind Ystrom
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, and PharmaTox Strategic Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department Mental Disorders, the Norwegian Institute of Public Health, Oslo, Norway.,PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Lisa H Amir
- Judith Lumley Centre, La Trobe University, Bundoora, Victoria, Australia.,Breastfeeding Service, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Douglas P. Re-thinking benign inflammation of the lactating breast: Classification, prevention, and management. WOMEN'S HEALTH 2022; 18:17455057221091349. [PMID: 35441543 PMCID: PMC9024158 DOI: 10.1177/17455057221091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Despite the known benefits of breastfeeding for both infant and mother, clinical support for problems such as benign inflammation of the lactating breast remain a research frontier. Breast pain associated with inflammation is a common reason for premature weaning. Multiple diagnoses are used for benign inflammatory conditions of the lactating breast which lack agreed or evidence-based aetiology, definitions, and treatment. This article is the second in a three-part series. This second review analyses the heterogeneous research literature concerning benign lactation-related breast inflammation from the perspectives of the mechanobiological model and complexity science, to re-think classification, prevention, and management of lactation-related breast inflammation. Benign lactation-related breast inflammation is a spectrum condition, either localized or generalized. Acute benign lactation-related breast inflammation includes engorgement and the commonly used but poorly defined diagnoses of blocked ducts, phlegmon, mammary candidiasis, subacute mastitis, and mastitis. End-stage (non-malignant) lactation-related breast inflammation presents as the active inflammations of abscess, fistula, and septicaemia, and the inactive condition of a galactocoele. The first preventive or management principle of breast inflammation is avoidance of excessively high intra-alveolar and intra-ductal pressures, which prevents strain and rupture of a critical mass of lactocyte tight junctions. This is achieved by frequent and flexible milk removal. The second preventive or management principle is elimination of the mechanical forces which result in high intra-alveolar pressures. This requires elimination of conflicting vectors of force upon the nipple and breast tissue during milk removal; avoidance of focussed external pressure applied to the breast, including avoidance of lump massage or vibration; and avoidance of other prolonged external pressures upon the breast. Three other key preventive or management principles are discussed. Conservative management is expected to be effective for most, once recommendations to massage or vibrate out lumps, which worsen micro-vascular trauma and inflammation, are ceased.
Collapse
Affiliation(s)
- Pamela Douglas
- School of Nursing and Midwifery, Griffith University, Brisbane, QLD, Australia
- General Practice Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- The Possums Clinic, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Nurdin M, Yulianty R, Latief S, Prihantono, Abu J, Usman AN. Effects of Centella asiatica (L.) Urban extract in TNF-α levels. GACETA SANITARIA 2021; 35 Suppl 2:S281-S283. [PMID: 34929832 DOI: 10.1016/j.gaceta.2021.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study aimed to determine the effectiveness of Centella asiatica leaf extract to TNF-α levels. METHODS There were four treatment groups (each group consisted of five rats). Group I was given 0.5% Na CMC, group II was given Cefadroxil 45mg/kg WB, Group III C. asiatica leaf extract 100mg/kg BW, and group IV combination Cefadroxil and Centella leaf extract. Each group was given treatment twice for 12h a day for five days. RESULTS TNF-α levels between groups did not significantly affect day three and differed significantly after day 6. On day 3, the control group had a higher TNF-α level of 25.13pg/ml than the group given antibiotics and C. asiatica. While when compared to the group given only C. asiatica leaf extract, the control group was more height of 17.1pg/ml. On the 6th day, this condition was changed. The most significant difference was found in the group given C. asiatica, in which the control group had higher levels of TNF-α 72.34pg/ml than the group receiving C. asiatica. Then, the control group is higher than 66.46pg/ml than those given antibiotics and C. asiatica. CONCLUSION C. asiatica leaf extract effectively reduces TNF both given alone and given along with antibiotics. It is potential to be explored into alternative and complementary treatments in mastitis cases with human trials.
Collapse
Affiliation(s)
- Melliyana Nurdin
- Midwifery Study Program, Graduated School, Hasanuddin University, Indonesia
| | - Risfah Yulianty
- Department of Pharmaceutical Chemistry, Pharmacy Faculty, Hasanuddin University, Indonesia.
| | - Syamsa Latief
- Midwifery Study Program, Graduated School, Hasanuddin University, Indonesia
| | - Prihantono
- Department of Oncology, Medicine Faculty, Hasanuddin University, Indonesia
| | - Jasmin Abu
- Midwifery Study Program, Graduated School, Hasanuddin University, Indonesia
| | | |
Collapse
|
20
|
Takashima M, Lalonde C, Olszanski LA, Zhao FQ. Localized and Systemic Inflammatory Mediators in a Murine Acute Mastitis Model. J Inflamm Res 2021; 14:4053-4067. [PMID: 34456581 PMCID: PMC8387587 DOI: 10.2147/jir.s313799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Milk depression is the major driver of economic loss due to mastitis in dairy animals. The aim of this study was to identify potential mediators of milk depression by investigating the local and systemic changes in gene expression or cytokine production during endotoxin challenge of the mammary gland in a mouse model. Methods The left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, Escherichia coli 055: B5, 50 μL of 0.4 mg/mL) or sterile PBS through the teat meatus 3 days postpartum (n = 9). The 4th glands were individually collected 12 h after LPS injection and analyzed to identify gene expression changes by RNA sequencing and real-time PCR, and the plasma was collected before and after LPS challenge and analyzed to determine the levels of 32 cytokines. Results Transcriptome analysis showed that in addition to strong pro-inflammatory responses, which included granulocyte and monocyte migration and cytokine production and signaling, the LPS-treated glands exhibited strong ubiquitin-mediated and immune-mediated proteasome activation and an increase in nitric oxide-mediated oxidative stress. Furthermore, LPS induced a down-regulation in vesicle membrane, vesicle-mediated trafficking, and metabolic processes of amino acids and other organic molecules in the mammary gland. Of the 32 cytokines analyzed, the levels of 24 (mainly IL-6, G-CSF, MCP-1, RANTES, MIG, MIP-1b, KC, MIP-2, IP-10, and TNFα) were increased or tended to increase in the blood after LPS treatment, and only the levels of IL-9 were decreased. In the mammary gland after LPS challenge, the levels of IL-5, IL-6, IP-10, LIF, MCP-1, MIP-2, and TNFα were significantly increased, and the levels of INFΥ, IL-2, IL-4, IL-10, and IL-12 (p40) were decreased. Discussion These observations provide potential markers and targets for further studies on the prevention and treatment of gram-negative bacteria-induced mastitis.
Collapse
Affiliation(s)
- Miyuki Takashima
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA.,Wakunaga Pharmaceutical Co. Ltd, Osaka, 532-0003, Japan
| | - Christian Lalonde
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Laura Ashley Olszanski
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
21
|
Comprehensive evaluation of the risk of lactational mastitis in Chinese women: combined logistic regression analysis with receiver operating characteristic curve. Biosci Rep 2021; 40:222210. [PMID: 32100818 PMCID: PMC7087359 DOI: 10.1042/bsr20190919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/07/2023] Open
Abstract
Objective: To identify the potential risk factors for acute mastitis during lactation comprehensively. Subsequently, to evaluate logistic regression model in predicting the risk of lactational mastitis in Chinese women by applying receiver operating characteristic (ROC) curve. Methods: A case–control study among Chinese women enrolled 652 patients with mastitis and 581 healthy women with breastfeeding experience as control. The retrospective information was obtained by questionnaires that included medical history of pregnancy, delivery, puerperium and breastfeeding behaviors. Univariate analysis and multivariate logistic regression model were performed to investigate the relationship between these factors and the occurrence of lactational mastitis. Using ROC curve to evaluate the prognostic value of these selected indicators in the risk of acute mastitis. Results: The multivariate logistic regression analysis showed that the primiparity (P < 0.001), mastitis in previous breastfeeding (P < 0.001), nipple’s heteroplasia (P < 0.001), cracked nipple (P < 0.001), breast trauma by external force (P = 0.002), lateral position (P = 0.007), breast pump (P = 0.039), nipple sucking (P = 0.007), sleep with sucking (P = 0.007), and tongue-tie (P = 0.013) were risk variables independently and significantly related with mastitis. While vaginal delivery (P = 0.015), clean nipple before breastfeeding (P = 0.015), first contact with child within 1 h (P = 0.027) were protective factors. The ROC analysis demonstrated that the area under the curve of model 2 was 0.8122 (95%CI = 0.7885–0.8360), which stated that the model presented a high sensitivity and specificity. Conclusion: By means of collecting and summarizing the risk factors associated with the occurrence of breast mastitis in Chinese women, we established risk discriminant model to identify and warn the individuals susceptible to acute mastitis early, which will allow practitioners to provide appropriate management advice and effective individual care.
Collapse
|
22
|
Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells. Cell Tissue Res 2021; 384:435-448. [PMID: 33433684 DOI: 10.1007/s00441-020-03344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023]
Abstract
Mastitis causes a decrease in milk yield and abnormalities in milk components from dairy cows. Escherichia coli and the E. coli lipopolysaccharide (LPS) cell wall component directly downregulate milk production in bovine mammary epithelial cells (BMECs). However, the detailed mechanism by which this occurs in BMECs remains unclear. Various membrane proteins, such as immune sensors (Toll-like receptors, TLR), nutrient transporters (glucose transporter and aquaporin), and tight junction proteins (claudin and occludin) are involved in the onset of mastitis or milk production in BMECs. In this study, we investigated the influence of LPS on membrane proteins using an in vitro culture model. This mastitis model demonstrated a loss of glucose transporter-1 and aquaporin-3 at lateral membranes and a decrease in milk production in response to LPS treatment. LPS disrupted the tight junction barrier and caused compositional changes in localization of claudin-3 and claudin-4, although tight junctions were maintained to separate the apical membrane domains and the basolateral membrane domains. LPS did not significantly affect the expression level and subcellular localization of epidermal growth factor receptor in lactating BMECs with no detectable changes in MEK1/2-ERK1/2 signaling. In contrast, NFκB was concurrently activated with temporal translocation of TLR-4 in the apical membranes, whereas TLR-2 was not significantly influenced by LPS treatment. These findings indicate the importance of investigating the subcellular localization of membrane proteins to understand the molecular mechanism of LPS in milk production in mastitis.
Collapse
|
23
|
Watson CJ, Khaled WT. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development 2020; 147:dev169862. [PMID: 33191272 DOI: 10.1242/dev.169862] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammary gland is a unique tissue and the defining feature of the class Mammalia. It is a late-evolving epidermal appendage that has the primary function of providing nutrition for the young, although recent studies have highlighted additional benefits of milk including the provision of passive immunity and a microbiome and, in humans, the psychosocial benefits of breastfeeding. In this Review, we outline the various stages of mammary gland development in the mouse, with a particular focus on lineage specification and the new insights that have been gained by the application of recent technological advances in imaging in both real-time and three-dimensions, and in single cell RNA sequencing. These studies have revealed the complexity of subpopulations of cells that contribute to the mammary stem and progenitor cell hierarchy and we suggest a new terminology to distinguish these cells.
Collapse
Affiliation(s)
- Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
24
|
Cai J, Wang D, Liang S, Peng J, Zhao F, Liu J. Excessive supply of glucose elicits an NF-κB2-dependent glycolysis in lactating goat mammary glands. FASEB J 2020; 34:8671-8685. [PMID: 32359096 DOI: 10.1096/fj.201903088r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/30/2020] [Accepted: 04/18/2020] [Indexed: 11/11/2022]
Abstract
During lactation, an improper glucose supply often threatens mammary gland (MG) health. However, information is limited on the metabolic trajectories and molecules that regulate lactating MGs with an excessive glucose supply. Based on the network analysis of transcriptome and microRNAs, we found that the oversupply of glucose-induced severe glucose metabolic disorders in MGs of lactating goats, shifting lactose synthesis to acute fermentative glycolysis which caused increased flux of glucose metabolism into lactate. Moreover, NF-κB2 played a key role in regulating glycolysis, exhibiting a metabolic shift when MGs had an excessive supply of glucose. In primary mammary epithelial cells, fermentative glycolysis, and intracellular concentration of reactive oxygen species (ROS) were reduced by ganoderic acid A through blocking NF-κB2, while activation of NF-κB2 with phorbol myristate acetate (PMA) upregulated fermentative glycolysis and increased cellular ROS accumulation under excessive glucose. Thus, we established an NF-κB2-targeting method to reform the metabolic shift toward glycolysis caused by glucose oversupply by integrating NF-κB2 blockade and intracellular ROS scavenging.
Collapse
Affiliation(s)
- Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulin Liang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengqi Zhao
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Ingman WV. Deep imaging reveals new insights into mammary gland architecture and breast cancer susceptibility. FEBS J 2020; 287:246-249. [PMID: 31876093 DOI: 10.1111/febs.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
The abundance of adipose tissue in the mammary gland obscures vision of the 3-dimensional architecture. Hitchcock et al. employed a new technique of deep tissue imaging that has enabled visualisation of dynamic interactions between mammary gland epithelial and immune cells with unprecedented 3-dimensional clarity. Deep imaging will help further our understanding of the complex biological interactions that underpin both normal mammary gland development and the susceptibility of this tissue to cancer. This knowledge will assist the development of much-needed prevention strategies to reduce the incidence of breast cancer. Comment on: https://doi.org/10.1111/febs.15126.
Collapse
Affiliation(s)
- Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia
- Robinson Research Institute, University of Adelaide, SA, Australia
| |
Collapse
|
26
|
Impact of Bovine Lipocalin-2 Gene on the Antioxidant Activity of Milk from Polish Holstein-Friesian Cows. Animals (Basel) 2019; 9:ani9110992. [PMID: 31752182 PMCID: PMC6912593 DOI: 10.3390/ani9110992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Recently, an increased interest in high health-value food products rich in natural antioxidants has been observed. Milk and milk products are one of the richest sources of biologically active compounds with antioxidant properties in products of animal origin. Lipocalin-2 (LCN2) is a small secreted protein, which is involved in inflammatory processes. Due to the fact that LCN-2 can be produced by various types of cells in response to oxidative stress and LCN2 gene polymorphism has been associated with the somatic cells count in cow’s milk, the aim of this study was to validate the association of LCN2 polymorphism with antioxidant activity of milk from Holstein-Friesian cows. Four single nucleotide polymorphisms (SNPs) was identified, one of which g.98793763G>C was associated with higher antioxidant capacity in milk. The antioxidant capacity of milk also varied according to the age of cows, their daily milk yield, and somatic cell count (SCC) in milk. Abstract In the recent years, antioxidant properties of food products have become an important aspect for consumers. Milk is a very good source of easily absorbable proteins and minerals, as well as a valuable source of antioxidants. Lipocalin-2 (LCN2), given that, inter alia, it is produced in large quantities by various types of cells in response to oxidative stress caused by physical or chemical factors, it can be considered a protein that determines the total antioxidant capacity of milk. The main objective of this study was to analyze polymorphisms within the lipocalin-2 gene and to determine their impact on antioxidant activity of milk from Holstein-Friesian cows. The genotyping was carried out by sequencing of PCR products. To determine the antioxidant activity of milk, the Trolox equivalent antioxidant capacity (TEAC) method was used. A total of four polymorphic sites were identified in the examined segment of the bovine lipocalin-2 gene. It was shown that cows of the CC genotype at the locus g.98793763G>C produced milk of significantly higher antioxidant capacity. The antioxidant capacity of milk also varied according to the age of cows, their daily milk yield, and SCC in milk.
Collapse
|
27
|
Maternal probiotic milk intake during pregnancy and breastfeeding complications in the Norwegian Mother and Child Cohort Study. Eur J Nutr 2019; 59:2219-2228. [PMID: 31506766 PMCID: PMC7351866 DOI: 10.1007/s00394-019-02072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/27/2019] [Indexed: 11/11/2022]
Abstract
Purpose During the time of breastfeeding, a third of all women contract (or: fall ill in) mastitis—the leading cause of precocious weaning. Recent studies indicate that probiotics intake may prevent mastitis by altering the breast’s bacterial flora. The aim of this study was to examine whether probiotic milk intake during pregnancy is associated with less breastfeeding complications and longer breastfeeding duration. Methods This study included 57,134 women, with live singleton term births, participating in the Norwegian Mother and Child Cohort Study. Probiotic milk intake during the first half of pregnancy was self-reported in a validated food frequency questionnaire at gestational week 22. At 6 month postpartum, women reported complications, including mastitis, and duration and exclusivity of breastfeeding. The association between probiotic milk intake and breastfeeding complications and duration was studied by adjusted logistic regression models. Results Probiotic milk intake was associated with increased risk for mastitis [adjusted odds ratio (aOR) 1.09, 95% confidence interval (CI) 1.02–1.16] and for any breastfeeding problems during the first month (aOR 1.19, 95% CI 1.10–1.21). However, cessation of predominant (aOR 0.95, 95% CI 0.91–0.96) or any (aOR 0.79, 95% CI 0.75–0.84) breastfeeding earlier than at 4 months was less frequent in probiotic milk consumers than in non-consumers. Conclusions Even though probiotic milk intake during the first half of pregnancy was statistically associated with increased risk for breastfeeding complications, including mastitis, the association is probably not causal. Probiotics intake was namely associated with longer breastfeeding duration and there was indication of socioeconomic confounding. Further studies, i.e., large randomized-controlled trials, are needed to understand the association between probiotic intake and breastfeeding complications. Electronic supplementary material The online version of this article (10.1007/s00394-019-02072-8) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Li T, Gao J, Zhao X, Ma Y. Digital gene expression analyses of mammary glands from meat ewes naturally infected with clinical mastitis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181604. [PMID: 31417691 PMCID: PMC6689637 DOI: 10.1098/rsos.181604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/04/2019] [Indexed: 05/06/2023]
Abstract
Clinical mastitis in sheep has gravely restrained production performance for a long time. Knowledge of mechanisms of its pathogenesis and resistance in meat sheep mammary gland with clinical mastitis are not yet understood, especially for clinical mastitis caused by natural infection. In this work, RNA-sequencing was firstly used to screen the differentially expressed genes (DEGs) in clinical mastitic mammary tissues (CMMTs) when compared with healthy mammary tissues (HMTs) from meat sheep flocks. We identified 420 DEGs including 316 upregulated and 104 downregulated genes in CMMTs. Gene ontology annotation revealed these DEGs were mainly engaged in immune response and inflammation response. Pathway enrichment showed they were primarily enriched in pathways relevant to inflammation, immune response and metabolism. Alternative splicing analysis showed most common differential splicing genes in CMMTs and HMTs were implicated in immune response. Immunostaining for three immune response-related proteins encoded by DEGs were mainly observed in mammary epithelium from both CMMTs and HMTs, and their positive signals were more intensive in CMMTs than those in HMTs. These findings provide experimental basis and reference for further researching the molecular genetic mechanisms, particularly immune defence mechanisms, of sheep mammary gland during clinical mastitis.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jianfeng Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
29
|
Grzeskowiak LE, Wlodek ME, Geddes DT. What Evidence Do We Have for Pharmaceutical Galactagogues in the Treatment of Lactation Insufficiency?-A Narrative Review. Nutrients 2019; 11:nu11050974. [PMID: 31035376 PMCID: PMC6567188 DOI: 10.3390/nu11050974] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022] Open
Abstract
Inadequate breast milk supply is a frequently reported reason for early discontinuation of breastfeeding and represents a critical opportunity for intervening to improve breastfeeding outcomes. For women who continue to experience insufficient milk supply despite the utilisation of non-pharmacological lactation support strategies, pharmacological intervention with medications used to augment lactation, commonly referred to as galactagogues, is common. Galactagogues exert their pharmacological effects through altering the complex hormonal milieu regulating lactation, particularly prolactin and oxytocin. This narrative review provides an appraisal of the existing evidence regarding the efficacy and safety of pharmaceutical treatments for lactation insufficiency to guide their use in clinical practice. The greatest body of evidence surrounds the use of domperidone, with studies demonstrating moderate short-term improvements in breast milk supply. Evidence regarding the efficacy and safety of metoclopramide is less robust, but given that it shares the same mechanism of action as domperidone it may represent a potential treatment alternative where domperidone is unsuitable. Data on remaining interventions such as oxytocin, prolactin and metformin is too limited to support their use in clinical practice. The review provides an overview of key evidence gaps and areas of future research, including the impacts of pharmaceutical galactagogues on breast milk composition and understanding factors contributing to individual treatment response to pharmaceutical galactagogues.
Collapse
Affiliation(s)
- Luke E Grzeskowiak
- Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia.
- SA Pharmacy, Flinders Medical Centre, SA Health, Bedford Park, Adelaide, SA 5042, Australia.
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| |
Collapse
|
30
|
Guo W, Liu B, Hu G, Kan X, Li Y, Gong Q, Xu D, Ma H, Cao Y, Huang B, Fu S, Liu J. Vanillin protects the blood–milk barrier and inhibits the inflammatory response in LPS-induced mastitis in mice. Toxicol Appl Pharmacol 2019; 365:9-18. [DOI: 10.1016/j.taap.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
|
31
|
Gustafsson A, Granström E, Stecksén-Blicks C, West CE, Silfverdal SA. The Antisecretory Factor in Plasma and Breast Milk in Breastfeeding Mothers-A Prospective Cohort Study in Sweden. Nutrients 2018; 10:E1227. [PMID: 30181494 PMCID: PMC6164404 DOI: 10.3390/nu10091227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Inflammation and infection postpartum threaten the mother and her infant. Human milk provides a defense for the infant, but inflammatory complications like mastitis may lead to the cessation of breastfeeding. Antisecretory factor (AF) has a role in the regulation of secretory processes and inflammation. The objective of the study was to describe AF-levels in plasma and breast milk, and in relation to breast complications. Breastfeeding mothers (n = 95) were consecutively recruited at a Well Baby Clinic in Umeå, Sweden. At inclusion four weeks postpartum, samples of venous blood (10 mL) and breast milk (10 mL) were collected. Active AF was analyzed with ELISA using a monoclonal antibody mAb43, and was detected in all samples of plasma and breast milk with a positive correlation (Spearman coefficient = 0.40, p < 0.001; Pearson correlation = 0.34, p < 0.01). High AF-levels in plasma correlated with high AF-levels in breast milk. The results suggest a co-regulation between active AF in plasma and breastmilk, and/or a local regulation of AF in the breast. Further studies are needed to determine the pathways for the activation of AF-levels in breast milk and plasma.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE 141 86 Stockholm, Sweden.
- Department of Neonatology, Karolinska University Hospital, SE 171 76 Stockholm, Sweden.
| | - Elisabeth Granström
- Department of Odontology, Pediatric dentistry, Umeå university, SE 901 87 Umeå, Sweden.
| | | | - Christina E West
- Department of Clinical Sciences, Pediatrics, Umeå University, SE 901 87 Umeå, Sweden.
| | - Sven-Arne Silfverdal
- Department of Clinical Sciences, Pediatrics, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
32
|
Elahi E, Abid M, Zhang H, Cui W, Ul Hasson S. Domestic water buffaloes: Access to surface water, disease prevalence and associated economic losses. Prev Vet Med 2018; 154:102-112. [PMID: 29685433 DOI: 10.1016/j.prevetmed.2018.03.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
Given the shortage and non-availability of freshwater in Pakistan, wastewater is being used for bathing water buffaloes; however, this has a negative impact on animal welfare. Although there is a vast literature on indirect linkages between wastewater and animal productivity, studies focusing on the direct impacts of water buffaloes bathing in wastewater on animal productivity and economic losses are rare. Therefore, using 360 domestic water buffalo farms, this study examines the expenditure and production losses associated with bathing (in wastewater and freshwater) and non-bathing water buffaloes by employing partial budgeting and resource adjustment component techniques. Furthermore, it investigates the prevalence of animal diseases and associated economic effects using correlation analysis and propensity score matching techniques, respectively. The findings reveal that compared to their counterparts (freshwater bathing and non-bathing water buffaloes), buffaloes bathing in wastewater are at increased risk of clinical mastitis, foot and mouth disease (FMD) and tick infestation. Moreover, the use of wastewater for bathing buffaloes also leads to higher economic and production losses by affecting milk productivity, causing premature culling, and reducing slaughter value. The findings of the double-log model show that economic losses are higher if buffaloes bathe in wastewater within 30 min after milking, as there are more chances that those buffaloes would be exposed to bacterial penetration in the teat ducts, which may result in intramammary infection. According to the propensity score matching method, the higher economic damages per month are associated with buffaloes bathing in wastewater and freshwater, 155 and 110 USD per farm, respectively. The study findings reference the need for policies to restrict wastewater access by water buffaloes, and a regular check of and access to cool clean water wallows for bathing during hot summer days, to reduce excess heat and economic losses, and thus improve animal welfare.
Collapse
Affiliation(s)
- Ehsan Elahi
- School of Business, Nanjing University of Information Science and Technology, People's Republic of China.
| | - Muhammad Abid
- Center for Climate Research and Development (CCRD), COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Huiming Zhang
- School of Management Science and Engineering, Nanjing University of Information Science and Technology, People's Republic of China
| | - Weijun Cui
- School of Business, Nanjing University of Information Science and Technology, People's Republic of China
| | - Shabeh Ul Hasson
- CEN, Centre for Earth System Research and Sustainability Institute for Geography, University of Hamburg Bundesstraße 5520146 Hamburg, Germany; Department of Space Sciences, Institute of Space Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
33
|
TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-κB/JNK-dependent activation of autophagy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2001-2011. [PMID: 28108421 DOI: 10.1016/j.bbadis.2017.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Obesity is commonly associated with a low grade systemic inflammation, which may contribute to the onset and development of myocardial remodeling and contractile dysfunction. Toll-like receptor 4 (TLR4) plays an important role in innate immunity and inflammation although its role in high fat diet-induced obesity cardiac dysfunction remains elusive. This study was designed to examine the effect of TLR4 ablation on high fat diet intake-induced cardiac anomalies, if any, and underlying mechanism(s) involved. Wild-type (WT) and TLR4 knockout mice were fed normal or high fat (60% calorie from fat) diet for 12weeks prior to assessment of mechanical and intracellular Ca2+ properties. The inflammatory signaling proteins (TLR4, NF-κB, and JNK) and autophagic markers (Atg5, Atg12, LC3B and p62) were evaluated. Our results revealed that high fat diet intake promoted obesity, marked decrease in fractional shortening, and cardiomyocyte contractile capacity with dampened intracellular Ca2+ release and clearance, elevated ROS generation and oxidative stress as measured by aconitase activity, the effects of which were significantly attenuated by TLR4 knockout. In addition, high fat intake downregulated levels of Atg5, Atg12 and LC3B, while increasing p62 accumulation. TLR4 knockout itself did not affect Atg5, Atg12, LC3B and p62 levels while it reconciled high fat diet intake-induced changes in autophagy. In addition, TLR4 knockout alleviated high fat diet-induced phosphorylation of IKKβ, JNK and mTOR. In vitro study revealed that palmitic acid suppressed cardiomyocyte contractile function, the effect of which was inhibited the TLR4 inhibitor CLI-095, the JNK inhibitor AS601245 or the NF-κB inhibitor Celastrol. Taken together, these data showed that TLR4 knockout ameliorated high fat diet-induced cardiac contractile and intracellular Ca2+ anomalies through inhibition of inflammation and ROS, possibly through a NF-κB/JNK-dependent activation of autophagy. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|
34
|
Wu T, Wang C, Ding L, Shen Y, Cui H, Wang M, Wang H. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide. Mediators Inflamm 2016; 2016:9618795. [PMID: 27110069 PMCID: PMC4821974 DOI: 10.1155/2016/9618795] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 μg/mL) and treated with or without arginine (100 μg/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1β, IL-6, TNF-α, and iNOS. Though the expression of NF-κB was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of β-casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of β-casein and the total casein in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Tianyou Wu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Wang
- Cell Signaling Group, School of Pathology and Laboratory Medicine, The University of Western Australia, M Block QEII Medical Center, Monash Avenue, Nedlands, WA 6009, Australia
| | - Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yizhao Shen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huihui Cui
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
35
|
Levels of innate immune factors in preterm and term mothers' breast milk during the 1st month postpartum. Br J Nutr 2016; 115:1178-93. [PMID: 26891901 DOI: 10.1017/s0007114516000234] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a paucity of data on the effect of preterm birth on the immunological composition of breast milk throughout the different stages of lactation. We aimed to characterise the effects of preterm birth on the levels of immune factors in milk during the 1st month postpartum, to determine whether preterm milk is deficient in antimicrobial factors. Colostrum (days 2-5 postpartum), transitional milk (days 8-12) and mature milk (days 26-30) were collected from mothers of extremely preterm (<28 weeks of gestation, n 15), very preterm (28-<32 weeks of gestation, n 15), moderately preterm (32-<37 weeks of gestation, n 15) and term infants (37-41 weeks of gestation, n 15). Total protein, lactoferrin, secretory IgA, soluble CD14 receptor (sCD14), transforming growth factor-β2 (TGF-β2), α defensin 5 (HD5), β defensins 1 (HBD1) and 2, IL-6, IL-10, IL-13, interferon-γ, TNF-α and lysozyme (LZ) were quantified in milk. We examined the effects of lactation stage, gestational age, volume of milk expressed, mode of delivery, parity and maternal infection on milk immune factor concentrations using repeated-measures regression analysis. The concentrations of all factors except LZ and HD5 decreased over the 1st month postpartum. Extremely preterm mothers had significantly higher concentrations of HBD1 and TGF-β2 in colostrum than term mothers did. After controlling for other variables in regression analyses, preterm birth was associated with higher concentrations of HBD1, LZ and sCD14 in milk samples. In conclusion, preterm breast milk contains significantly higher concentrations of some immune proteins than term breast milk.
Collapse
|
36
|
Hansson E, Skiöldebrand E. Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. JOURNAL OF INFLAMMATION-LONDON 2015. [PMID: 26213498 PMCID: PMC4514450 DOI: 10.1186/s12950-015-0091-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several organs in the body comprise cells coupled into networks. These cells have in common that they are excitable but do not express action potentials. Furthermore, they are equipped with Ca2+ signaling systems, which can be intercellular and/or extracellular. The transport of small molecules between the cells occurs through gap junctions comprising connexin 43. Examples of cells coupled into networks include astrocytes, keratinocytes, chondrocytes, synovial fibroblasts, osteoblasts, connective tissue cells, cardiac and corneal fibroblasts, myofibroblasts, hepatocytes, and different types of glandular cells. These cells are targets for inflammation, which can be initiated after injury or in disease. If the inflammation reaches the CNS, it develops into neuroinflammation and can be of importance in the development of systemic chronic inflammation, which can manifest as pain and result in changes in the expression and structure of cellular components. Biochemical parameters of importance for cellular functions are described in this review.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, 1tr, , SE 413 45 Gothenburg, Sweden
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden ; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
37
|
Ingman WV, Glynn DJ, Hutchinson MR. Mouse models of mastitis - how physiological are they? Int Breastfeed J 2015; 10:12. [PMID: 25848399 PMCID: PMC4386103 DOI: 10.1186/s13006-015-0038-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/04/2015] [Indexed: 11/10/2022] Open
Abstract
Lactation mastitis is a common, but poorly understood, inflammatory breast disease that is a significant health burden. A better understanding of the aetiology of mastitis is urgently required, and will assist in the development of improved prevention and treatment strategies in both human and animal species. Studies in mice have the potential to greatly assist in identifying new drug candidates for clinical trials, and in developing a better understanding of the disease. Mouse models of mastitis involve administration of a mastitis-inducing agent to the mammary gland usually during lactation to examine the host immune response, and progression through to resolution of the disease. There are important variations in the protocols of these mouse models that critically affect the conclusions that can be drawn from the research. Some protocols involve weaning of offspring at the time of mastitis induction, and there are variations in the mastitis-inducing agent and its carrier. Induction of mammary gland involution through weaning of offspring limits the capacity to study the disease in the context of a lactating mammary gland. Administration of live bacteria in an aqueous carrier can cause sepsis, restricting the physiological relevance of the model. Mouse model research should employ appropriately designed controls and closely monitor the health of the mice. In this commentary, we discuss the advantages and study design limitations of each mouse model, and highlight the potential for further development of physiologically relevant mouse models of mastitis.
Collapse
Affiliation(s)
- Wendy V Ingman
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia ; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia ; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Mark R Hutchinson
- Discipline Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|