1
|
To B, Broeker C, Jhan JR, Garcia-Lerena J, Vusich J, Rempel R, Rennhack JP, Hollern D, Jackson L, Judah D, Swiatnicki M, Bylett E, Kubiak R, Honeysett J, Nevins J, Andrechek E. Insight into mammary gland development and tumor progression in an E2F5 conditional knockout mouse model. Oncogene 2024; 43:3402-3415. [PMID: 39341991 PMCID: PMC11554565 DOI: 10.1038/s41388-024-03172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Development of breast cancer is linked to altered regulation of mammary gland developmental processes. A better understanding of normal mammary gland development can thus reveal possible mechanisms of how normal cells are re-programmed to become malignant. E2Fs 1-4 are part of the E2F transcription factor family with varied roles in mammary development, but little is known about the role of E2F5. A combination of scRNAseq and predictive signature tools demonstrated the presence of E2F5 in the mammary gland and showed changes in predicted activity during the various phases of mammary gland development. Testing the hypothesis that E2F5 regulates mammary function, we generated a mammary-specific E2F5 knockout mouse model, resulting in modest mammary gland development changes. However, after a prolonged latency the E2F5 conditional knockout mice developed highly metastatic mammary tumors. Whole genome sequencing revealed significant intertumor heterogeneity. RNAseq and protein analysis identified altered levels of Cyclin D1, with similarities to MMTV-Neu tumors, suggesting that E2F5 conditional knockout mammary glands and tumors may be dependent on Cyclin D1. Transplantation of the tumors revealed metastases to lymph nodes that were enriched through serial transplantation in immune competent recipients. Based on these findings, we propose that loss of E2F5 leads to altered regulation of Cyclin D1, which facilitates the development of metastatic mammary tumors after long latency. More importantly, this study demonstrates that conditional loss of E2F5 in the mammary gland leads to tumor formation, revealing its role as a transcription factor regulating a network of genes that normally result in a tumor suppressor function.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Carson Broeker
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jing-Ru Jhan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - John Vusich
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | | | | - Lauren Jackson
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - David Judah
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matt Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Evan Bylett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Rachel Kubiak
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jordan Honeysett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Eran Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Xiong N, Han W, Yu Z. ABO Blood Type and Pretreatment Systemic Inflammatory Response Index Associated with Lymph Node Metastasis in Patients with Breast Cancer. Int J Gen Med 2024; 17:4823-4833. [PMID: 39465189 PMCID: PMC11512788 DOI: 10.2147/ijgm.s486873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Background Lymph node metastasis (LNM) is an important prognostic factor for breast cancer. Inflammatory stimulation can change tumor microenvironment and lead to LNM, but the relationship between LNM and peripheral immunoinflammatory indices has not been clarified in breast cancer. Methods The clinical information of 1918 patients with breast cancer admitted to Meizhou People's Hospital from October 2017 to December 2023 were retrospectively analyzed. The relationship of clinicopathological features (age, body mass index (BMI), ABO blood types, family history of cancer, tumor site, disease stage, LNM, distant metastasis, and molecular subtypes) and peripheral immunoinflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) were analyzed. Results There were 935 (48.7%) patients had no LNM and 983 (51.3%) had LNM. There were statistically significant differences in the distributions of ABO blood groups (p=0.022) and molecular subtypes (p<0.001) between the two groups. PIV, SII, and SIRI levels in patients with LNM were significantly higher than those without LNM (all p<0.05). The proportions of LNM in patients with high PIV, SII, and SIRI levels were higher than those with low PIV, SII, and SIRI levels, respectively. Logistic regression analysis showed that non-O blood type (non-O blood type vs O blood type, odds ratio (OR): 1.327, 95% confidence interval (CI): 1.056-1.667, p=0.015), luminal B subtype (luminal B vs luminal A, OR: 2.939, 95% CI: 2.147-4.022, p<0.001), HER2+ subtype (HER2+ vs luminal A, OR: 2.044, 95% CI: 1.388-3.009, p<0.001), and high SIRI level (≥0.875 vs <0.875, OR: 1.572, 95% CI: 1.092-2.265, p=0.015) were independently associated with LNM. Conclusion Non-O blood type, luminal B and HER2+ subtypes, and high SIRI level (≥0.875) have potential role in predicting the status of LNM in breast cancer patients.
Collapse
Affiliation(s)
- Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhikang Yu
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
3
|
Song Y, Liu J, Jin C, Zheng Y, Zhao Y, Zhang K, Zhou M, Zhao D, Hou L, Dong F. Value of Contrast-Enhanced Ultrasound Combined with Immune-Inflammatory Markers in Predicting Axillary Lymph Node Metastasis of Breast Cancer. Acad Radiol 2024; 31:3535-3545. [PMID: 38918153 DOI: 10.1016/j.acra.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate the diagnostic performance of contrast-enhanced ultrasound (CEUS) combined with immune-inflammatory markers in predicting axillary lymph node metastasis (ALNM) in breast cancer patients. METHODS From January 2020 to June 2023, the clinicopathological data and ultrasound features of 401 breast cancer patients who underwent biopsy or surgery were recorded. Patients were randomly divided into a training set (321 patients) and a validation set (80 patients). The risk factors for ALNM were determined using univariate, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression analysis, and prediction models were constructed. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to assess their diagnostic performance. RESULTS Logistic regression analysis demonstrated that systemic immunoinflammatory index (SII), CA125, Ki67, pathological type, lesion size, enhancement pattern and Breast Imaging Reporting and Data System (BI-RADS) category were significant risk factors for ALNM. Three different models were constructed, and the combined model yielded an AUC of 0.903, which was superior to the clinical model (AUC=0.790) and ultrasound model (AUC=0.781). A nomogram was constructed based on the combined model, calibration curves and DCA demonstrated its satisfactory performance in predicting ALNM. CONCLUSION The nomogram combining ultrasound features and immune-inflammatory markers could serve as a valuable instrument for predicting ALNM in breast cancer patients. DATA AVAILABILITY STATEMENT The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding authors.
Collapse
Affiliation(s)
- Ying Song
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Jinjin Liu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Chenyang Jin
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Yan Zheng
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Yingying Zhao
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Kairen Zhang
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Mengqi Zhou
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Dan Zhao
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Lizhu Hou
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China
| | - Fenglin Dong
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, China.
| |
Collapse
|
4
|
Fan S, Mao Y, Ge Y, Liang Z. Association of preoperative elevated lipoprotein (a) with poor survival in patients with biliary tract cancers. Cancer Med 2024; 13:e7331. [PMID: 38819582 PMCID: PMC11141329 DOI: 10.1002/cam4.7331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Biliary tract cancers have garnered significant attention due to their highly malignant nature. The relationship between abnormal lipid metabolism and tumor occurrence and development is a research hotspot. However, its correlation with biliary tract cancers is unclear. METHODS We enrolled 78 patients with biliary tract cancers and obtained data on clinical characteristics, pathological findings, and preoperative blood lipid indices, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and lipoprotein (a) [Lp(a)]. Receiver operating characteristic (ROC) curves were used to determine the optimal predictive cutoff values of lipid indicators among the participants. Independent risk factors were determined using Cox regression, and survival was predicted using the Kaplan-Meier method. Statistical analyses were performed using SPSS software. RESULTS Univariate Cox regression analysis revealed that the body mass index (BMI), tumor location, surgical margin, N stage, and abnormally increased LDL-C, TG, and Lp(a) levels were significantly associated with poor prognosis of biliary tract cancers (p < 0.05). Multifactor Cox regression demonstrated that only N stage (HR = 3.393, p < 0.001) and abnormally increased Lp(a) levels (HR = 2.814, p = 0.004) were significantly associated with shorter survival. N stage and Lp(a) were identified as independent prognostic risk factors for patients with biliary tract cancers. CONCLUSION This study presents Lp(a) as a novel biochemical marker that can guide clinical treatment strategies for patients with biliary tract cancers. More effective treatment options and intensive postoperative testing should be considered to prolong the survival of these patients with preoperative abnormal lipid metabolism.
Collapse
Affiliation(s)
- Shanshan Fan
- Department of Oncology, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Yihan Mao
- The Third Clinical School of MedicineCapital Medical UniversityBeijingChina
| | - Yang Ge
- Department of Oncology, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Ziwei Liang
- Department of Oncology, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Xu L, Li W, Liu D, Cao J, Ge J, Liu X, Wang Y, Teng Y, Liu P, Guo X, He C, Liu M, Tian L. ANXA3-Rich Exosomes Derived from Tumor-Associated Macrophages Regulate Ferroptosis and Lymphatic Metastasis of Laryngeal Squamous Cell Carcinoma. Cancer Immunol Res 2024; 12:614-630. [PMID: 38393971 DOI: 10.1158/2326-6066.cir-23-0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Tumor-associated macrophages (TAM) induce immunosuppression in laryngeal squamous cell carcinoma (LSCC). The interaction between LSCC cells and TAMs affects the progression of laryngeal cancer through exosomes, but the underlying molecular mechanism remains unclear. Proteomics analysis of TAMs isolated from human laryngeal tumor tissues obtained from patients with confirmed lymphatic metastasis revealed an upregulation of annexin A3 (ANXA3). In TAMs, ANXA3 promoted macrophages to polarize to an M2-like phenotype by activating the AKT-GSK3β-β-catenin pathway. In addition, ANXA3-rich exosomes derived from TAMs inhibited ferroptosis in laryngeal cancer cells through an ATF2-CHAC1 axis, and this process was associated with lymphatic metastasis. Mechanistically, ANXA3 in exosomes inhibited the ubiquitination of ATF2, whereas ATF2 acted as a transcription factor to regulate the expression of CHAC1, thus inhibiting ferroptosis in LSCC cells. These data indicate that abnormal ANXA3 expression can drive TAM reprogramming and promote an immunosuppressive microenvironment in LSCC. Meanwhile, ANXA3-rich exosomes inhibit ferroptosis of LSCC cells and promote lymphatic metastasis, thus promoting tumor progression.
Collapse
Affiliation(s)
- Licheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Hepatosplenic Surgery Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingchun Ge
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujian Teng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyan Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyue Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen He
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
7
|
Ren X, Shi P, Su J, Wei T, Li J, Hu Y, Wu C. Loss of Myo19 increases metastasis by enhancing microenvironmental ROS gradient and chemotaxis. EMBO Rep 2024; 25:971-990. [PMID: 38279020 PMCID: PMC10933354 DOI: 10.1038/s44319-023-00052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024] Open
Abstract
Tumor metastasis involves cells migrating directionally in response to external chemical signals. Reactive oxygen species (ROS) in the form of H2O2 has been demonstrated as a chemoattractant for neutrophils but its spatial characteristics in tumor microenvironment and potential role in tumor cell dissemination remain unknown. Here we investigate the spatial ROS distribution in 3D tumor spheroids and identify a ROS concentration gradient in spheroid periphery, which projects into a H2O2 gradient in tumor microenvironment. We further reveal the role of H2O2 gradient to induce chemotaxis of tumor cells by activating Src and subsequently inhibiting RhoA. Finally, we observe that the absence of mitochondria cristae remodeling proteins including the mitochondria-localized actin motor Myosin 19 (Myo19) enhances ROS gradient and promotes tumor dissemination. Myo19 downregulation is seen in many tumors, and Myo19 expression is negatively associated with tumor metastasis in vivo. Together, our study reveals the chemoattractant role of tumor microenvironmental ROS and implies the potential impact of mitochondria cristae disorganization on tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Peng Shi
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Yiping Hu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Wang W, Ding Y, Zhao Y, Li X. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther 2024; 31:285-299. [PMID: 38102465 DOI: 10.1038/s41417-023-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Lymph node metastasis (LNM) is a major cause of locoregional recurrence of papillary thyroid carcinoma (PTC). However, the mechanisms responsible for LNM are unclear. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in cancer progression and metastasis, and whether m6A modification regulates LNM in PTC remains to be determined. This study showed that IGF2BP2 was upregulated in PTC and positively associated with LNM. Functionally, IGF2BP2 knockdown significantly inhibited PTC cell proliferation and invasion in vitro, and vice versa. Moreover, IGF2BP2 knockdown significantly inhibited lymphatic metastasis in vivo. Mechanistically, Human m6A epitranscriptomic microarray, MeRIP, and RIP assays demonstrated that IGF2BP2 activated the NF-KB pathway by enhancing DPP4 stability in an m6A-dependent manner. Furthermore, IGF2BP2 knockdown increased the sensitivity of PTC cells to cisplatin therapy to a certain extent, while its overexpression produced the opposite effects. Overall, this study uncovers that IGF2BP2 promotes lymphatic metastasis via stabilizing DPP4 in an m6A-dependent manner, and provides new insights for understanding the mechanism of lymphatic metastasis in PTC.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China
| | - Ying Ding
- Department of Breast Thyroid Surgery, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
- Postdoctoral Station of Medical Aspects of Specific Environments, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Yunzhe Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China.
| |
Collapse
|
9
|
Zhang H, Li Y, Liu G, Chen X. Expression analysis of lymphocyte subsets and lymphocyte-to-monocyte ratio: reveling immunosuppression and chronic inflammation in breast cancer. J Cancer Res Clin Oncol 2024; 150:28. [PMID: 38263363 PMCID: PMC10805813 DOI: 10.1007/s00432-023-05508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE To explore the immune status and chronic inflammation of breast cancer patients, this study aims to analyze the diagnostic value of peripheral blood lymphocyte subsets (CD3+T, CD4+T, CD8+T, CD3+CD4-CD8-T, CD19+B, and NK cells) and lymphocyte-to-monocyte ratio (LMR) for breast cancer. Furthermore, it seeks to examine the correlation between these subsets and LMR with clinicopathological features. METHODS A total of 100 breast cancer patients were selected as the experimental group, while 55 patients with benign breast diseases were included in the control group. Statistical analysis, including the Wilcoxon test, Kruskal-Wallis test and the receiver operating characteristic curve, was employed to investigate the association between these serum indexes and the clinicopathological characteristics of the patients. RESULTS The levels of CD3+T cells, CD4+T cells, CD8+T cells, CD4+/CD8+ ratio, NK cells, CD3+CD4-CD8-T cells, and LMR were found to be related to the occurrence of breast cancer when analyzing data from patients with benign and malignant breast diseases. Among these biomarkers, CD3+T cells, CD4+T cells, CD4+/CD8+ ratio, CD3+CD4-CD8-T cells, and LMR were identified as independent risk factors for breast cancer development, and the AUCs were 0.760, 0.750, 0.598, 0.697, and 0.761 (P < 0.05), respectively. Furthermore, we observed varying degrees of differences in the expression of CD3+T cells, CD4+T cells, CD8+T cells, CD4+/CD8+ ratio, and LMR in lymph node metastasis, clinical staging, molecular typing, Ki-67 level (P < 0.05). However, statistical differences in histologic grade and pathology type were not found (P ≥ 0.05). CONCLUSION Lymphocyte subsets and LMR reflect the immune status and chronic inflammation of the body, respectively. They have certain value in the diagnosis of benign and malignant breast diseases, and correlate with lymph node metastasis, clinical staging, molecular typing and other clinicopathological features of breast cancer. Therefore, monitoring the expression of lymphocyte subsets and LMR in the body may help the auxiliary diagnosis and condition analysis of breast cancer in the clinic.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Li
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Ping J, Liu W, Chen Z, Li C. Lymph node metastases in breast cancer: Mechanisms and molecular imaging. Clin Imaging 2023; 103:109985. [PMID: 37757640 DOI: 10.1016/j.clinimag.2023.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Breast cancer is the most common malignant disease of women in the world. Breast cancer often metastasizes to axillary lymph nodes. Accurate assessment of the status of axillary lymph nodes is crucial to the staging and treatment of breast cancer. None of the methods used clinically for preoperative noninvasive examination of axillary lymph nodes can accurately identify cancer cells from a molecular level. In recent years, with the in-depth study of lymph node metastases, the mechanisms and molecular imaging of lymph node metastases in breast cancer have been reported. In this review, we highlight the new progress in the study of the main mechanisms of lymph node metastases in breast cancer. In addition, we analyze the advantages and disadvantages of traditional preoperative axillary lymph node imaging methods for breast cancer, and list molecular imaging methods that can accurately identify breast cancer cells in lymph nodes.
Collapse
Affiliation(s)
- Jieyi Ping
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Wei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Zhihui Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Cuiying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
11
|
Lu Q, Sun H, Yu Q, Tang D. Circ_PRDM5/miR-25-3p/ANKRD46 axis is associated with cell malignant behaviors in subjects with breast cancer evaluated by ultrasound. J Biochem Mol Toxicol 2023; 37:e23469. [PMID: 37485755 DOI: 10.1002/jbt.23469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Circular RNAs (circRNAs) are key RNA molecules in cancer biology. CircRNA PR/SET domain 5 (circ_PRDM5, hsa_circ_0005654) was downregulated in breast cancer (BC) tissues. This study is designed to investigate the functional mechanism of circ_PRDM5 in BC. Ultrasound examinations were performed to evaluate BC patients and normal individuals. Circ_PRDM5, miR-25-3p, and Ankyrin repeat domain 46 (ANKRD46) level detection was carried out by reverse transcription-quantitative polymerase chain reaction. 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay was used for cell viability examination. Cell proliferation was evaluated by ethynyl-2'-deoxyuridine assay and colony formation assay. The protein levels were examined using western blot. Cell migration and invasion abilities were assessed via transwell assay. Target interaction was analyzed via dual-luciferase reporter assay. The role of circ_PRDM5 in vivo was explored via xenograft tumor assay. Circ_PRDM5 expression was downregulated in BC tissues and cells. Overexpression of circ_PRDM5 suppressed proliferation and motility but enhanced apoptosis of BC cells. Circ_PRDM5 served as a sponge of miR-25-3p. Circ_PRDM5 impeded BC cell malignant development via sponging miR-25-3p. Circ_PRDM5 induced ANKRD46 upregulation by targeting miR-25-3p. Inhibition of miR-25-3p retarded BC progression by increasing the ANKRD46 level. Circ_PRDM5 repressed BC tumorigenesis in vivo through mediating the miR-25-3p/ANKRD46 axis. This study evidenced that circ_PRDM5 inhibited cell progression and tumor growth in BC via interacting with mir-25-3p/ANKRD46 network.
Collapse
Affiliation(s)
- Qin Lu
- The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Huihui Sun
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qian Yu
- Huai'an Maternal and Child Health Hospital, Huai'an, Jiangsu, China
| | - Dongdong Tang
- Huaiyin Hospital of Huai'an City, Huai'an, Jiangsu, China
| |
Collapse
|
12
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
13
|
Shen Y, Xue J, Yu J, Jiang Y, Bu J, Zhu T, Gu X, Zhu X. Comprehensive analysis of the expression, prognostic significance, and regulation pathway of G2E3 in breast cancer. World J Surg Oncol 2022; 20:398. [PMID: 36517818 PMCID: PMC9753372 DOI: 10.1186/s12957-022-02871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Loss of G2-specific E3-like (G2E3) protein sensitizes tumor cells to chemotherapy. However, the role of G2E3 in breast cancer development and patient's prognosis is unclear. Here, we explored the expression, prognostic significance, and regulatory pathway of G2E3 in breast cancer. METHODS TCGA and UALCAN database were utilized to explore G2E3 expression in breast cancer and normal tissues and its expression in breast cancer based on clinicopathological characteristics, respectively. The Kaplan-Meier plotter database was utilized to determine the effect of G2E3 on the prognosis of breast cancer patients. RT-PCR was utilized to validate the G2E3 expression in cancerous and normal breast tissues. Immunohistochemistry analysis was utilized to validate the prognostic effect of G2E3 expression in breast cancer patients and the relationship between G2E3 expression and lymphocyte infiltration levels. Receiver operating characteristic (ROC) curves were also generated to validate the diagnostic value of G2E3 expression in recurrence/distant organ metastasis and death. The STRING database, DAVID database, and Sanger-box tools were utilized to perform GO functional, KEGG pathway enrichment, and GSEA analysis. The TISIDB database was utilized to determine the relationship between G2E3 expression and tumor immunity. Finally, CTD database was utilized to screen for potential therapeutic compounds that could reduce the G2E3 mRNA expression. RESULTS TCGA data presented that G2E3 expression was higher in breast cancer tissues than in normal breast tissues. This result was further validated by RT-PCR (P = 0.003). The Kaplan-Meier plotter database suggested that patients with high G2E3 mRNA expression had significantly shorter RFS and OS than patients with low G2E3 mRNA expression. Immunohistochemistry analysis of 156 breast cancer clinical specimens also validated patients with G2E3-positive expression had a significantly shorter DFS and OS than patients with G2E3-negative expression. Thus, G2E3 expression was an independent prognostic predictor of DFS and OS. The G2E3-positive expression also has a high diagnostic value for recurrence/distant organ metastasis and death. GSEA analysis revealed that G2E3 might be enriched in the E2F, PI3K/AKT/mTOR signaling, DNA repair pathways, and other cancer-related signaling pathways. The TISIDB database showed that G2E3 expression was significantly negatively associated with lymphocyte infiltration. This result was further validated in clinical breast cancer samples (P = 0.048; R = -0.158). Using the CTD database, we found that (+)-JQ1 compound, 1,2-dimethylhydrazine, and other compounds may decrease the G2E3 mRNA expression. These compounds could serve as potential therapeutic compounds for the clinical treatment of breast cancer. CONCLUSIONS G2E3 expression was higher in breast cancer tissues than in normal tissues. G2E3-positive expression was related to a worse survival outcome in patients with breast cancer. Genes co-expressed with G2E3 may be enriched in the breast cancer-related signaling pathways. The G2E3 expression was significantly negatively associated with lymphocyte infiltration. G2E3 may serve as a novel prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yanyan Shen
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Jinqi Xue
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Jiahui Yu
- grid.412467.20000 0004 1806 3501Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Yi Jiang
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Jiawen Bu
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Tong Zhu
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Xi Gu
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Xudong Zhu
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China ,grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042 Liaoning China
| |
Collapse
|
14
|
Identification and validation of DNA methylation markers to predict axillary lymph node metastasis of breast cancer. PLoS One 2022; 17:e0278270. [PMID: 36454866 PMCID: PMC9714834 DOI: 10.1371/journal.pone.0278270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Axillary lymph node metastasis (ALNM) is one of the most important prognostic factors for breast cancer patients, and DNA methylation is involved in ALNM of breast cancer. However, the methylation profile of breast cancer ALNM remains unknown. METHODS Breast cancer tissues were collected from patients with and without ALNM. We investigated the genome-wide DNA methylation profile in breast cancer with and without ALNM using reduced representation bisulfite sequencing (RRBS). Then, differentially methylated regions (DMRs) were verified by targeted bisulfite sequencing. RESULTS A total of 21491 DMRs were identified between the lymph node positive group and negative group. Compared to the LN-negative breast cancer, LN-positive breast cancer had 10,920 hypermethylated DMRs and 10,571 hypomethylated DMRs. Then, 10 DMRs in the gene promoter region were detected by targeted bisulfite sequencing, these gene included HOXA5, PTOV1-AS1, RHOF, PAX6, GSTP1, RASGRF2, AKR1B1, BNIP3, CRMP1, ING5. Compared with negative lymph node, the promoter methylation levels of RASGRF2, AKR1B1 and CRMP1 increased in positive lymph node, while the promoter methylation level of RHOF decreased in positive lymph node. In addition, Cancer Genome Atlas (TCGA) data showed that RASGRF2, AKR1B1 and CRMP1 were low expressed in breast Cancer tissues, while RHOF was high expressed in breast Cancer tissues. Furthermore, in addition to highly methylated AKR1B1, RASGRF2 and CRMP1 gene promoters, BNIP3, GSTP1, HOXA5 and PAX6 gene promoters were also methylated in ER-positive and HER2-negative breast cancer with ALNM. CONCLUSIONS When compared to negative lymph node breast cancer, the positive lymph node breast cancer has a differential methylation status. Promoter methylation of RASGRF2, AKR1B1, CRMP1 and RHOF in lymph node positive breast cancer tissues was significantly different from that in lymph node negative breast cancer tissues. AKR1B1, RASGRF2, CRMP1, BNIP3, GSTP1, HOXA5 and PAX6 genes were methylated in ER-positive and HER2-negative breast cancer with ALNM. The study provides an important biological base for understanding breast cancer with ALNM and developing therapeutic targets for breast cancer with ALNM.
Collapse
|
15
|
Gong X, Guo Y, Zhu T, Peng X, Xing D, Zhang M. Diagnostic performance of radiomics in predicting axillary lymph node metastasis in breast cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1046005. [PMID: 36518318 PMCID: PMC9742555 DOI: 10.3389/fonc.2022.1046005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND This study aimed to perform a meta-analysis to evaluate the diagnostic performance of radiomics in predicting axillary lymph node metastasis (ALNM) and sentinel lymph node metastasis (SLNM) in breast cancer. MATERIALS AND METHODS Multiple electronic databases were systematically searched to identify relevant studies published before April 29, 2022: PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Data. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The overall diagnostic odds ratio (DOR), sensitivity, specificity, and area under the curve (AUC) were calculated to evaluate the diagnostic performance of radiomic features for lymph node metastasis (LNM) in patients with breast cancer. Spearman's correlation coefficient was determined to assess the threshold effect, and meta-regression and subgroup analyses were performed to explore the possible causes of heterogeneity. RESULTS A total of 30 studies with 5611 patients were included in the meta-analysis. Pooled estimates suggesting overall diagnostic accuracy of radiomics in detecting LNM were determined: DOR, 23 (95% CI, 16-33); sensitivity, 0.86 (95% CI, 0.82-0.88); specificity, 0.79 (95% CI, 0.73-0.84); and AUC, 0.90 (95% CI, 0.87-0.92). The meta-analysis showed significant heterogeneity between sensitivity and specificity across the included studies, with no evidence for a threshold effect. Meta-regression and subgroup analyses showed that combined clinical factors, modeling method, region, and imaging modality (magnetic resonance imaging [MRI], ultrasound, computed tomography [CT], and X-ray mammography [MMG]) contributed to the heterogeneity in the sensitivity analysis (P < 0.05). Furthermore, modeling methods, MRI, and MMG contributed to the heterogeneity in the specificity analysis (P < 0.05). CONCLUSION Our results show that radiomics has good diagnostic performance in predicting ALNM and SLNM in breast cancer. Thus, we propose this approach as a clinical method for the preoperative identification of LNM.
Collapse
Affiliation(s)
| | | | | | | | | | - Minguang Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Wang C, Jiang X, Qi J, Xu J, Yang G, Mi C. PAIP2 is a potential diagnostic and prognostic biomarker of breast cancer and is associated with immune infiltration. Front Genet 2022; 13:1009056. [PMID: 36437922 PMCID: PMC9685164 DOI: 10.3389/fgene.2022.1009056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2024] Open
Abstract
Breast cancer is the second highest incidence of cancer in the world. It is of great significance to find biomarkers to diagnose breast cancer and predict the prognosis of breast cancer patients. PAIP2 is a poly (A) -binding protein interacting protein that regulates the expression of VEGF. However, the possible role of PAIP2 in the progression of breast cancer is still unknown. RT-qRCR and Western blotting were used to verify the expression of PAIP2 in breast cancer cells and normal breast cells. The data of breast cancer samples were obtained in the TCGA database and the HPA database to analyze the expression of PAIP2 in breast cancer samples. Transwell experiment and CCK8 experiment confirmed the changes in the invasion and proliferation ability of PAIP2 after siRNA was down-regulated. Using bioinformatics technology to explore the prognostic value of PAIP2 and its possible biological function, and its effect on tumor immunity and immunotherapy. Studies have shown that PAIP2 has higher expression in breast cancer tissues and breast cancer cells. PAIP2 can promote the proliferation and invasion of breast cancer cells and has significantly high expression in higher tumor stages. The high expression of PAIP2 is associated with better OS in breast cancer patients and is negatively correlated with most chemotherapeutic drug sensitivity and IPS in cancer immunotherapy. Our study explored the potential value of PAIP2 as a biomarker for diagnosis and prognosis and may predict the efficacy of immunotherapy, providing reference for the follow-up study on the role of PAIP2 in breast cancer.
Collapse
Affiliation(s)
- Chenyu Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xianglai Jiang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiaojiao Qi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiachao Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chengrong Mi
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Liu Y, Li X, Zhu L, Zhao Z, Wang T, Zhang X, Cai B, Li L, Ma M, Ma X, Ming J. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6729473. [PMID: 36051932 PMCID: PMC9410821 DOI: 10.1155/2022/6729473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022]
Abstract
Objective To investigate the value of preoperative prediction of breast cancer axillary lymph node metastasis based on intratumoral and peritumoral dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) radiomics nomogram. Material and Methods. In this study, a radiomics model was developed based on a training cohort involving 250 patients with breast cancer (BC) who had undergone axillary lymph node (ALN) dissection between June 2019 and January 2021. The intratumoral and peritumoral radiomics features were extracted from the second postcontrast images of DCE-MRI. Based on filtered radiomics features, the radiomics signature was built by using the least absolute shrinkage and selection operator method. The Support Vector Machines (SVM) learning algorithm was used to construct intratumoral, periatumoral, and intratumoral combined periatumoral models for predicting axillary lymph node metastasis (ALNM) in BC. Nomogram performance was determined by its discrimination, calibration, and clinical value. Multivariable logistic regression was adopted to establish a radiomics nomogram. Results The intratumoral combined peritumoral radiomics signature, which was composed of fifteen ALN status-related features, showed the best predictive performance and was associated with ALNM in both the training and validation cohorts (P < 0.001). The prediction efficiency of the intratumoral combined peritumoral radiomics model was higher than that of the intratumoral radiomics model and the peritumoral radiomics model. The AUCs of the training and verification cohorts were 0.867 and 0.785, respectively. The radiomics nomogram, which incorporated the radiomics signature, MR-reported ALN status, and MR-reported maximum diameter of the lesion, showed good calibration and discrimination in the training (AUC = 0.872) and validation cohorts (AUC = 0.863). Conclusion The intratumoral combined peritumoral radiomics model derived from DCE-MRI showed great predictive value for ALNM and may help to improve clinical decision-making for BC.
Collapse
Affiliation(s)
- Ying Liu
- Special Needs Comprehensive Department, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Xing Li
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Lina Zhu
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Zhiwei Zhao
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Tuan Wang
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Xi Zhang
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Bing Cai
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Li Li
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mingrui Ma
- Information Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Xiaojian Ma
- Information Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Jie Ming
- Medical Imaging Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Medical Imaging Center, Bachu County People's Hospital, Bachu 843800, Xinjiang, China
| |
Collapse
|
18
|
Wang G, Li W, Shi G, Tian Y, Kong L, Ding N, Lei J, Jin Z, Tian J, Du Y. Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. Eur J Nucl Med Mol Imaging 2022; 49:2723-2734. [PMID: 35590110 PMCID: PMC9206605 DOI: 10.1007/s00259-022-05834-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/01/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE A sensitive and specific imaging method to detect metastatic cancer cells in lymph nodes to detect the early-stage breast cancer is still a challenge. The purpose of this study was to investigate a novel breast cancer-targeting and tumour microenvironment ATP-responsive superparamagnetic iron oxide nanoparticles (SPIOs) imaging probe (abbreviated as SPIOs@A-T) that was developed to detect lymph node metastasis through fluorescence molecular imaging (FMI) and magnetic particle imaging (MPI). METHODS The conjugation of the targeted peptide CREKA and SPIOs was via linker sulfo-SMCC, while the dsDNA-Cy5.5 was modified on SPIOs through the conjugation between maleimide group in sulfo-SMCC and sulfydryl group in dsDNA-Cy5.5. SPIOs@A-T was characterised for its imaging properties, targeting ability and toxicity in vitro. Mice with metastatic lymph node (MLN) of breast cancer were established to evaluate the FMI and MPI imaging strategy in vivo. Healthy mice with normal lymph node (NLN) were used as control group. Histological examination and biosafety evaluation were performed for further assessment. RESULTS After injection with SPIOs@A-T, the obvious high fluorescent intensity and MPI signal were observed in MLN group than those in NLN group. FMI can specifically light up MLN using an ATP-responsive fluorescence design. On the other hand, MPI could complement the limitation of imaging depth from FMI and could detect MLN more sensitively. Besides, the biosafety evaluation results showed SPIOs@A-T had no detectable biological toxicity. CONCLUSION SPIOs@A-T imaging probe in combination with FMI and MPI can provide a promising novel method for the precise detection of MLN in vivo.
Collapse
Affiliation(s)
- Guorong Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guangyuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yu Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Lingyan Kong
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ning Ding
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Lei
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100083, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
19
|
Rethacker L, Boy M, Bisio V, Roussin F, Denizeau J, Vincent-Salomon A, Borcoman E, Sedlik C, Piaggio E, Toubert A, Dulphy N, Caignard A. Innate lymphoid cells: NK and cytotoxic ILC3 subsets infiltrate metastatic breast cancer lymph nodes. Oncoimmunology 2022; 11:2057396. [PMID: 35371620 PMCID: PMC8973349 DOI: 10.1080/2162402x.2022.2057396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) – which include cytotoxic Natural Killer (NK) cells and helper-type ILC – are important regulators of tissue immune homeostasis, with possible roles in tumor surveillance. We analyzed ILC and their functionality in human lymph nodes (LN). In LN, NK cells and ILC3 were the prominent subpopulations. Among the ILC3s, we identified a CD56+/ILC3 subset with a phenotype close to ILC3 but also expressing cytotoxicity genes shared with NK. In tumor-draining LNs (TD-LNs) and tumor samples from breast cancer (BC) patients, NK cells were prominent, and proportions of ILC3 subsets were low. In tumors and TD-LN, NK cells display reduced levels of NCR (Natural cytotoxicity receptors), despite high transcript levels and included a small subset CD127− CD56− NK cells with reduced function. Activated by cytokines CD56+/ILC3 cells from donor and patients LN acquired cytotoxic capacity and produced IFNg. In TD-LN, all cytokine activated ILC populations produced TNFα in response to BC cell line. Analyses of cytotoxic and helper ILC indicate a switch toward NK cells in TD-LN. The local tumor microenvironment inhibited NK cell functions through downregulation of NCR, but cytokine stimulation restored their functionality.
Collapse
Affiliation(s)
- Louise Rethacker
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Maxime Boy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Valeria Bisio
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - France Roussin
- Service d’Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Jordan Denizeau
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- Department of Medical Oncology, Institut Curie, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
| | - Christine Sedlik
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Eliane Piaggio
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| |
Collapse
|
20
|
BAHD1 serves as a critical regulator of breast cancer cell proliferation and invasion. Breast Cancer 2022; 29:516-530. [DOI: 10.1007/s12282-022-01333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 01/06/2023]
|
21
|
Natale G, Stouthandel MEJ, Van Hoof T, Bocci G. The Lymphatic System in Breast Cancer: Anatomical and Molecular Approaches. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1272. [PMID: 34833492 PMCID: PMC8624129 DOI: 10.3390/medicina57111272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most important causes of premature mortality among women and it is one of the most frequently diagnosed tumours worldwide. For this reason, routine screening for prevention and early diagnosis is important for the quality of life of patients. Breast cancer cells can enter blood and lymphatic capillaries, then metastasizing to the regional lymph nodes in the axilla and to both visceral and non-visceral sites. Rather than at the primary site, they seem to enter the systemic circulation mainly through the sentinel lymph node and the biopsy of this indicator can influence the axillary dissection during the surgical approach to the pathology. Furthermore, secondary lymphoedema is another important issue for women following breast cancer surgical treatment or radiotherapy. Considering these fundamental aspects, the present article aims to describe new methodological approaches to assess the anatomy of the lymphatic network in the axillary region, as well as the molecular and physiological control of lymphatic vessel function, in order to understand how the lymphatic system contributes to breast cancer disease. Due to their clinical implications, the understanding of the molecular mechanisms governing lymph node metastasis in breast cancer are also examined. Beyond the investigation of breast lymphatic networks and lymphatic molecular mechanisms, the discovery of new effective anti-lymphangiogenic drugs for future clinical settings appears essential to support any future development in the treatment of breast cancer.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy
| | - Michael E. J. Stouthandel
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (M.E.J.S.); (T.V.H.)
| | - Tom Van Hoof
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (M.E.J.S.); (T.V.H.)
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
22
|
Blei F. Update December 2020. Lymphat Res Biol 2020. [DOI: 10.1089/lrb.2020.29096.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|