1
|
May-Davis S, Eckelbarger PB, Dzingle D, Saber E. Characterization and Association of the Missing Ventral Tubercle(s) from the Sixth Cervical Vertebra and Transpositions on the Ventral Surface of the Seventh Cervical Vertebra in Modern Equus ferus caballus. Animals (Basel) 2024; 14:1830. [PMID: 38929448 PMCID: PMC11200614 DOI: 10.3390/ani14121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, equine complex vertebral malformation (ECVM) has been of concern in the equine community, with studies identifying numerous associative morphological variations. Here, we examine the morphological association between C6 and C7 for dependency in ECVM cases, where the partially absent ventral process of C6 transposes on the ventral surface of C7. A C6 ventral process presents two tubercles, one cranial (CrVT) and one caudal (CVT). In this study, the C6 osseous specimens (n = 85) demonstrated a partial or completely absent CVT (aCVT) graded 1-4 that often extended cranially creating a partially absent cranial ventral tubercle (aCrVT) graded 1-3. In the 85 C6 osseous specimens examined, the corresponding C7s demonstrated either a complete or incomplete transposition of the ventral process from C6 in 44/85, with 30/44 replicating a transverse foramen. A strong statistical dependency existed between C6 grade 4 aCVTs and grades 1-3 aCrVTs and C7 transpositions with replicated transverse foramen. Sidedness was also demonstrated, where a left sided absent C6 associated with transposition on the left ventral surface of C7. This likewise applied to right sidedness and most bilateral cases. These findings might benefit practitioners when radiographing the extent of the ECVM configuration in patients presenting caudal cervical pain.
Collapse
Affiliation(s)
- Sharon May-Davis
- Canine and Equine Research Group, University of New England, Armidale, NSW 2351, Australia
| | | | - Diane Dzingle
- Equus Soma—Equine Osteology and Anatomy Learning Center, Aiken, SC 29805, USA; (P.B.E.); (D.D.)
| | - Elle Saber
- Biological Data Science Institute, Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
2
|
Arnold P, Janiszewska K, Li Q, O'Connor JK, Fostowicz-Frelik Ł. The Late Cretaceous eutherian Zalambdalestes reveals unique axis and complex evolution of the mammalian neck. Sci Bull (Beijing) 2024; 69:1767-1775. [PMID: 38702276 DOI: 10.1016/j.scib.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
The typical mammalian neck consisting of seven cervical vertebrae (C1-C7) was established by the Late Permian in the cynodont forerunners of modern mammals. This structure is precisely adapted to facilitate movements of the head during feeding, locomotion, predator evasion, and social interactions. Eutheria, the clade including crown placentals, has a fossil record extending back more than 125 million years revealing significant morphological diversification in the Mesozoic. Yet very little is known concerning the early evolution of eutherian cervical morphology and its functional adaptations. A specimen of Zalambdalestes lechei from the Late Cretaceous of Mongolia boasts exceptional preservation of an almost complete series of cervical vertebrae (C2-C7) revealing a highly modified axis (C2). The significance of this cervical morphology is explored utilizing an integrated approach combining comparative anatomical examination across mammals, muscle reconstruction, geometric morphometrics and virtual range of motion analysis. We compared the shape of the axis in Zalambdalestes to a dataset of 88 mammalian species (monotremes, marsupials, and placentals) using three-dimensional landmark analysis. The results indicate that the unique axis morphology of Zalambdalestes has no close analog among living mammals. Virtual range of motion analysis of the neck strongly implies Zalambdalestes was capable of exerting very forceful head movements and had a high degree of ventral flexion for an animal its size. These findings reveal unexpected complexity in the early evolution of the eutherian cervical morphology and suggest a feeding behavior similar to insectivores specialized in vermivory and defensive behaviors in Zalambdalestes akin to modern spiniferous mammals.
Collapse
Affiliation(s)
- Patrick Arnold
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam D-14476, Germany
| | - Katarzyna Janiszewska
- Environmental Paleobiology Department, Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland
| | - Qian Li
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | | | - Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago IL 60637, USA; Evolutionary Paleobiology Department, Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland.
| |
Collapse
|
3
|
Villamil CI, Middleton ER. Conserved patterns and locomotor-related evolutionary constraints in the hominoid vertebral column. J Hum Evol 2024; 190:103528. [PMID: 38579429 DOI: 10.1016/j.jhevol.2024.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
The evolution of the hominoid lineage is characterized by pervasive homoplasy, notably in regions such as the vertebral column, which plays a central role in body support and locomotion. Few isolated and fewer associated vertebrae are known for most fossil hominoid taxa, but identified specimens indicate potentially high levels of convergence in terms of both form and number. Homoplasy thus complicates attempts to identify the anatomy of the last common ancestor of hominins and other taxa and stymies reconstructions of evolutionary scenarios. One way to clarify the role of homoplasy is by investigating constraints via phenotypic integration, which assesses covariation among traits, shapes evolutionary pathways, and itself evolves in response to selection. We assessed phenotypic integration and evolvability across the subaxial (cervical, thoracic, lumbar, sacral) vertebral column of macaques (n = 96), gibbons (n = 77), chimpanzees (n = 92), and modern humans (n = 151). We found a mid-cervical cluster that may have shifted cranially in hominoids, a persistent thoracic cluster that is most marked in chimpanzees, and an expanded lumbosacral cluster in hominoids that is most expanded in gibbons. Our results highlight the highly conserved nature of the vertebral column. Taxa appear to exploit existing patterns of integration and ontogenetic processes to shift, expand, or reduce cluster boundaries. Gibbons appear to be the most highly derived taxon in our sample, possibly in response to their highly specialized locomotion.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Puerto Rico, PO Box 60327, Bayamón, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, 3413 N. Downer Ave., Sabin Hall 390, Milwaukee, WI, USA
| |
Collapse
|
4
|
Nalley TK, Scott JE, McGechie F, Grider-Potter N. Comparative ontogeny of functional aspects of human cervical vertebrae. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24788. [PMID: 37283367 DOI: 10.1002/ajpa.24788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Differences between adult humans and great apes in cervical vertebral morphology are well documented, but the ontogeny of this variation is still largely unexplored. This study examines patterns of growth in functionally relevant features of C1, C2, C4, and C6 in extant humans and apes to understand the development of their disparate morphologies. MATERIALS AND METHODS Linear and angular measurements were taken from 530 cervical vertebrae representing 146 individual humans, chimpanzees, gorillas, and orangutans. Specimens were divided into three age-categories based on dental eruption: juvenile, adolescent, and adult. Inter- and intraspecific comparisons were evaluated using resampling methods. RESULTS Of the eighteen variables examined here, seven distinguish humans from apes at the adult stage. Human-ape differences in features related to atlantoaxial joint function tend to be established by the juvenile stage, whereas differences in features related to the nuchal musculature and movement of the subaxial elements do not fully emerge until adolescence or later. The orientation of the odontoid process-often cited as a feature that distinguishes humans from apes-is similar in adult humans and adult chimpanzees, but the developmental patterns are distinct, with human adultlike morphology being achieved much earlier. DISCUSSION The biomechanical consequences of the variation observed here is poorly understood. Whether the differences in growth patterns represent functional links to cranial development or postural changes, or both, requires additional investigation. Determining when humanlike ontogenetic patterns evolved in hominins may provide insight into the functional basis driving the morphological divergence between extant humans and apes.
Collapse
Affiliation(s)
- Thierra K Nalley
- Medical Anatomical Sciences Department, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jeremiah E Scott
- Medical Anatomical Sciences Department, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Faye McGechie
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Neysa Grider-Potter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
5
|
Merten LJF, Manafzadeh AR, Herbst EC, Amson E, Tambusso PS, Arnold P, Nyakatura JA. The functional significance of aberrant cervical counts in sloths: insights from automated exhaustive analysis of cervical range of motion. Proc Biol Sci 2023; 290:20231592. [PMID: 37909076 PMCID: PMC10618861 DOI: 10.1098/rspb.2023.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Besides manatees, the suspensory extant 'tree sloths' are the only mammals that deviate from a cervical count (CC) of seven vertebrae. They do so in opposite directions in the two living genera (increased versus decreased CC). Aberrant CCs seemingly reflect neck mobility in both genera, suggesting adaptive significance for their head position during suspensory locomotion and especially increased ability for neck torsion in three-toed sloths. We test two hypotheses in a comparative evolutionary framework by assessing three-dimensional intervertebral range of motion (ROM) based on exhaustive automated detection of bone collisions and joint disarticulation while accounting for interacting rotations of roll, yaw and pitch. First, we hypothesize that the increase of CC also increases overall neck mobility compared with mammals with a regular CC, and vice versa. Second, we hypothesize that the anatomy of the intervertebral articulations determines mobility of the neck. The assessment revealed that CC plays only a secondary role in defining ROM since summed torsion (roll) capacity was primarily determined by vertebral anatomy. Our results thus suggest limited neck rotational adaptive significance of the CC aberration in sloths. Further, the study demonstrates the suitability of our automated approach for the comparative assessment of osteological ROM in vertebral series.
Collapse
Affiliation(s)
- Luisa J. F. Merten
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Philippstrasse 12/13, 10115 Berlin, Germany
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Armita R. Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT 06520, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
- Yale Peabody Museum of Natural History, New Haven, CT 06520, USA
| | - Eva C. Herbst
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH, University of Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - P. Sebastián Tambusso
- Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Patrick Arnold
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - John A. Nyakatura
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Philippstrasse 12/13, 10115 Berlin, Germany
| |
Collapse
|
6
|
Marek RD, Felice RN. The neck as a keystone structure in avian macroevolution and mosaicism. BMC Biol 2023; 21:216. [PMID: 37833771 PMCID: PMC10576348 DOI: 10.1186/s12915-023-01715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The origin of birds from non-avian theropod dinosaur ancestors required a comprehensive restructuring of the body plan to enable the evolution of powered flight. One of the proposed key mechanisms that allowed birds to acquire flight and modify the associated anatomical structures into diverse forms is mosaic evolution, which describes the parcelization of phenotypic traits into separate modules that evolve with heterogeneous tempo and mode. Avian mosaicism has been investigated with a focus on the cranial and appendicular skeleton, and as such, we do not understand the role of the axial column in avian macroevolution. The long, flexible neck of extant birds lies between the cranial and pectoral modules and represents an opportunity to study the contribution of the axial skeleton to avian mosaicism. RESULTS Here, we use 3D geometric morphometrics in tandem with phylogenetic comparative methods to provide, to our knowledge, the first integrative analysis of avian neck evolution in context with the head and wing and to interrogate how the interactions between these anatomical systems have influenced macroevolutionary trends across a broad sample of extant birds. We find that the neck is integrated with both the head and the forelimb. These patterns of integration are variable across clades, and only specific ecological groups exhibit either head-neck or neck-forelimb integration. Finally, we find that ecological groups that display head-neck and neck-forelimb integration tend to display significant shifts in the rate of neck morphological evolution. CONCLUSIONS Combined, these results suggest that the interaction between trophic ecology and head-neck-forelimb mosaicism influences the evolutionary variance of the avian neck. By linking together the biomechanical functions of these distinct anatomical systems, the cervical vertebral column serves as a keystone structure in avian mosaicism and macroevolution.
Collapse
Affiliation(s)
- Ryan D Marek
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK.
| | - Ryan N Felice
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
7
|
Marek RD. A surrogate forelimb: Evolution, function and development of the avian cervical spine. J Morphol 2023; 284:e21638. [PMID: 37708511 DOI: 10.1002/jmor.21638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The neck is a critical portion of the avian spine, one that works in tandem with the beak to act as a surrogate forelimb and allows birds to manipulate their surroundings despite the lack of a grasping capable hand. Birds display an incredible amount of diversity in neck morphology across multiple anatomical scales-from varying cervical counts down to intricate adaptations of individual vertebrae. Despite this morphofunctional disparity, little is known about the drivers of this enormous variation, nor how neck evolution has shaped avian macroevolution. To promote interest in this system, I review the development, function and evolution of the avian cervical spine. The musculoskeletal anatomy, basic kinematics and development of the avian neck are all documented, but focus primarily upon commercially available taxa. In addition, recent work has quantified the drivers of extant morphological variation across the avian neck, as well as patterns of integration between the neck and other skeletal elements. However, the evolutionary history of the avian cervical spine, and its contribution to the diversification and success of modern birds is currently unknown. Future work should aim to broaden our understanding of the cervical anatomy, development and kinematics to include a more diverse selection of extant birds, while also considering the macroevolutionary drivers and consequences of this important section of the avian spine.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Cell and Developmental Biology, Centre for Integrative Anatomy, University College London, London, UK
| |
Collapse
|
8
|
May-Davis S, Dzingle D, Saber E, Blades Eckelbarger P. Characterization of the Caudal Ventral Tubercle in the Sixth Cervical Vertebra in Modern Equus ferus caballus. Animals (Basel) 2023; 13:2384. [PMID: 37508161 PMCID: PMC10376820 DOI: 10.3390/ani13142384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study examined the anomalous variations of the ventral process of C6 in modern E. ferus caballus. The aim was to provide an incremental grading protocol measuring the absence of the caudal ventral tubercle (CVT) in this ventral process. The findings revealed the most prevalent absent CVT (aCVT) was left unilateral (n = 35), with bilateral (n = 29) and right unilateral (n = 12). Grading was determined in equal increments of absence 1/4, 2/4, 3/4, with 4/4 representing a complete aCVT in 56/76, with a significance of p = 0.0013. This also applied to bilateral specimens. In those C6 osseous specimens displaying a 4/4 grade aCVT, 41/56 had a partial absence of the caudal aspect of the cranial ventral tubercle (CrVT). Here, grading absent CrVTs (aCrVT) followed similarly to aCVTs, though 4/4 was not observed. The significance between 4/4 grade aCVTs and the presentation of an aCrVT was left p = 0.00001 and right p = 0.00018. In bilateral specimens, C6 morphologically resembled C5, implying a homeotic transformation that limited the attachment sites for the cranial and thoracal longus colli muscle. This potentially diminishes function and caudal cervical stability. Therefore, it is recommended that further studies examine the morphological extent of this equine complex vertebral malformation (ECVM) as well as its interrelationships and genetic code/blueprint.
Collapse
Affiliation(s)
- Sharon May-Davis
- Canine and Equine Research Group, University of New England, Armidale, NSW 2351, Australia
| | - Diane Dzingle
- Equus Soma-Equine Osteology and Anatomy Learning Center, Aiken, SC 29805, USA
| | - Elle Saber
- Biological Data Science Institute, Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
9
|
May-Davis S, Hunter R, White R. Morphology of the Ventral Process of the Sixth Cervical Vertebra in Extinct and Extant Equus: Functional Implications. Animals (Basel) 2023; 13:ani13101672. [PMID: 37238101 DOI: 10.3390/ani13101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we examined the ventral process of C6 in extinct and extant Equus (sister taxa to Equus ferus caballus only) with the purpose of describing normal morphology and identifying anomalous variations relevant to recent studies describing a congenital malformation in E. ferus caballus. Overall, 83 specimens from 9 museums and 3 research/educational facilities were examined, totalling 71 extinct specimens from 12 species and 12 extant specimens from 5 species. The lateral view revealed that a large convexity exists in the ventral process between the cranial ventral tubercle (CrVT) and the caudal ventral tubercle (CVT) in the earliest ancestor, Hyracotherium grangeri, from 55 mya, which receded throughout the millennia to become a smaller convexity in E. ferus caballus and the sister taxa. The CrVT is visibly shorter and narrower than the CVT, with a constricted section directly ventral to the transverse process, essentially demarcating the CrVT and CVT. No congenital malformations were evident. As the ventral process of C6 is an integral component for muscle attachment in supporting the head/neck during posture and locomotion, this would indicate that the caudal module in the cervical column might be compromised when a partial or complete absence of the CVT is detected via radiographs in modern E. ferus caballus.
Collapse
Affiliation(s)
- Sharon May-Davis
- Canine and Equine Research Group, University of New England, Armidale, NSW 2351, Australia
| | - Robert Hunter
- Canine and Equine Research Group, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
10
|
Li Y, Brinkworth A, Green E, Oyston J, Wills M, Ruta M. Divergent vertebral formulae shape the evolution of axial complexity in mammals. Nat Ecol Evol 2023; 7:367-381. [PMID: 36878987 PMCID: PMC9998275 DOI: 10.1038/s41559-023-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/03/2023] [Indexed: 03/08/2023]
Abstract
Complexity, defined as the number of parts and their degree of differentiation, is a poorly explored aspect of macroevolutionary dynamics. The maximum anatomical complexity of organisms has undoubtedly increased through evolutionary time. However, it is unclear whether this increase is a purely diffusive process or whether it is at least partly driven, occurring in parallel in most or many lineages and with increases in the minima as well as the means. Highly differentiated and serially repeated structures, such as vertebrae, are useful systems with which to investigate these patterns. We focus on the serial differentiation of the vertebral column in 1,136 extant mammal species, using two indices that quantify complexity as the numerical richness and proportional distribution of vertebrae across presacral regions and a third expressing the ratio between thoracic and lumbar vertebrae. We address three questions. First, we ask whether the distribution of complexity values in major mammal groups is similar or whether clades have specific signatures associated with their ecology. Second, we ask whether changes in complexity throughout the phylogeny are biased towards increases and whether there is evidence of driven trends. Third, we ask whether evolutionary shifts in complexity depart from a uniform Brownian motion model. Vertebral counts, but not complexity indices, differ significantly between major groups and exhibit greater within-group variation than recognized hitherto. We find strong evidence of a trend towards increasing complexity, where higher values propagate further increases in descendant lineages. Several increases are inferred to have coincided with major ecological or environmental shifts. We find support for multiple-rate models of evolution for all complexity metrics, suggesting that increases in complexity occurred in stepwise shifts, with evidence for widespread episodes of recent rapid divergence. Different subclades evolve more complex vertebral columns in different configurations and probably under different selective pressures and constraints, with widespread convergence on the same formulae. Further work should therefore focus on the ecological relevance of differences in complexity and a more detailed understanding of historical patterns.
Collapse
Affiliation(s)
- Yimeng Li
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Andrew Brinkworth
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Emily Green
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK
| | - Jack Oyston
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Matthew Wills
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Marcello Ruta
- Joseph Banks Laboratories, Department of Life Sciences, University of Lincoln, Lincoln, UK.
| |
Collapse
|
11
|
Brocklehurst N, Ford DP, Benson RBJ. Early origins of divergent patterns of morphological evolution on the mammal and reptile stem-lineages. Syst Biol 2022; 71:1195-1209. [PMID: 35274702 PMCID: PMC9366456 DOI: 10.1093/sysbio/syac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022] Open
Abstract
The origin of amniotes 320 million years ago signaled independence from water in vertebrates and was closely followed by divergences within the mammal and reptile stem lineages (Synapsida and Reptilia). Early members of both groups had highly similar morphologies, being superficially “lizard-like” forms with many plesiomorphies. However, the extent to which they might have exhibited divergent patterns of evolutionary change, with the potential to explain the large biological differences between their living members, is unresolved. We use a new, comprehensive phylogenetic dataset to quantify variation in rates and constraints of morphological evolution among Carboniferous–early Permian amniotes. We find evidence for an early burst of evolutionary rates, resulting in the early origins of morphologically distinctive subgroups that mostly persisted through the Cisuralian. Rates declined substantially through time, especially in reptiles. Early reptile evolution was also more constrained compared with early synapsids, exploring a more limited character state space. Postcranial innovation in particular was important in early synapsids, potentially related to their early origins of large body size. In contrast, early reptiles predominantly varied the temporal region, suggesting disparity in skull and jaw kinematics, and foreshadowing the variability of cranial biomechanics seen in reptiles today. Our results demonstrate that synapsids and reptiles underwent an early divergence of macroevolutionary patterns. This laid the foundation for subsequent evolutionary events and may be critical in understanding the substantial differences between mammals and reptiles today. Potential explanations include an early divergence of developmental processes or of ecological factors, warranting cross-disciplinary investigation. [Amniote; body size; constraint; phylogeny; rate.]
Collapse
Affiliation(s)
- Neil Brocklehurst
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - David P Ford
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
12
|
Abstract
The vertebral column of individual mammalian species often exhibits remarkable robustness in the number and identity of vertebral elements that form (known as axial formulae). The genetic mechanism(s) underlying this constraint however remain ill-defined. Here, we reveal the interplay of three regulatory pathways (Gdf11, miR-196 and Retinoic acid) is essential in constraining total vertebral number and regional axial identity in the mouse, from cervical through to tail vertebrae. All three pathways have differing control over Hox cluster expression, with heterochronic and quantitative changes found to parallel changes in axial identity. However, our work reveals an additional role for Hox genes in supporting axial elongation within the tail region, providing important support for an emerging view that mammalian Hox function is not limited to imparting positional identity as the mammalian body plan is laid down. More broadly, this work provides a molecular framework to interrogate mechanisms of evolutionary change and congenital anomalies of the vertebral column. Vertebral column length and shape exhibits remarkable robustness within a species but diversity across species. Here the authors reveal the molecular logic constraining vertebral number in mouse and a novel role for posterior Hox genes in this context.
Collapse
|
13
|
Schikowski L, Eley N, Kelleners N, Schmidt MJ, Fischer MS. Three-Dimensional Kinematic Motion of the Craniocervical Junction of Chihuahuas and Labrador Retrievers. Front Vet Sci 2021; 8:709967. [PMID: 34490400 PMCID: PMC8417724 DOI: 10.3389/fvets.2021.709967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
All vertebrate species have a distinct morphology and movement pattern, which reflect the adaption of the animal to its habitat. Yet, our knowledge of motion patterns of the craniocervical junction of dogs is very limited. The aim of this prospective study is to perform a detailed analysis and description of three-dimensional craniocervical motion during locomotion in clinically sound Chihuahuas and Labrador retrievers. This study presents the first in vivo recorded motions of the craniocervical junction of clinically sound Chihuahuas (n = 8) and clinically sound Labrador retrievers (n = 3) using biplanar fluoroscopy. Scientific rotoscoping was used to reconstruct three-dimensional kinematics during locomotion. The same basic motion patterns were found in Chihuahuas and Labrador retrievers during walking. Sagittal, lateral, and axial rotation could be observed in both the atlantoaxial and the atlantooccipital joints during head motion and locomotion. Lateral and axial rotation occurred as a coupled motion pattern. The amplitudes of axial and lateral rotation of the total upper cervical motion and the atlantoaxial joint were higher in Labrador retrievers than in Chihuahuas. The range of motion (ROM) maxima were 20°, 26°, and 24° in the sagittal, lateral, and axial planes, respectively, of the atlantoaxial joint. ROM maxima of 30°, 16°, and 18° in the sagittal, lateral, and axial planes, respectively, were found at the atlantooccipital joint. The average absolute sagittal rotation of the atlas was slightly higher in Chihuahuas (between 9.1 ± 6.8° and 18.7 ± 9.9°) as compared with that of Labrador retrievers (between 5.7 ± 4.6° and 14.5 ± 2.6°), which corresponds to the more acute angle of the atlas in Chihuahuas. Individual differences for example, varying in amplitude or time of occurrence are reported.
Collapse
Affiliation(s)
- Lisa Schikowski
- Department of Veterinary Clinical Sciences, Small Animal Clinic-Surgery, Justus-Liebig-University, Giessen, Germany
| | - Nele Eley
- Department of Veterinary Clinical Sciences, Small Animal Clinic-Surgery, Justus-Liebig-University, Giessen, Germany
| | - Nicola Kelleners
- Department of Veterinary Clinical Sciences, Small Animal Clinic-Surgery, Justus-Liebig-University, Giessen, Germany
| | - Martin J Schmidt
- Department of Veterinary Clinical Sciences, Small Animal Clinic-Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University, Giessen, Germany
| | - Martin S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
14
|
Martín-Serra A, Pérez-Ramos A, Pastor FJ, Velasco D, Figueirido B. Phenotypic integration in the carnivoran backbone and the evolution of functional differentiation in metameric structures. Evol Lett 2021; 5:251-264. [PMID: 34136273 DOI: 10.1002/evl3.224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 11/06/2022] Open
Abstract
Explaining the origin and evolution of a vertebral column with anatomically distinct regions that characterizes the tetrapod body plan provides understanding of how metameric structures become repeated and how they acquire the ability to perform different functions. However, despite many decades of inquiry, the advantages and costs of vertebral column regionalization in anatomically distinct blocks, their functional specialization, and how they channel new evolutionary outcomes are poorly understood. Here, we investigate morphological integration (and how this integration is structured [modularity]) between all the presacral vertebrae of mammalian carnivorans to provide a better understanding of how regionalization in metameric structures evolves. Our results demonstrate that the subunits of the presacral column are highly integrated. However, underlying to this general pattern, three sets of vertebrae are recognized as presacral modules-the cervical module, the anterodorsal module, and the posterodorsal module-as well as one weakly integrated vertebra (diaphragmatic) that forms a transition between both dorsal modules. We hypothesize that the strength of integration organizing the axial system into modules may be associated with motion capability. The highly integrated anterior dorsal module coincides with a region with motion constraints to avoid compromising ventilation, whereas for the posterior dorsal region motion constraints avoid exceeding extension of the posterior back. On the other hand, the weakly integrated diaphragmatic vertebra belongs to the "Diaphragmatic joint complex"-a key region of the mammalian column of exceedingly permissive motion. Our results also demonstrate that these modules do not match with the traditional morphological regions, and we propose natural selection as the main factor shaping this pattern to stabilize some regions and to allow coordinate movements in others.
Collapse
Affiliation(s)
- Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Francisco J Pastor
- Departmento de Anatomía y Radiología, Museo de Anatomía Universidad de Valladolid Valladolid 47002 Spain
| | - David Velasco
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias Universidad de Málaga Málaga 29071 Spain
| |
Collapse
|
15
|
Müller MA, Merten LJF, Böhmer C, Nyakatura JA. Pushing the boundary? Testing the "functional elongation hypothesis" of the giraffe's neck. Evolution 2021; 75:641-655. [PMID: 33443310 DOI: 10.1111/evo.14171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Although giraffes maintain the usual mammalian cervical number of seven vertebrae, their first thoracic vertebra (T1) exhibits aberrant anatomy and has been hypothesized to functionally elongate the neck. We test this "functional elongation hypothesis" by combining phylogenetically informed analyses of neck length, three-dimensional (3D) vertebral shape, and of the functional significance of shape differences across a broad sample of ruminants and camelids. Digital bone models of the cervicothoracic transition were subjected to 3D geometric morphometric analysis revealing how the shape of the seventh cervical (C7) has converged in several long-necked species. However, we find a unique "cervicalization" of the giraffe's T1. In contrast, we demonstrate a "thoracalization" of C7 for the European bison. Other giraffids (okapi and extinct Sivatherium) did not exhibit "cervicalized" T1 morphology. Quantitative range of motion (ROM) analysis at the cervicothoracic transition in ruminants and camelids confirms the "functional elongation hypothesis" for the giraffe in terms of increased mobility, especially with regard to dorsoventral flexion/extension. Additionally, other factors related to the unique morphology of the giraffe's cervicothoracic transition such as neck posture and intervertebral stability are discussed and should be considered in future studies of giraffe neck evolution.
Collapse
Affiliation(s)
- Marilena A Müller
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Luisa J F Merten
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Christine Böhmer
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, 75005, France.,Department für Geo- und Umweltwissenschaften und GeoBio-Center, Ludwig-Maximilians-Universität München, München, 80333, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| |
Collapse
|