1
|
Khan R, Taj S, Ma X, Noor A, Zhu H, Khan J, Khan ZU, Khan SU. Advanced federated ensemble internet of learning approach for cloud based medical healthcare monitoring system. Sci Rep 2024; 14:26068. [PMID: 39478132 PMCID: PMC11526108 DOI: 10.1038/s41598-024-77196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Medical image machines serve as a valuable tool to monitor and diagnose a variety of diseases. However, manual and centralized interpretation are both error-prone and time-consuming due to malicious attacks. Numerous diagnostic algorithms have been developed to improve precision and prevent poisoning attacks by integrating symptoms, test methods, and imaging data. But in today's digital technology world, it is necessary to have a global cloud-based diagnostic artificial intelligence model that is efficient in diagnosis and preventing poisoning attacks and might be used for multiple purposes. We propose the Healthcare Federated Ensemble Internet of Learning Cloud Doctor System (FDEIoL) model, which integrates different Internet of Things (IoT) devices to provide precise and accurate interpretation without poisoning attack problems, thereby facilitating IoT-enabled remote patient monitoring for smart healthcare systems. Furthermore, the FDEIoL system model uses a federated ensemble learning strategy to provide an automatic, up-to-date global prediction model based on input local models from the medical specialist. This assures biomedical security by safeguarding patient data and preserving the integrity of diagnostic processes. The FDEIoL system model utilizes local model feature selection to discriminate between malicious and non-malicious local models, and ensemble strategies use positive and negative samples to optimize the performance of the test dataset, enhancing its capability for remote patient monitoring. The FDEIoL system model achieved an exceptional accuracy rate of 99.24% on the Chest X-ray dataset and 99.0% on the MRI dataset of brain tumors compared to centralized models, demonstrating its ability for precision diagnosis in IoT-enabled healthcare systems.
Collapse
Affiliation(s)
- Rahim Khan
- College of Information and Communication Engineering, Harbin Engineering University, Harbin150001, China
| | - Sher Taj
- Software College, Northeastern University, Shenyang, 110169, China
| | - Xuefei Ma
- College of Information and Communication Engineering, Harbin Engineering University, Harbin150001, China.
| | - Alam Noor
- CISTER Research Center, Porto, Portugal
| | - Haifeng Zhu
- College of Information and Communication Engineering, Harbin Engineering University, Harbin150001, China
| | - Javed Khan
- Department of software Engineering, University of Science and Technology, Bannu, KPK, Pakistan
| | - Zahid Ullah Khan
- College of Information and Communication Engineering, Harbin Engineering University, Harbin150001, China
| | - Sajid Ullah Khan
- Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Alkharj, KSA, Saudi Arabia
| |
Collapse
|
2
|
Kumar S, Kumar H, Kumar G, Singh SP, Bijalwan A, Diwakar M. A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review. BMC Med Imaging 2024; 24:30. [PMID: 38302883 PMCID: PMC10832080 DOI: 10.1186/s12880-024-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Lung diseases, both infectious and non-infectious, are the most prevalent cause of mortality overall in the world. Medical research has identified pneumonia, lung cancer, and Corona Virus Disease 2019 (COVID-19) as prominent lung diseases prioritized over others. Imaging modalities, including X-rays, computer tomography (CT) scans, magnetic resonance imaging (MRIs), positron emission tomography (PET) scans, and others, are primarily employed in medical assessments because they provide computed data that can be utilized as input datasets for computer-assisted diagnostic systems. Imaging datasets are used to develop and evaluate machine learning (ML) methods to analyze and predict prominent lung diseases. OBJECTIVE This review analyzes ML paradigms, imaging modalities' utilization, and recent developments for prominent lung diseases. Furthermore, the research also explores various datasets available publically that are being used for prominent lung diseases. METHODS The well-known databases of academic studies that have been subjected to peer review, namely ScienceDirect, arXiv, IEEE Xplore, MDPI, and many more, were used for the search of relevant articles. Applied keywords and combinations used to search procedures with primary considerations for review, such as pneumonia, lung cancer, COVID-19, various imaging modalities, ML, convolutional neural networks (CNNs), transfer learning, and ensemble learning. RESULTS This research finding indicates that X-ray datasets are preferred for detecting pneumonia, while CT scan datasets are predominantly favored for detecting lung cancer. Furthermore, in COVID-19 detection, X-ray datasets are prioritized over CT scan datasets. The analysis reveals that X-rays and CT scans have surpassed all other imaging techniques. It has been observed that using CNNs yields a high degree of accuracy and practicability in identifying prominent lung diseases. Transfer learning and ensemble learning are complementary techniques to CNNs to facilitate analysis. Furthermore, accuracy is the most favored metric for assessment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Computer Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
- Department of Information Technology, School of Engineering and Technology (UIET), CSJM University, Kanpur, India
| | - Harish Kumar
- Department of Computer Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Gyanendra Kumar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Anchit Bijalwan
- Faculty of Electrical and Computer Engineering, Arba Minch University, Arba Minch, Ethiopia.
| | - Manoj Diwakar
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun, India
| |
Collapse
|
3
|
Gao Y, Zhang Y, Hu C, He P, Fu J, Lin F, Liu K, Fu X, Liu R, Sun J, Chen F, Yang W, Zhou Y. Distinguishing infectivity in patients with pulmonary tuberculosis using deep learning. Front Public Health 2023; 11:1247141. [PMID: 38089031 PMCID: PMC10711219 DOI: 10.3389/fpubh.2023.1247141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction This study aimed to develop and assess a deep-learning model based on CT images for distinguishing infectivity in patients with pulmonary tuberculosis (PTB). Methods We labeled all 925 patients from four centers with weak and strong infectivity based on multiple sputum smears within a month for our deep-learning model named TBINet's training. We compared TBINet's performance in identifying infectious patients to that of the conventional 3D ResNet model. For model explainability, we used gradient-weighted class activation mapping (Grad-CAM) technology to identify the site of lesion activation in the CT images. Results The TBINet model demonstrated superior performance with an area under the curve (AUC) of 0.819 and 0.753 on the validation and external test sets, respectively, compared to existing deep learning methods. Furthermore, using Grad-CAM, we observed that CT images with higher levels of consolidation, voids, upper lobe involvement, and enlarged lymph nodes were more likely to come from patients with highly infectious forms of PTB. Conclusion Our study proves the feasibility of using CT images to identify the infectivity of PTB patients based on the deep learning method.
Collapse
Affiliation(s)
- Yi Gao
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, China
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Chengguang Hu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyuan He
- Department of Infectious Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian Fu
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Feng Lin
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Kehui Liu
- Department of Radiology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Xianxian Fu
- Clinical Lab, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Rui Liu
- Department of Infectious Disease, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiarun Sun
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Wei Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yuanping Zhou
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Huang C, Wang W, Zhang X, Wang SH, Zhang YD. Tuberculosis Diagnosis Using Deep Transferred EfficientNet. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2639-2646. [PMID: 35976826 DOI: 10.1109/tcbb.2022.3199572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tuberculosis is a very deadly disease, with more than half of all tuberculosis cases dead in countries and regions with relatively poor health care resources. Fortunately, the disease is curable, and early diagnosis and medication can go a long way toward curing TB patients. Unfortunately, traditional methods of TB diagnosis rely on specialist doctors, which is lacking in areas with high TB mortality rates. Diagnostic methods based on artificial intelligence technology are one of the solutions to this problem. We propose a Deep Transferred EfficientNet with SVM (DTE-SVM), which replaces the pre-trained EfficientNet classification layer with an SVM classifier and achieves auspicious performance on a small dataset. After ten runs of 10-fold Cross-Validation, the DTE-SVM has a sensitivity of 93.89±1.96, a specificity of 95.35±1.31, a precision of 95.30±1.24, an accuracy of 94.62±1.00, and an F1-score of 94.62±1.00. In addition, our study conducted ablation studies on the effect of the SVM classifier on model performance and briefly discussed the results.
Collapse
|
5
|
Abraham B, Mohan J, John SM, Ramachandran S. Computer-Aided detection of tuberculosis from X-ray images using CNN and PatternNet classifier. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023:XST230028. [PMID: 37182860 DOI: 10.3233/xst-230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a highly infectious disease that mainly affects the human lungs. The gold standard for TB diagnosis is Xpert Mycobacterium tuberculosis/ resistance to rifampicin (MTB/RIF) testing. X-ray, a relatively inexpensive and widely used imaging modality, can be employed as an alternative for early diagnosis of the disease. Computer-aided techniques can be used to assist radiologists in interpreting X-ray images, which can improve the ease and accuracy of diagnosis. OBJECTIVE To develop a computer-aided technique for the diagnosis of TB from X-ray images using deep learning techniques. METHODS This research paper presents a novel approach for TB diagnosis from X-ray using deep learning methods. The proposed method uses an ensemble of two pre-trained neural networks, namely EfficientnetB0 and Densenet201, for feature extraction. The features extracted using two CNNs are expected to generate more accurate and representative features than a single CNN. A custom-built artificial neural network (ANN) called PatternNet with two hidden layers is utilized to classify the extracted features. RESULTS The effectiveness of the proposed method was assessed on two publicly accessible datasets, namely the Montgomery and Shenzhen datasets. The Montgomery dataset comprises 138 X-ray images, while the Shenzhen dataset has 662 X-ray images. The method was further evaluated after combining both datasets. The method performed exceptionally well on all three datasets, achieving high Area Under the Curve (AUC) scores of 0.9978, 0.9836, and 0.9914, respectively, using a 10-fold cross-validation technique. CONCLUSION The experiments performed in this study prove the effectiveness of features extracted using EfficientnetB0 and Densenet201 in combination with PatternNet classifier in the diagnosis of tuberculosis from X-ray images.
Collapse
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science and Engineering, College of Engineering Muttathara, Thiruvananthapuram, Kerala, India
| | - Jesna Mohan
- Department of Computer Science and Engineering, Mar Baselios College of Engineering and Technology, Thiruvananthapuram, Kerala, India
| | - Shinu Mathew John
- Department ofComputer Science and Engineering, St. Thomas College of Engineeringand Technology, Kannur, Kerala, India
| | - Sivakumar Ramachandran
- Department of Electronics and Communication Engineering, Government Engineering College Wayanad, Kerala, India
| |
Collapse
|
6
|
Rehman A, Khan A, Fatima G, Naz S, Razzak I. Review on chest pathogies detection systems using deep learning techniques. Artif Intell Rev 2023; 56:1-47. [PMID: 37362896 PMCID: PMC10027283 DOI: 10.1007/s10462-023-10457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Chest radiography is the standard and most affordable way to diagnose, analyze, and examine different thoracic and chest diseases. Typically, the radiograph is examined by an expert radiologist or physician to decide about a particular anomaly, if exists. Moreover, computer-aided methods are used to assist radiologists and make the analysis process accurate, fast, and more automated. A tremendous improvement in automatic chest pathologies detection and analysis can be observed with the emergence of deep learning. The survey aims to review, technically evaluate, and synthesize the different computer-aided chest pathologies detection systems. The state-of-the-art of single and multi-pathologies detection systems, which are published in the last five years, are thoroughly discussed. The taxonomy of image acquisition, dataset preprocessing, feature extraction, and deep learning models are presented. The mathematical concepts related to feature extraction model architectures are discussed. Moreover, the different articles are compared based on their contributions, datasets, methods used, and the results achieved. The article ends with the main findings, current trends, challenges, and future recommendations.
Collapse
Affiliation(s)
- Arshia Rehman
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Ahmad Khan
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Gohar Fatima
- The Islamia University of Bahawalpur, Bahawal Nagar Campus, Bahawal Nagar, Pakistan
| | - Saeeda Naz
- Govt Girls Post Graduate College No.1, Abbottabad, Pakistan
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Roy S, Santosh KC. Analyzing Overlaid Foreign Objects in Chest X-rays-Clinical Significance and Artificial Intelligence Tools. Healthcare (Basel) 2023; 11:healthcare11030308. [PMID: 36766883 PMCID: PMC9914243 DOI: 10.3390/healthcare11030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The presence of non-biomedical foreign objects (NBFO), such as coins, buttons and jewelry, and biomedical foreign objects (BFO), such as medical tubes and devices in chest X-rays (CXRs), make accurate interpretation difficult, as they do not indicate known biological abnormalities like excess fluids, tuberculosis (TB) or cysts. Such foreign objects need to be detected, localized, categorized as either NBFO or BFO, and removed from CXR or highlighted in CXR for effective abnormality analysis. Very specifically, NBFOs can adversely impact the process, as typical machine learning algorithms would consider these objects to be biological abnormalities producing false-positive cases. It holds true for BFOs in CXRs. This paper examines detailed discussions on numerous clinical reports in addition to computer-aided detection (CADe) with diagnosis (CADx) tools, where both shallow learning and deep learning algorithms are applied. Our discussion reflects the importance of accurately detecting, isolating, classifying, and either removing or highlighting NBFOs and BFOs in CXRs by taking 29 peer-reviewed research reports and articles into account.
Collapse
|
8
|
Deep learning classification of active tuberculosis lung zones wise manifestations using chest X-rays: a multi label approach. Sci Rep 2023; 13:887. [PMID: 36650270 PMCID: PMC9845381 DOI: 10.1038/s41598-023-28079-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Chest X-rays are the most economically viable diagnostic imaging test for active pulmonary tuberculosis screening despite the high sensitivity and low specificity when interpreted by clinicians or radiologists. Computer aided detection (CAD) algorithms, especially convolution based deep learning architecture, have been proposed to facilitate the automation of radiography imaging modalities. Deep learning algorithms have found success in classifying various abnormalities in lung using chest X-ray. We fine-tuned, validated and tested EfficientNetB4 architecture and utilized the transfer learning methodology for multilabel approach to detect lung zone wise and image wise manifestations of active pulmonary tuberculosis using chest X-ray. We used Area Under Receiver Operating Characteristic (AUC), sensitivity and specificity along with 95% confidence interval as model evaluation metrics. We also utilized the visualisation capabilities of convolutional neural networks (CNN), Gradient-weighted Class Activation Mapping (Grad-CAM) as post-hoc attention method to investigate the model and visualisation of Tuberculosis abnormalities and discuss them from radiological perspectives. EfficientNetB4 trained network achieved remarkable AUC, sensitivity and specificity of various pulmonary tuberculosis manifestations in intramural test set and external test set from different geographical region. The grad-CAM visualisations and their ability to localize the abnormalities can aid the clinicians at primary care settings for screening and triaging of tuberculosis where resources are constrained or overburdened.
Collapse
|
9
|
AI-Assisted Tuberculosis Detection and Classification from Chest X-Rays Using a Deep Learning Normalization-Free Network Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2399428. [PMID: 36225551 PMCID: PMC9550434 DOI: 10.1155/2022/2399428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis. It is imperative to detect cases of TB as early as possible because if left untreated, there is a 70% chance of a patient dying within 10 years. The necessity for supplementary tools has increased in mid to low-income countries due to the rise of automation in healthcare sectors. The already limited resources are being heavily allocated towards controlling other dangerous diseases. Modern digital radiography (DR) machines, used for screening chest X-rays of potential TB victims are very practical. Coupled with computer-aided detection (CAD) with the aid of artificial intelligence, radiologists working in this field can really help potential patients. In this study, progressive resizing is introduced for training models to perform automatic inference of TB using chest X-ray images. ImageNet fine-tuned Normalization-Free Networks (NFNets) are trained for classification and the Score-Cam algorithm is utilized to highlight the regions in the chest X-Rays for detailed inference on the diagnosis. The proposed method is engineered to provide accurate diagnostics for both binary and multiclass classification. The models trained with this method have achieved 96.91% accuracy, 99.38% AUC, 91.81% sensitivity, and 98.42% specificity on a multiclass classification dataset. Moreover, models have also achieved top-1 inference metrics of 96% accuracy and 98% AUC for binary classification. The results obtained demonstrate that the proposed method can be used as a secondary decision tool in a clinical setting for assisting radiologists.
Collapse
|
10
|
Cabanillas-Lazo M, Quispe-Vicuña C, Pascual-Guevara M, Barja-Ore J, Guerrero ME, Munive-Degregori A, Mayta-Tovalino F. Bibliometric analyses of applications of artificial intelligence on tuberculosis. Int J Mycobacteriol 2022; 11:389-393. [PMID: 36510923 DOI: 10.4103/ijmy.ijmy_134_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Tuberculosis is one of the leading causes of death worldwide affecting mainly low- and middle-income countries. Therefore, the objective is to analyze the bibliometric characteristics of the application of artificial intelligence (AI) in tuberculosis in Scopus. Methods A bibliometric study, the Scopus database was used using a search strategy composed of controlled and free terms regarding tuberculosis and AI. The search fields "TITLE," "ABSTRACT," and "AUTHKEY" were used to find the terms. The collected data were analyzed with Scival software. Bibliometric data were described through the figures and tables summarized by absolute values and percentages. Results Thousand and forty-one documents were collected and analyzed. Yudong Zhang was the author with the highest scientific production; however, K. C. Santosh had the greatest impact. Anna University (India) was the institution with the highest number of published papers. Most papers were published in the first quartile. The United States led the scientific production. Articles with international collaboration had the highest impact. Conclusion Articles related to tuberculosis and AI are mostly published in first quartile journals, which would reflect the need and interest worldwide. Although countries with a high incidence of new cases of tuberculosis are among the most productive, those with the highest reported drug resistance need greater support and collaboration.
Collapse
Affiliation(s)
- Miguel Cabanillas-Lazo
- Department of Academic, Grupo Peruano De Investigación Epidemiológica, Unidad Para La Generación Y Síntesis De Evidencias En Salud, Universidad San Ignacio De Loyola; Department of Academic, Sociedad Científica De San Fernando, Lima, Perú
| | - Carlos Quispe-Vicuña
- Department of Academic, Grupo Peruano De Investigación Epidemiológica, Unidad Para La Generación Y Síntesis De Evidencias En Salud, Universidad San Ignacio De Loyola; Department of Academic, Sociedad Científica De San Fernando, Lima, Perú
| | - Milagros Pascual-Guevara
- Department of Academic, Sociedad Científica De San Fernando; Department of Academic, Faculty of Medicine, Universidad Nacional Mayor De San Marcos, Lima, Perú
| | - John Barja-Ore
- Department of Academic, Research Direction, Universidad Privada Del Norte, Lima, Perú
| | | | | | - Frank Mayta-Tovalino
- Department of Posgraduate, Vicerrectorado De Investigación, Universidad San Ignacio De Loyola, Lima, Perú
| |
Collapse
|
11
|
Early Diagnosis of Tuberculosis Using Deep Learning Approach for IOT Based Healthcare Applications. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3357508. [PMID: 36211018 PMCID: PMC9534630 DOI: 10.1155/2022/3357508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
In the modern world, Tuberculosis (TB) is regarded as a serious health issue with a high rate of mortality. TB can be cured completely by early diagnosis. For achieving this, one tool utilized is CXR (Chest X-rays) which is used to screen active TB. An enhanced deep learning (DL) model is implemented for automatic Tuberculosis detection. This work undergoes the phases like preprocessing, segmentation, feature extraction, and optimized classification. Initially, the CXR image is preprocessed and segmented using AFCM (Adaptive Fuzzy C means) clustering. Then, feature extraction and several features are extracted. Finally, these features are given to the DL classifier Deep Belief Network (DBN). To improve the classification accuracy and to optimize the DBN, a metaheuristic optimization Adaptive Monarch butterfly optimization (AMBO) algorithm is used. Here, the Deep Belief Network with Adaptive Monarch butterfly optimization (DBN-AMBO) is used for enhancing the accuracy, reducing the error function, and optimizing weighting parameters. The overall implementation is carried out on the Python platform. The overall performance evaluations of the DBN-AMBO were carried out on MC and SC datasets and compared over the other approaches on the basis of certain metrics.
Collapse
|
12
|
Sharma M, Monika, Kumar N, Kumar P. Naive bayes-correlation based feature weighting technique for sports match result prediction. EVOLUTIONARY INTELLIGENCE 2022. [DOI: 10.1007/s12065-021-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Jafar A, Hameed MT, Akram N, Waqas U, Kim HS, Naqvi RA. CardioNet: Automatic Semantic Segmentation to Calculate the Cardiothoracic Ratio for Cardiomegaly and Other Chest Diseases. J Pers Med 2022; 12:988. [PMID: 35743771 PMCID: PMC9225197 DOI: 10.3390/jpm12060988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Semantic segmentation for diagnosing chest-related diseases like cardiomegaly, emphysema, pleural effusions, and pneumothorax is a critical yet understudied tool for identifying the chest anatomy. A dangerous disease among these is cardiomegaly, in which sudden death is a high risk. An expert medical practitioner can diagnose cardiomegaly early using a chest radiograph (CXR). Cardiomegaly is a heart enlargement disease that can be analyzed by calculating the transverse cardiac diameter (TCD) and the cardiothoracic ratio (CTR). However, the manual estimation of CTR and other chest-related diseases requires much time from medical experts. Based on their anatomical semantics, artificial intelligence estimates cardiomegaly and related diseases by segmenting CXRs. Unfortunately, due to poor-quality images and variations in intensity, the automatic segmentation of the lungs and heart with CXRs is challenging. Deep learning-based methods are being used to identify the chest anatomy segmentation, but most of them only consider the lung segmentation, requiring a great deal of training. This work is based on a multiclass concatenation-based automatic semantic segmentation network, CardioNet, that was explicitly designed to perform fine segmentation using fewer parameters than a conventional deep learning scheme. Furthermore, the semantic segmentation of other chest-related diseases is diagnosed using CardioNet. CardioNet is evaluated using the JSRT dataset (Japanese Society of Radiological Technology). The JSRT dataset is publicly available and contains multiclass segmentation of the heart, lungs, and clavicle bones. In addition, our study examined lung segmentation using another publicly available dataset, Montgomery County (MC). The experimental results of the proposed CardioNet model achieved acceptable accuracy and competitive results across all datasets.
Collapse
Affiliation(s)
- Abbas Jafar
- Department of Computer Engineering, Myongji University, Yongin 03674, Korea;
| | - Muhammad Talha Hameed
- Department of Primary and Secondary Healthcare, Lahore 54000, Pakistan; (M.T.H.); (N.A.)
| | - Nadeem Akram
- Department of Primary and Secondary Healthcare, Lahore 54000, Pakistan; (M.T.H.); (N.A.)
| | - Umer Waqas
- Research and Development, AItheNutrigene, Seoul 06132, Korea;
| | - Hyung Seok Kim
- School of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
| | - Rizwan Ali Naqvi
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
14
|
Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis. Inf Sci (N Y) 2022; 592:389-401. [DOI: 10.1016/j.ins.2022.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
|
15
|
Analysis and comparison of image processing and artificial intelligence algorithms to detect AFB in pulmonary tuberculosis images. Tuberculosis (Edinb) 2022; 134:102196. [DOI: 10.1016/j.tube.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
16
|
Wong A, Lee JRH, Rahmat-Khah H, Sabri A, Alaref A, Liu H. TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases From Chest X-Ray Images. Front Artif Intell 2022; 5:827299. [PMID: 35464996 PMCID: PMC9022489 DOI: 10.3389/frai.2022.827299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem, and is the leading cause of death from an infectious disease. A crucial step in the treatment of tuberculosis is screening high risk populations and the early detection of the disease, with chest x-ray (CXR) imaging being the most widely-used imaging modality. As such, there has been significant recent interest in artificial intelligence-based TB screening solutions for use in resource-limited scenarios where there is a lack of trained healthcare workers with expertise in CXR interpretation. Motivated by this pressing need and the recent recommendation by the World Health Organization (WHO) for the use of computer-aided diagnosis of TB in place of a human reader, we introduce TB-Net, a self-attention deep convolutional neural network tailored for TB case screening. We used CXR data from a multi-national patient cohort to train and test our models. A machine-driven design exploration approach leveraging generative synthesis was used to build a highly customized deep neural network architecture with attention condensers. We conducted an explainability-driven performance validation process to validate TB-Net's decision-making behavior. Experiments on CXR data from a multi-national patient cohort showed that the proposed TB-Net is able to achieve accuracy/sensitivity/specificity of 99.86/100.0/99.71%. Radiologist validation was conducted on select cases by two board-certified radiologists with over 10 and 19 years of experience, respectively, and showed consistency between radiologist interpretation and critical factors leveraged by TB-Net for TB case detection for the case where radiologists identified anomalies. The proposed TB-Net not only achieves high tuberculosis case detection performance in terms of sensitivity and specificity, but also leverages clinically relevant critical factors in its decision making process. While not a production-ready solution, we hope that the open-source release of TB-Net as part of the COVID-Net initiative will support researchers, clinicians, and citizen data scientists in advancing this field in the fight against this global public health crisis.
Collapse
Affiliation(s)
- Alexander Wong
- Vision and Image Processing Research Group, University of Waterloo, Waterloo, ON, Canada
- Waterloo Artificial Intelligence Institute, University of Waterloo, Waterloo, ON, Canada
- DarwinAI Corp, Waterloo, ON, Canada
| | | | | | - Ali Sabri
- Department of Radiology, Niagara Health, McMaster University, Hamilton, ON, Canada
| | - Amer Alaref
- Department of Diagnostic Radiology, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
- Department of Diagnostic Imaging, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | | |
Collapse
|
17
|
Fernandez-Basso C, Gutiérrez-Batista K, Morcillo-Jiménez R, Vila MA, Martin-Bautista MJ. A fuzzy-based medical system for pattern mining in a distributed environment: Application to diagnostic and co-morbidity. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Oloko-Oba M, Viriri S. A Systematic Review of Deep Learning Techniques for Tuberculosis Detection From Chest Radiograph. Front Med (Lausanne) 2022; 9:830515. [PMID: 35355598 PMCID: PMC8960068 DOI: 10.3389/fmed.2022.830515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
The high mortality rate in Tuberculosis (TB) burden regions has increased significantly in the last decades. Despite the possibility of treatment for TB, high burden regions still suffer inadequate screening tools, which result in diagnostic delay and misdiagnosis. These challenges have led to the development of Computer-Aided Diagnostic (CAD) system to detect TB automatically. There are several ways of screening for TB, but Chest X-Ray (CXR) is more prominent and recommended due to its high sensitivity in detecting lung abnormalities. This paper presents the results of a systematic review based on PRISMA procedures that investigate state-of-the-art Deep Learning techniques for screening pulmonary abnormalities related to TB. The systematic review was conducted using an extensive selection of scientific databases as reference sources that grant access to distinctive articles in the field. Four scientific databases were searched to retrieve related articles. Inclusion and exclusion criteria were defined and applied to each article to determine those included in the study. Out of the 489 articles retrieved, 62 were included. Based on the findings in this review, we conclude that CAD systems are promising in tackling the challenges of the TB epidemic and made recommendations for improvement in future studies.
Collapse
|
19
|
Tulo SK, Ramu P, Swaminathan R. Evaluation of Diagnostic Value of Mediastinum for Differentiation of Drug Sensitive, Multi and Extensively Drug Resistant Tuberculosis using Chest X-rays. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Lu SY, Wang SH, Zhang X, Zhang YD. TBNet: a context-aware graph network for tuberculosis diagnosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106587. [PMID: 34959158 DOI: 10.1016/j.cmpb.2021.106587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) is an infectious bacterial disease. It can affect the human lungs, brain, bones, and kidneys. Pulmonary tuberculosis is the most common. This airborne bacterium can be transmitted with the droplets by coughing and sneezing. So far, the most convenient and effective method for diagnosing TB is through medical imaging. Computed tomography (CT) is the first choice for lung imaging in clinics because the conditions of the lungs can be interpreted from CT images. However, manual screening poses an enormous burden for radiologists, resulting in high inter-observer variances. Hence, developing computer-aided diagnosis systems to implement automatic TB diagnosis is an emergent and significant task for researchers and practitioners. This paper proposed a novel context-aware graph neural network called TBNet to detect TB from chest CT images METHODS: Traditional convolutional neural networks can extract high-level image features to achieve good classification performance on the ImageNet dataset. However, we observed that the spatial relationships between the feature vectors are beneficial for the classification because the feature vector may share some common characteristics with its neighboring feature vectors. To utilize this context information for the classification of chest CT images, we proposed to use a feature graph to generate context-aware features. Finally, a context-aware random vector functional-link net served as the classifier of the TBNet to identify these context-aware features as TB or normal RESULTS: The proposed TBNet produced state-of-the-art classification performance for detecting TB from healthy samples in the experiments CONCLUSIONS: Our TBNet can be an accurate and effective verification tool for manual screening in clinical diagnosis.
Collapse
Affiliation(s)
- Si-Yuan Lu
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK; School of Architecture Building and Civil engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Xin Zhang
- Department of Medical Imaging, The Fourth People's Hospital of Huai'an, Huai'an, Jiangsu Province, 223002, China.
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
21
|
Mehrrotraa R, Ansari MA, Agrawal R, Tripathi P, Bin Heyat MB, Al-Sarem M, Muaad AYM, Nagmeldin WAE, Abdelmaboud A, Saeed F. Ensembling of Efficient Deep Convolutional Networks and Machine Learning Algorithms for Resource Effective Detection of Tuberculosis Using Thoracic (Chest) Radiography. IEEE ACCESS 2022; 10:85442-85458. [DOI: 10.1109/access.2022.3194152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Rajat Mehrrotraa
- Department of Electrical and Electronics Engineering, G. L. Bajaj Institute of Technology & Management, Greater Noida, India
| | - M. A. Ansari
- Department of Electrical Engineering, School of Engineering, Gautam Buddha University, Greater Noida, India
| | - Rajeev Agrawal
- Department of Computer Science, Lloyd Institute of Engineering & Technology, Greater Noida, India
| | - Pragati Tripathi
- Department of Electrical Engineering, School of Engineering, Gautam Buddha University, Greater Noida, India
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Mohammed Al-Sarem
- College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
| | | | - Wamda Abdelrahman Elhag Nagmeldin
- Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Faisal Saeed
- Department of Computing and Data Science, DAAI Research Group, School of Computing and Digital Technology, Birmingham City University, Birmingham, U.K
| |
Collapse
|
22
|
Tasci E, Uluturk C, Ugur A. A voting-based ensemble deep learning method focusing on image augmentation and preprocessing variations for tuberculosis detection. Neural Comput Appl 2021; 33:15541-15555. [PMID: 34121816 PMCID: PMC8182991 DOI: 10.1007/s00521-021-06177-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
Tuberculosis (TB) is known as a potentially dangerous and infectious disease that affects mostly lungs worldwide. The detection and treatment of TB at an early stage are critical for preventing the disease and decreasing the risk of mortality and transmission of it to others. Nowadays, as the most common medical imaging technique, chest radiography (CXR) is useful for determining thoracic diseases. Computer-aided detection (CADe) systems are also crucial mechanisms to provide more reliable, efficient, and systematic approaches with accelerating the decision-making process of clinicians. In this study, we propose voting and preprocessing variations-based ensemble CNN model for TB detection. We utilize 40 different variations in fine-tuned CNN models based on InceptionV3 and Xception by also using CLAHE (contrast-limited adaptive histogram equalization) preprocessing technique and 10 different image transformations for data augmentation types. After analyzing all these combination schemes, three or five best classifier models are selected as base learners for voting operations. We apply the Bayesian optimization-based weighted voting and the average of probabilities as a combination rule in soft voting methods on two TB CXR image datasets to get better results in various numbers of models. The computational results indicate that the proposed method achieves 97.500% and 97.699% accuracy rates on Montgomery and Shenzhen datasets, respectively. Furthermore, our method outperforms state-of-the-art results for the two TB detection datasets in terms of accuracy rate.
Collapse
Affiliation(s)
- Erdal Tasci
- Computer Engineering Department, Ege University, Izmir, Turkey
| | - Caner Uluturk
- Computer Engineering Department, Ege University, Izmir, Turkey
| | - Aybars Ugur
- Computer Engineering Department, Ege University, Izmir, Turkey
| |
Collapse
|
23
|
Govindarajan S, Swaminathan R. Extreme Learning Machine based Differentiation of Pulmonary Tuberculosis in Chest Radiographs using Integrated Local Feature Descriptors. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 204:106058. [PMID: 33789212 DOI: 10.1016/j.cmpb.2021.106058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Computer aided diagnostics of Pulmonary Tuberculosis in chest radiographs relies on the differentiation of subtle and non-specific alterations in the images. In this study, an attempt has been made to identify and classify Tuberculosis conditions from healthy subjects in chest radiographs using integrated local feature descriptors and variants of extreme learning machine. METHODS Lung fields in the chest images are segmented using Reaction Diffusion Level Set method. Local feature descriptors such as Median Robust Extended Local Binary Patterns and Gradient Local Ternary Patterns are extracted. Extreme Learning Machine (ELM) and Online Sequential ELM (OSELM) classifiers are employed to identify Tuberculosis conditions and, their performances are analysed using standard metrics. RESULTS Results show that the adopted segmentation method is able to delineate lung fields in both healthy and Tuberculosis images. Extracted features are statistically significant even in images with inter and intra subject variability. Sigmoid activation function yields accuracy and sensitivity values greater than 98% for both the classifiers. Highest sensitivity is observed with OSELM for minimal significant features in detecting Tuberculosis images. CONCLUSION As ELM based method is able to differentiate the subtle changes in inter and intra subject variations of chest X-ray images, the proposed methodology seems to be useful for computer-based detection of Pulmonary Tuberculosis.
Collapse
Affiliation(s)
- Satyavratan Govindarajan
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India.
| | - Ramakrishnan Swaminathan
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
24
|
Chandra TB, Verma K, Singh BK, Jain D, Netam SS. Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble. EXPERT SYSTEMS WITH APPLICATIONS 2021; 165:113909. [PMID: 32868966 PMCID: PMC7448820 DOI: 10.1016/j.eswa.2020.113909] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 05/02/2023]
Abstract
Novel coronavirus disease (nCOVID-19) is the most challenging problem for the world. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2), leading to high morbidity and mortality worldwide. The study reveals that infected patients exhibit distinct radiographic visual characteristics along with fever, dry cough, fatigue, dyspnea, etc. Chest X-Ray (CXR) is one of the important, non-invasive clinical adjuncts that play an essential role in the detection of such visual responses associated with SARS-COV-2 infection. However, the limited availability of expert radiologists to interpret the CXR images and subtle appearance of disease radiographic responses remains the biggest bottlenecks in manual diagnosis. In this study, we present an automatic COVID screening (ACoS) system that uses radiomic texture descriptors extracted from CXR images to identify the normal, suspected, and nCOVID-19 infected patients. The proposed system uses two-phase classification approach (normal vs. abnormal and nCOVID-19 vs. pneumonia) using majority vote based classifier ensemble of five benchmark supervised classification algorithms. The training-testing and validation of the ACoS system are performed using 2088 (696 normal, 696 pneumonia and 696 nCOVID-19) and 258 (86 images of each category) CXR images, respectively. The obtained validation results for phase-I (accuracy (ACC) = 98.062%, area under curve (AUC) = 0.956) and phase-II (ACC = 91.329% and AUC = 0.831) show the promising performance of the proposed system. Further, the Friedman post-hoc multiple comparisons and z-test statistics reveals that the results of ACoS system are statistically significant. Finally, the obtained performance is compared with the existing state-of-the-art methods.
Collapse
Affiliation(s)
- Tej Bahadur Chandra
- Department of Computer Applications, National Institute of Technology Raipur, Chhattisgarh, India
| | - Kesari Verma
- Department of Computer Applications, National Institute of Technology Raipur, Chhattisgarh, India
| | - Bikesh Kumar Singh
- Department of Biomedical Engineering, National Institute of Technology Raipur, Chhattisgarh, India
| | - Deepak Jain
- Department of Radiodiagnosis, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Satyabhuwan Singh Netam
- Department of Radiodiagnosis, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| |
Collapse
|
25
|
Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble. Phys Eng Sci Med 2021; 44:291-311. [PMID: 33616887 DOI: 10.1007/s13246-021-00980-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Mycobacterium Tuberculosis (TB) is an infectious bacterial disease. In 2018, about 10 million people has been diagnosed with tuberculosis (TB) worldwide. Early diagnosis of TB is necessary for effective treatment, higher survival rate, and preventing its further transmission. The gold standard for tuberculosis diagnosis is sputum culture. Nevertheless, posterior-anterior chest radiographs (CXR) is an effective central method with low cost and a relatively low radiation dose for screening TB with immediate results. TB diagnosis from CXR is a challenging task requiring high level of expertise due to the diverse presentation of the disease. Significant intra-class variation and inter-class similarity in CXR images makes TB diagnosis from CXR a more challenging task. The main aim of this study is tuberculosis recognition from CXR images for reducing the disease burden. For this purpose, a novel multi-instance classification model is proposed in this study which is based on CNNs, complex networks and stacked ensemble (CCNSE). A main advantage of CCNSE is not requiring an accurate lung segmentation to localize the suspicious regions. Several overlapping patches are extracted from each CXR image. Features describing each patch are obtained by CNNs and then the feature vectors are clustered. Local complex networks (LCN) and global ones (GCN) of the cluster representatives are formed and feature engineering on LCN (GCN) generates other features at image-level (patch-level and image-level). Global clustering on these feature sets is performed for all patches. Each patch is assigned the purity score of its corresponding cluster. Patch-level features and purity scores are aggregated for each image. Finally, the images are classified with a proposed stacked ensemble classifier to normal and TB classes. Two datasets are used in this study including Montgomery County CXR set (MC) and Shenzhen dataset (SZ). MC/SZ includes 138/662 chest X-rays (CXR) from which 80 and 58/326 and 336 images belong to normal/TB classes, respectively. The experimental results show that the proposed method with AUC of 99.00 ± 0.28/98.00 ± 0.16 for MC/SZ and accuracy of 99.26 ± 0.40/99.22 ± 0.32 for MC/SZ with fivefold cross validation strategy is superior than the compared ones for diagnosis of TB from CXR images. The proposed method can be used as a computer-aided diagnosis system to reduce the manual time, effort and dependency to specialist's expertise level.
Collapse
|
26
|
Ayaz M, Shaukat F, Raja G. Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Phys Eng Sci Med 2021; 44:183-194. [PMID: 33459996 PMCID: PMC7812355 DOI: 10.1007/s13246-020-00966-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023]
Abstract
Tuberculosis (TB) remains one of the major health problems in modern times with a high mortality rate. While efforts are being made to make early diagnosis accessible and more reliable in high burden TB countries, digital chest radiography has become a popular source for this purpose. However, the screening process requires expert radiologists which may be a potential barrier in developing countries. A fully automatic computer-aided diagnosis system can reduce the need of trained personnel for early diagnosis of TB using chest X-ray images. In this paper, we have proposed a novel TB detection technique that combines hand-crafted features with deep features (convolutional neural network-based) through Ensemble Learning. Handcrafted features were extracted via Gabor Filter and deep features were extracted via pre-trained deep learning models. Two publicly available datasets namely (i) Montgomery and (ii) Shenzhen were used to evaluate the proposed system. The proposed methodology was validated with a k-fold cross-validation scheme. The area under receiver operating characteristics curves of 0.99 and 0.97 were achieved for Shenzhen and Montgomery datasets respectively which shows the superiority of the proposed scheme.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Faculty of Electronics & Electrical Engineering, University of Engineering & Technology, Taxila, 47080, Pakistan
| | - Furqan Shaukat
- Department of Electronics Engineering, University of Chakwal, Chakwal, Pakistan
| | - Gulistan Raja
- Faculty of Electronics & Electrical Engineering, University of Engineering & Technology, Taxila, 47080, Pakistan.
| |
Collapse
|
27
|
Alarcón-Paredes A, Guzmán-Guzmán IP, Hernández-Rosales DE, Navarro-Zarza JE, Cantillo-Negrete J, Cuevas-Valencia RE, Alonso GA. Computer-aided diagnosis based on hand thermal, RGB images, and grip force using artificial intelligence as screening tool for rheumatoid arthritis in women. Med Biol Eng Comput 2021; 59:287-300. [PMID: 33420616 DOI: 10.1007/s11517-020-02294-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that typically affects people between 23 and 60 years old causing chronic synovial inflammation, symmetrical polyarthritis, destruction of large and small joints, and chronic disability. Clinical diagnosis of RA is stablished by current ACR-EULAR criteria, and it is crucial for starting conventional therapy in order to minimize damage progression. The 2010 ACR-EULAR criteria include the presence of swollen joints, elevated levels of rheumatoid factor or anti-citrullinated protein antibodies (ACPA), elevated acute phase reactant, and duration of symptoms. In this paper, a computer-aided system for helping in the RA diagnosis, based on quantitative and easy-to-acquire variables, is presented. The participants in this study were all female, grouped into two classes: class I, patients diagnosed with RA (n = 100), and class II corresponding to controls without RA (n = 100). The novel approach is constituted by the acquisition of thermal and RGB images, recording their hand grip strength or gripping force. The weight, height, and age were also obtained from all participants. The color layout descriptors (CLD) were obtained from each image for having a compact representation. After, a wrapper forward selection method in a range of classification algorithms included in WEKA was performed. In the feature selection process, variables such as hand images, grip force, and age were found relevant, whereas weight and height did not provide important information to the classification. Our system obtains an AUC ROC curve greater than 0.94 for both thermal and RGB images using the RandomForest classifier. Thirty-eight subjects were considered for an external test in order to evaluate and validate the model implementation. In this test, an accuracy of 94.7% was obtained using RGB images; the confusion matrix revealed our system provides a correct diagnosis for all participants and failed in only two of them (5.3%). Graphical abstract.
Collapse
Affiliation(s)
| | - Iris P Guzmán-Guzmán
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | | | - Jessica Cantillo-Negrete
- Division of Medical Engineering Research, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | | | - Gustavo A Alonso
- Facultad de Ingeniería, Universidad Autónoma de Guerrero, Chilpancingo, Mexico.
| |
Collapse
|
28
|
Owais M, Arsalan M, Mahmood T, Kim YH, Park KR. Comprehensive Computer-Aided Decision Support Framework to Diagnose Tuberculosis From Chest X-Ray Images: Data Mining Study. JMIR Med Inform 2020; 8:e21790. [PMID: 33284119 PMCID: PMC7752539 DOI: 10.2196/21790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
Background Tuberculosis (TB) is one of the most infectious diseases that can be fatal. Its early diagnosis and treatment can significantly reduce the mortality rate. In the literature, several computer-aided diagnosis (CAD) tools have been proposed for the efficient diagnosis of TB from chest radiograph (CXR) images. However, the majority of previous studies adopted conventional handcrafted feature-based algorithms. In addition, some recent CAD tools utilized the strength of deep learning methods to further enhance diagnostic performance. Nevertheless, all these existing methods can only classify a given CXR image into binary class (either TB positive or TB negative) without providing further descriptive information. Objective The main objective of this study is to propose a comprehensive CAD framework for the effective diagnosis of TB by providing visual as well as descriptive information from the previous patients’ database. Methods To accomplish our objective, first we propose a fusion-based deep classification network for the CAD decision that exhibits promising performance over the various state-of-the-art methods. Furthermore, a multilevel similarity measure algorithm is devised based on multiscale information fusion to retrieve the best-matched cases from the previous database. Results The performance of the framework was evaluated based on 2 well-known CXR data sets made available by the US National Library of Medicine and the National Institutes of Health. Our classification model exhibited the best diagnostic performance (0.929, 0.937, 0.921, 0.928, and 0.965 for F1 score, average precision, average recall, accuracy, and area under the curve, respectively) and outperforms the performance of various state-of-the-art methods. Conclusions This paper presents a comprehensive CAD framework to diagnose TB from CXR images by retrieving the relevant cases and their clinical observations from the previous patients’ database. These retrieval results assist the radiologist in making an effective diagnostic decision related to the current medical condition of a patient. Moreover, the retrieval results can facilitate the radiologists in subjectively validating the CAD decision.
Collapse
Affiliation(s)
- Muhammad Owais
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Muhammad Arsalan
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Tahir Mahmood
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Yu Hwan Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kang Ryoung Park
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
29
|
A Survey of Deep Learning for Lung Disease Detection on Medical Images: State-of-the-Art, Taxonomy, Issues and Future Directions. J Imaging 2020; 6:jimaging6120131. [PMID: 34460528 PMCID: PMC8321202 DOI: 10.3390/jimaging6120131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The recent developments of deep learning support the identification and classification of lung diseases in medical images. Hence, numerous work on the detection of lung disease using deep learning can be found in the literature. This paper presents a survey of deep learning for lung disease detection in medical images. There has only been one survey paper published in the last five years regarding deep learning directed at lung diseases detection. However, their survey is lacking in the presentation of taxonomy and analysis of the trend of recent work. The objectives of this paper are to present a taxonomy of the state-of-the-art deep learning based lung disease detection systems, visualise the trends of recent work on the domain and identify the remaining issues and potential future directions in this domain. Ninety-eight articles published from 2016 to 2020 were considered in this survey. The taxonomy consists of seven attributes that are common in the surveyed articles: image types, features, data augmentation, types of deep learning algorithms, transfer learning, the ensemble of classifiers and types of lung diseases. The presented taxonomy could be used by other researchers to plan their research contributions and activities. The potential future direction suggested could further improve the efficiency and increase the number of deep learning aided lung disease detection applications.
Collapse
|
30
|
Hybrid Learning of Hand-Crafted and Deep-Activated Features Using Particle Swarm Optimization and Optimized Support Vector Machine for Tuberculosis Screening. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is a leading infectious killer, especially for people with Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS). Early diagnosis of TB is crucial for disease treatment and control. Radiology is a fundamental diagnostic tool used to screen or triage TB. Automated chest x-rays analysis can facilitate and expedite TB screening with fast and accurate reports of radiological findings and can rapidly screen large populations and alleviate a shortage of skilled experts in remote areas. We describe a hybrid feature-learning algorithm for automatic screening of TB in chest x-rays: it first segmented the lung regions using the DeepLabv3+ model. Then, six sets of hand-crafted features from statistical textures, local binary pattern, GIST, histogram of oriented gradients (HOG), pyramid histogram of oriented gradients and bags of visual words (BoVW), and nine sets of deep-activated features from AlexNet, GoogLeNet, InceptionV3, XceptionNet, ResNet-50, SqueezeNet, ShuffleNet, MobileNet, and DenseNet, were extracted. The dominant features of each feature set were selected using particle swarm optimization, and then separately input to an optimized support vector machine classifier to label ‘normal’ and ‘TB’ x-rays. GIST, HOG, BoVW from hand-crafted features, and MobileNet and DenseNet from deep-activated features performed better than the others. Finally, we combined these five best-performing feature sets to build a hybrid-learning algorithm. Using the Montgomery County (MC) and Shenzen datasets, we found that the hybrid features of GIST, HOG, BoVW, MobileNet and DenseNet, performed best, achieving an accuracy of 92.5% for the MC dataset and 95.5% for the Shenzen dataset.
Collapse
|
31
|
A Novel Method for Detection of Tuberculosis in Chest Radiographs Using Artificial Ecosystem-Based Optimisation of Deep Neural Network Features. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is is an infectious disease that generally attacks the lungs and causes death for millions of people annually. Chest radiography and deep-learning-based image segmentation techniques can be utilized for TB diagnostics. Convolutional Neural Networks (CNNs) has shown advantages in medical image recognition applications as powerful models to extract informative features from images. Here, we present a novel hybrid method for efficient classification of chest X-ray images. First, the features are extracted from chest X-ray images using MobileNet, a CNN model, which was previously trained on the ImageNet dataset. Then, to determine which of these features are the most relevant, we apply the Artificial Ecosystem-based Optimization (AEO) algorithm as a feature selector. The proposed method is applied to two public benchmark datasets (Shenzhen and Dataset 2) and allows them to achieve high performance and reduced computational time. It selected successfully only the best 25 and 19 (for Shenzhen and Dataset 2, respectively) features out of about 50,000 features extracted with MobileNet, while improving the classification accuracy (90.2% for Shenzen dataset and 94.1% for Dataset 2). The proposed approach outperforms other deep learning methods, while the results are the best compared to other recently published works on both datasets.
Collapse
|
32
|
Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys Eng Sci Med 2020; 43:915-925. [PMID: 32588200 PMCID: PMC7315909 DOI: 10.1007/s13246-020-00888-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
Since December 2019, the Coronavirus Disease (COVID-19) pandemic has caused world-wide turmoil in a short period of time, and the infection, caused by SARS-CoV-2, is spreading rapidly. AI-driven tools are used to identify Coronavirus outbreaks as well as forecast their nature of spread, where imaging techniques are widely used, such as CT scans and chest X-rays (CXRs). In this paper, motivated by the fact that X-ray imaging systems are more prevalent and cheaper than CT scan systems, a deep learning-based Convolutional Neural Network (CNN) model, which we call Truncated Inception Net, is proposed to screen COVID-19 positive CXRs from other non-COVID and/or healthy cases. To validate our proposal, six different types of datasets were employed by taking the following CXRs: COVID-19 positive, Pneumonia positive, Tuberculosis positive, and healthy cases into account. The proposed model achieved an accuracy of 99.96% (AUC of 1.0) in classifying COVID-19 positive cases from combined Pneumonia and healthy cases. Similarly, it achieved an accuracy of 99.92% (AUC of 0.99) in classifying COVID-19 positive cases from combined Pneumonia, Tuberculosis, and healthy CXRs. To the best of our knowledge, as of now, the achieved results outperform the existing AI-driven tools for screening COVID-19 using the acquired CXRs, and proves the viability of using the proposed Truncated Inception Net as a screening tool.
Collapse
|
33
|
Afzali A, Babapour Mofrad F, Pouladian M. Contour-based lung shape analysis in order to tuberculosis detection: modeling and feature description. Med Biol Eng Comput 2020; 58:1965-1986. [PMID: 32572669 DOI: 10.1007/s11517-020-02192-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
Abstract
Statistical shape analysis of lung is a reliable alternative method for diagnosing pulmonary diseases such as tuberculosis (TB). The 2D contour-based lung shape analysis is investigated and developed using Fourier descriptors (FDs). The proposed 2D lung shape analysis is carried out in threefold: (1) represent the normal and the abnormal (i.e. pulmonary tuberculosis (PTB)) lung shape models using Fourier descriptors modeling (FDM) framework from chest X-ray (CXR) images, (2) estimate and compare the 2D inter-patient lung shape variations for the normal and abnormal lungs by applying principal component analysis (PCA) techniques, and (3) describe the optimal type of contour-based feature vectors to train a classifier in order to detect TB using one publicly available dataset-namely the Montgomery dataset. Since almost all of the previous works in lung shape analysis are content-based analysis, we proposed contour-based lung shape analysis for statistical modeling and feature description of PTB cases. The results show that the proposed approach is able to explain more than 95% of total variations in both of the normal and PTB cases using only 6 and 7 principal component modes for the right and the left lungs, respectively. In case of PTB detection, using 138 lung cases (80 normal and 58 PTB cases), we achieved the accuracy (ACC) and the area under the curve (AUC) of 82.03% and 88.75%, respectively. In comparison with existing state-of-art studies in the same dataset, the proposed approach is a very promising supplement for diagnosis of PTB disease. The method is robust and valuable for application in 2D automatic segmentation, classification, and atlas registration. Moreover, the approach could be used for any kind of pulmonary diseases. Graphical abstract Contour-based lung shape analysis in order to detect tuberculosis: modeling and feature description.
Collapse
Affiliation(s)
- Ali Afzali
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Babapour Mofrad
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Majid Pouladian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
34
|
A Transfer Learning Method for Pneumonia Classification and Visualization. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082908] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pneumonia is an infectious disease that affects the lungs and is one of the principal causes of death in children under five years old. The Chest X-ray images technique is one of the most used for diagnosing pneumonia. Several Machine Learning algorithms have been successfully used in order to provide computer-aided diagnosis by automatic classification of medical images. For its remarkable results, the Convolutional Neural Networks (models based on Deep Learning) that are widely used in Computer Vision tasks, such as classification of injuries and brain abnormalities, among others, stand out. In this paper, we present a transfer learning method that automatically classifies between 3883 chest X-ray images characterized as depicting pneumonia and 1349 labeled as normal. The proposed method uses the Xception Network pre-trained weights on ImageNet as an initialization. Our model is competitive with respect to state-of-the-art proposals. To make comparisons with other models, we have used four well-known performance measures, obtaining the following results: precision (0.84), recall (0.99), F1-score (0.91) and area under the ROC curve (0.97). These positive results allow us to consider our proposal as an alternative that can be useful in countries with a lack of equipment and specialized radiologists.
Collapse
|
35
|
Artificial Intelligence-Based Diagnosis of Cardiac and Related Diseases. J Clin Med 2020; 9:jcm9030871. [PMID: 32209991 PMCID: PMC7141544 DOI: 10.3390/jcm9030871] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Automatic chest anatomy segmentation plays a key role in computer-aided disease diagnosis, such as for cardiomegaly, pleural effusion, emphysema, and pneumothorax. Among these diseases, cardiomegaly is considered a perilous disease, involving a high risk of sudden cardiac death. It can be diagnosed early by an expert medical practitioner using a chest X-Ray (CXR) analysis. The cardiothoracic ratio (CTR) and transverse cardiac diameter (TCD) are the clinical criteria used to estimate the heart size for diagnosing cardiomegaly. Manual estimation of CTR and other diseases is a time-consuming process and requires significant work by the medical expert. Cardiomegaly and related diseases can be automatically estimated by accurate anatomical semantic segmentation of CXRs using artificial intelligence. Automatic segmentation of the lungs and heart from the CXRs is considered an intensive task owing to inferior quality images and intensity variations using nonideal imaging conditions. Although there are a few deep learning-based techniques for chest anatomy segmentation, most of them only consider single class lung segmentation with deep complex architectures that require a lot of trainable parameters. To address these issues, this study presents two multiclass residual mesh-based CXR segmentation networks, X-RayNet-1 and X-RayNet-2, which are specifically designed to provide fine segmentation performance with a few trainable parameters compared to conventional deep learning schemes. The proposed methods utilize semantic segmentation to support the diagnostic procedure of related diseases. To evaluate X-RayNet-1 and X-RayNet-2, experiments were performed with a publicly available Japanese Society of Radiological Technology (JSRT) dataset for multiclass segmentation of the lungs, heart, and clavicle bones; two other publicly available datasets, Montgomery County (MC) and Shenzhen X-Ray sets (SC), were evaluated for lung segmentation. The experimental results showed that X-RayNet-1 achieved fine performance for all datasets and X-RayNet-2 achieved competitive performance with a 75% parameter reduction.
Collapse
|
36
|
PRF-RW: a progressive random forest-based random walk approach for interactive semi-automated pulmonary lobes segmentation. INT J MACH LEARN CYB 2020. [DOI: 10.1007/s13042-020-01111-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Selection of relevant texture descriptors for recognition of HEp-2 cell staining patterns. INT J MACH LEARN CYB 2020. [DOI: 10.1007/s13042-020-01106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Eslami M, Tabarestani S, Albarqouni S, Adeli E, Navab N, Adjouadi M. Image-to-Images Translation for Multi-Task Organ Segmentation and Bone Suppression in Chest X-Ray Radiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2553-2565. [PMID: 32078541 DOI: 10.1109/tmi.2020.2974159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chest X-ray radiography is one of the earliest medical imaging technologies and remains one of the most widely-used for diagnosis, screening, and treatment follow up of diseases related to lungs and heart. The literature in this field of research reports many interesting studies dealing with the challenging tasks of bone suppression and organ segmentation but performed separately, limiting any learning that comes with the consolidation of parameters that could optimize both processes. This study, and for the first time, introduces a multitask deep learning model that generates simultaneously the bone-suppressed image and the organ-segmented image, enhancing the accuracy of tasks, minimizing the number of parameters needed by the model and optimizing the processing time, all by exploiting the interplay between the network parameters to benefit the performance of both tasks. The architectural design of this model, which relies on a conditional generative adversarial network, reveals the process on how the wellestablished pix2pix network (image-to-image network) is modified to fit the need for multitasking and extending it to the new image-to-images architecture. The developed source code of this multitask model is shared publicly on Github as the first attempt for providing the two-task pix2pix extension, a supervised/paired/aligned/registered image-to-images translation which would be useful in many multitask applications. Dilated convolutions are also used to improve the results through a more effective receptive field assessment. The comparison with state-of-the-art al-gorithms along with ablation study and a demonstration video1 are provided to evaluate the efficacy and gauge the merits of the proposed approach.
Collapse
|
39
|
Ma L, Wang Y, Guo L, Zhang Y, Wang P, Pei X, Qian L, Jaeger S, Ke X, Yin X, Lure FYM. Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:939-951. [PMID: 32651351 DOI: 10.3233/xst-200662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Diagnosis of tuberculosis (TB) in multi-slice spiral computed tomography (CT) images is a difficult task in many TB prevalent locations in which experienced radiologists are lacking. To address this difficulty, we develop an automated detection system based on artificial intelligence (AI) in this study to simplify the diagnostic process of active tuberculosis (ATB) and improve the diagnostic accuracy using CT images. DATA A CT image dataset of 846 patients is retrospectively collected from a large teaching hospital. The gold standard for ATB patients is sputum smear, and the gold standard for normal and pneumonia patients is the CT report result. The dataset is divided into independent training and testing data subsets. The training data contains 337 ATB, 110 pneumonia, and 120 normal cases, while the testing data contains 139 ATB, 40 pneumonia, and 100 normal cases, respectively. METHODS A U-Net deep learning algorithm was applied for automatic detection and segmentation of ATB lesions. Image processing methods are then applied to CT layers diagnosed as ATB lesions by U-Net, which can detect potentially misdiagnosed layers, and can turn 2D ATB lesions into 3D lesions based on consecutive U-Net annotations. Finally, independent test data is used to evaluate the performance of the developed AI tool. RESULTS For an independent test, the AI tool yields an AUC value of 0.980. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value are 0.968, 0.964, 0.971, 0.971, and 0.964, respectively, which shows that the AI tool performs well for detection of ATB and differential diagnosis of non-ATB (i.e. pneumonia and normal cases). CONCLUSION An AI tool for automatic detection of ATB in chest CT is successfully developed in this study. The AI tool can accurately detect ATB patients, and distinguish between ATB and non- ATB cases, which simplifies the diagnosis process and lays a solid foundation for the next step of AI in CT diagnosis of ATB in clinical application.
Collapse
Affiliation(s)
- Luyao Ma
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China
- Clinical Medical College, Hebei University, Baoding, Hebei, China
| | - Yun Wang
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China
- Clinical Medical College, Hebei University, Baoding, Hebei, China
| | - Lin Guo
- Shenzhen Zhiying Medical Imaging, Shenzhen, Guangdong, China
| | - Yu Zhang
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ping Wang
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China
- Clinical Medical College, Hebei University, Baoding, Hebei, China
| | - Xu Pei
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China
- Clinical Medical College, Hebei University, Baoding, Hebei, China
| | - Lingjun Qian
- Shenzhen Zhiying Medical Imaging, Shenzhen, Guangdong, China
| | - Stefan Jaeger
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Xiaowen Ke
- Shenzhen Zhiying Medical Imaging, Shenzhen, Guangdong, China
| | - Xiaoping Yin
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fleming Y M Lure
- Shenzhen Zhiying Medical Imaging, Shenzhen, Guangdong, China
- MS Technologies Corp, Rockville, MD, USA
| |
Collapse
|
40
|
Munawar F, Azmat S, Iqbal T, Gronlund C, Ali H. Segmentation of Lungs in Chest X-Ray Image Using Generative Adversarial Networks. IEEE ACCESS 2020; 8:153535-153545. [DOI: 10.1109/access.2020.3017915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
41
|
Ul Abideen Z, Ghafoor M, Munir K, Saqib M, Ullah A, Zia T, Tariq SA, Ahmed G, Zahra A. Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:22812-22825. [PMID: 32391238 PMCID: PMC7176037 DOI: 10.1109/access.2020.2970023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 05/07/2023]
Abstract
Tuberculosis (TB) is an infectious disease that can lead towards death if left untreated. TB detection involves extraction of complex TB manifestation features such as lung cavity, air space consolidation, endobronchial spread, and pleural effusions from chest x-rays (CXRs). Deep learning based approach named convolutional neural network (CNN) has the ability to learn complex features from CXR images. The main problem is that CNN does not consider uncertainty to classify CXRs using softmax layer. It lacks in presenting the true probability of CXRs by differentiating confusing cases during TB detection. This paper presents the solution for TB identification by using Bayesian-based convolutional neural network (B-CNN). It deals with the uncertain cases that have low discernibility among the TB and non-TB manifested CXRs. The proposed TB identification methodology based on B-CNN is evaluated on two TB benchmark datasets, i.e., Montgomery and Shenzhen. For training and testing of proposed scheme we have utilized Google Colab platform which provides NVidia Tesla K80 with 12 GB of VRAM, single core of 2.3 GHz Xeon Processor, 12 GB RAM and 320 GB of disk. B-CNN achieves 96.42% and 86.46% accuracy on both dataset, respectively as compared to the state-of-the-art machine learning and CNN approaches. Moreover, B-CNN validates its results by filtering the CXRs as confusion cases where the variance of B-CNN predicted outputs is more than a certain threshold. Results prove the supremacy of B-CNN for the identification of TB and non-TB sample CXRs as compared to counterparts in terms of accuracy, variance in the predicted probabilities and model uncertainty.
Collapse
Affiliation(s)
- Zain Ul Abideen
- 1Department of Computer ScienceCOMSATS University Islamabad (CUI)Islamabad44000Pakistan
| | - Mubeen Ghafoor
- 1Department of Computer ScienceCOMSATS University Islamabad (CUI)Islamabad44000Pakistan
- 2FET - Computer Science and Creative TechnologiesUniversity of the West of EnglandBristolBS16 1QYU.K
| | - Kamran Munir
- 2FET - Computer Science and Creative TechnologiesUniversity of the West of EnglandBristolBS16 1QYU.K
| | - Madeeha Saqib
- 3Department of Computer Information SystemsCollege of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammam34212Saudi Arabia
| | - Ata Ullah
- 4Department of Computer ScienceNational University of Modern Languages (NUML)Islamabad44000Pakistan
| | - Tehseen Zia
- 1Department of Computer ScienceCOMSATS University Islamabad (CUI)Islamabad44000Pakistan
| | - Syed Ali Tariq
- 1Department of Computer ScienceCOMSATS University Islamabad (CUI)Islamabad44000Pakistan
| | - Ghufran Ahmed
- 5Department of Computer ScienceNational University of Computer and Emerging Sciences (NUCES)Karachi54700Pakistan
| | - Asma Zahra
- 1Department of Computer ScienceCOMSATS University Islamabad (CUI)Islamabad44000Pakistan
| |
Collapse
|
42
|
Kulkarni S, Jha S. Artificial Intelligence, Radiology, and Tuberculosis: A Review. Acad Radiol 2020; 27:71-75. [PMID: 31759796 DOI: 10.1016/j.acra.2019.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/22/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a leading cause of death from infectious disease worldwide, and is an epidemic in many developing nations. Countries where the disease is common also tend to have poor access to medical care, including diagnostic tests. Recent advancements in artificial intelligence may help to bridge this gap. In this article, we review the applications of artificial intelligence in the diagnosis of tuberculosis using chest radiography, covering simple computer-aided diagnosis systems to more advanced deep learning algorithms. In so doing, we will demonstrate an area where artificial intelligence could make a substantial contribution to global health through improved diagnosis in the future.
Collapse
Affiliation(s)
- Sagar Kulkarni
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA.
| | - Saurabh Jha
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA
| |
Collapse
|
43
|
Harris M, Qi A, Jeagal L, Torabi N, Menzies D, Korobitsyn A, Pai M, Nathavitharana RR, Ahmad Khan F. A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. PLoS One 2019; 14:e0221339. [PMID: 31479448 PMCID: PMC6719854 DOI: 10.1371/journal.pone.0221339] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods (“Development” studies) and 13 focused on evaluation of CAD (“Clinical” studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82–0.90]) versus Clinical studies (0.75 [0.66–0.87]; p-value 0.004); and with deep-learning (0.91 [0.88–0.99]) versus machine-learning (0.82 [0.75–0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved.
Collapse
Affiliation(s)
- Miriam Harris
- Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Canada
- Department of Medicine, Boston University–Boston Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Amy Qi
- Department of Medicine, McGill University Health Centre, Montreal, Canada
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Luke Jeagal
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Nazi Torabi
- St. Michael's Hospital, Li Ka Shing International Healthcare Education Centre, Toronto, Canada
| | - Dick Menzies
- Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Alexei Korobitsyn
- Laboratories, Diagnostics & Drug Resistance Global TB Programme WHO, Geneva, Switzerland
| | - Madhukar Pai
- Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Ruvandhi R. Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Faiz Ahmad Khan
- Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| |
Collapse
|
44
|
Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Sci Rep 2019; 9:6268. [PMID: 31000728 PMCID: PMC6472370 DOI: 10.1038/s41598-019-42557-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/22/2019] [Indexed: 01/23/2023] Open
Abstract
Automated diagnosis of tuberculosis (TB) from chest X-Rays (CXR) has been tackled with either hand-crafted algorithms or machine learning approaches such as support vector machines (SVMs) and convolutional neural networks (CNNs). Most deep neural network applied to the task of tuberculosis diagnosis have been adapted from natural image classification. These models have a large number of parameters as well as high hardware requirements, which makes them prone to overfitting and harder to deploy in mobile settings. We propose a simple convolutional neural network optimized for the problem which is faster and more efficient than previous models but preserves their accuracy. Moreover, the visualization capabilities of CNNs have not been fully investigated. We test saliency maps and grad-CAMs as tuberculosis visualization methods, and discuss them from a radiological perspective.
Collapse
|
45
|
Govindarajan S, Swaminathan R. Analysis of Tuberculosis in Chest Radiographs for Computerized Diagnosis using Bag of Keypoint Features. J Med Syst 2019; 43:87. [DOI: 10.1007/s10916-019-1222-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
|
46
|
A Robust Framework for Self-Care Problem Identification for Children with Disability. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, a standard dataset namely SCADI (Self-Care Activities Dataset) based on the International Classification of Functioning, Disability, and Health for Children and Youth framework for self-care problems identification of children with physical and motor disabilities was introduced. This is a very interesting, important and challenging topic due to its usefulness in medical diagnosis. This study proposes a robust framework using a sampling technique and extreme gradient boosting (FSX) to improve the prediction performance for the SCADI dataset. The proposed framework first converts the original dataset to a new dataset with a smaller number of dimensions. Then, our proposed framework balances the new dataset in the previous step using oversampling techniques with different ratios. Next, extreme gradient boosting was used to diagnose the problems. The experiments in terms of prediction performance and feature importance were conducted to show the effectiveness of FSX as well as to analyse the results. The experimental results show that FSX that uses the Synthetic Minority Over-sampling Technique (SMOTE) for the oversampling module outperforms the ANN (Artificial Neural Network) -based approach, Support vector machine (SVM) and Random Forest for the SCADI dataset. The overall accuracy of the proposed framework reaches 85.4%, a pretty high performance, which can be used for self-care problem classification in medical diagnosis.
Collapse
|
47
|
Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2018.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Xiong CZ, Su M, Jiang Z, Jiang W. Prediction of Hemodialysis Timing Based on LVW Feature Selection and Ensemble Learning. J Med Syst 2018; 43:18. [PMID: 30547238 DOI: 10.1007/s10916-018-1136-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
We propose an improved model based on LVW embedded model feature extractor and ensemble learning for improving prediction accuracy of hemodialysis timing in this paper. Due to this drawback caused by feature extraction models, we adopt an enhanced LVW embedded model to search the feature subset by stochastic strategy, which can find the best feature combination that are most beneficial to learner performance. In the model application, we present an improved integrated learners for model fusion to reduce errors caused by overfitting problem of the single classifier. We run several state-of-the-art Q&A methods as contrastive experiments. The experimental results show that the ensemble learning model based on LVW has better generalization ability (97.04%) and lower standard error (± 0.04). We adopt the model to make high-precision predictions of hemodialysis timing, and the experimental results have shown that our framework significantly outperforms several strong baselines. Our model provides strong clinical decision support for physician diagnosis and has important clinical implications.
Collapse
Affiliation(s)
- Chang-Zhu Xiong
- Department of electronic information, Sichuan University, Chengdu, China.
| | - Minglian Su
- West China School of clinical medicine, Sichuan University, Chengdu, China
| | - Zitao Jiang
- Department of electronic information, Sichuan University, Chengdu, China
| | - Wei Jiang
- Department of electronic information, Sichuan University, Chengdu, China
| |
Collapse
|