1
|
Sharma N, Gupta S, Gupta D, Gupta P, Juneja S, Shah A, Shaikh A. UMobileNetV2 model for semantic segmentation of gastrointestinal tract in MRI scans. PLoS One 2024; 19:e0302880. [PMID: 38718092 PMCID: PMC11078421 DOI: 10.1371/journal.pone.0302880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
Gastrointestinal (GI) cancer is leading general tumour in the Gastrointestinal tract, which is fourth significant reason of tumour death in men and women. The common cure for GI cancer is radiation treatment, which contains directing a high-energy X-ray beam onto the tumor while avoiding healthy organs. To provide high dosages of X-rays, a system needs for accurately segmenting the GI tract organs. The study presents a UMobileNetV2 model for semantic segmentation of small and large intestine and stomach in MRI images of the GI tract. The model uses MobileNetV2 as an encoder in the contraction path and UNet layers as a decoder in the expansion path. The UW-Madison database, which contains MRI scans from 85 patients and 38,496 images, is used for evaluation. This automated technology has the capability to enhance the pace of cancer therapy by aiding the radio oncologist in the process of segmenting the organs of the GI tract. The UMobileNetV2 model is compared to three transfer learning models: Xception, ResNet 101, and NASNet mobile, which are used as encoders in UNet architecture. The model is analyzed using three distinct optimizers, i.e., Adam, RMS, and SGD. The UMobileNetV2 model with the combination of Adam optimizer outperforms all other transfer learning models. It obtains a dice coefficient of 0.8984, an IoU of 0.8697, and a validation loss of 0.1310, proving its ability to reliably segment the stomach and intestines in MRI images of gastrointestinal cancer patients.
Collapse
Affiliation(s)
- Neha Sharma
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Sheifali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Deepali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Punit Gupta
- University College Dublin, Dublin, Ireland
- Manipal University Jaipur, Jaipur, India
| | - Sapna Juneja
- International Islamic University, Kuala Lumpur, Malaysia
| | - Asadullah Shah
- International Islamic University, Kuala Lumpur, Malaysia
| | | |
Collapse
|
2
|
Musha A, Hasnat R, Mamun AA, Ping EP, Ghosh T. Computer-Aided Bleeding Detection Algorithms for Capsule Endoscopy: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7170. [PMID: 37631707 PMCID: PMC10459126 DOI: 10.3390/s23167170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Capsule endoscopy (CE) is a widely used medical imaging tool for the diagnosis of gastrointestinal tract abnormalities like bleeding. However, CE captures a huge number of image frames, constituting a time-consuming and tedious task for medical experts to manually inspect. To address this issue, researchers have focused on computer-aided bleeding detection systems to automatically identify bleeding in real time. This paper presents a systematic review of the available state-of-the-art computer-aided bleeding detection algorithms for capsule endoscopy. The review was carried out by searching five different repositories (Scopus, PubMed, IEEE Xplore, ACM Digital Library, and ScienceDirect) for all original publications on computer-aided bleeding detection published between 2001 and 2023. The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) methodology was used to perform the review, and 147 full texts of scientific papers were reviewed. The contributions of this paper are: (I) a taxonomy for computer-aided bleeding detection algorithms for capsule endoscopy is identified; (II) the available state-of-the-art computer-aided bleeding detection algorithms, including various color spaces (RGB, HSV, etc.), feature extraction techniques, and classifiers, are discussed; and (III) the most effective algorithms for practical use are identified. Finally, the paper is concluded by providing future direction for computer-aided bleeding detection research.
Collapse
Affiliation(s)
- Ahmmad Musha
- Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh; (A.M.); (R.H.)
| | - Rehnuma Hasnat
- Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh; (A.M.); (R.H.)
| | - Abdullah Al Mamun
- Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia;
| | - Em Poh Ping
- Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia;
| | - Tonmoy Ghosh
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
3
|
Karthick P, Mohiuddine S, Tamilvanan K, Narayanamoorthy S, Maheswari S. Investigations of color image segmentation based on connectivity measure, shape priority and normalized fuzzy graph cut. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
4
|
A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput Biol Med 2023; 157:106726. [PMID: 36924732 DOI: 10.1016/j.compbiomed.2023.106726] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Deep learning-based methods have become the dominant methodology in medical image processing with the advancement of deep learning in natural image classification, detection, and segmentation. Deep learning-based approaches have proven to be quite effective in single lesion recognition and segmentation. Multiple-lesion recognition is more difficult than single-lesion recognition due to the little variation between lesions or the too wide range of lesions involved. Several studies have recently explored deep learning-based algorithms to solve the multiple-lesion recognition challenge. This paper includes an in-depth overview and analysis of deep learning-based methods for multiple-lesion recognition developed in recent years, including multiple-lesion recognition in diverse body areas and recognition of whole-body multiple diseases. We discuss the challenges that still persist in the multiple-lesion recognition tasks by critically assessing these efforts. Finally, we outline existing problems and potential future research areas, with the hope that this review will help researchers in developing future approaches that will drive additional advances.
Collapse
|
5
|
Pramanik P, Mukhopadhyay S, Mirjalili S, Sarkar R. Deep feature selection using local search embedded social ski-driver optimization algorithm for breast cancer detection in mammograms. Neural Comput Appl 2023; 35:5479-5499. [PMID: 36373132 PMCID: PMC9638217 DOI: 10.1007/s00521-022-07895-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
Abstract
Breast cancer has become a common malignancy in women. However, early detection and identification of this disease can save many lives. As computer-aided detection helps radiologists in detecting abnormalities efficiently, researchers across the world are striving to develop reliable models to deal with. One of the common approaches to identifying breast cancer is through breast mammograms. However, the identification of malignant breasts from mass lesions is a challenging research problem. In the current work, we propose a method for the classification of breast mass using mammograms which consists of two main stages. At first, we extract deep features from the input mammograms using the well-known VGG16 model while incorporating an attention mechanism into this model. Next, we apply a meta-heuristic called Social Ski-Driver (SSD) algorithm embedded with Adaptive Beta Hill Climbing based local search to obtain an optimal features subset. The optimal features subset is fed to the K-nearest neighbors (KNN) classifier for the classification. The proposed model is demonstrated to be very useful for identifying and differentiating malignant and healthy breasts successfully. For experimentation, we evaluate our model on the digital database for screening mammography (DDSM) database and achieve 96.07% accuracy using only 25% of features extracted by the attention-aided VGG16 model. The Python code of our research work is publicly available at: https://github.com/Ppayel/BreastLocalSearchSSD.
Collapse
Affiliation(s)
- Payel Pramanik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | | | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, QLD 4006 Australia ,Yonsei Frontier Lab, Yonsei University, Seoul, South Korea ,University Research and Innovation Center, Óbuda University, Budapest, 1034 Hungary
| | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Khan MA, Sahar N, Khan WZ, Alhaisoni M, Tariq U, Zayyan MH, Kim YJ, Chang B. GestroNet: A Framework of Saliency Estimation and Optimal Deep Learning Features Based Gastrointestinal Diseases Detection and Classification. Diagnostics (Basel) 2022; 12:2718. [PMID: 36359566 PMCID: PMC9689856 DOI: 10.3390/diagnostics12112718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 08/25/2024] Open
Abstract
In the last few years, artificial intelligence has shown a lot of promise in the medical domain for the diagnosis and classification of human infections. Several computerized techniques based on artificial intelligence (AI) have been introduced in the literature for gastrointestinal (GIT) diseases such as ulcer, bleeding, polyp, and a few others. Manual diagnosis of these infections is time consuming, expensive, and always requires an expert. As a result, computerized methods that can assist doctors as a second opinion in clinics are widely required. The key challenges of a computerized technique are accurate infected region segmentation because each infected region has a change of shape and location. Moreover, the inaccurate segmentation affects the accurate feature extraction that later impacts the classification accuracy. In this paper, we proposed an automated framework for GIT disease segmentation and classification based on deep saliency maps and Bayesian optimal deep learning feature selection. The proposed framework is made up of a few key steps, from preprocessing to classification. Original images are improved in the preprocessing step by employing a proposed contrast enhancement technique. In the following step, we proposed a deep saliency map for segmenting infected regions. The segmented regions are then used to train a pre-trained fine-tuned model called MobileNet-V2 using transfer learning. The fine-tuned model's hyperparameters were initialized using Bayesian optimization (BO). The average pooling layer is then used to extract features. However, several redundant features are discovered during the analysis phase and must be removed. As a result, we proposed a hybrid whale optimization algorithm for selecting the best features. Finally, the selected features are classified using an extreme learning machine classifier. The experiment was carried out on three datasets: Kvasir 1, Kvasir 2, and CUI Wah. The proposed framework achieved accuracy of 98.20, 98.02, and 99.61% on these three datasets, respectively. When compared to other methods, the proposed framework shows an improvement in accuracy.
Collapse
Affiliation(s)
| | - Naveera Sahar
- Department of Computer Science, University of Wah, Wah Cantt, Rawalpindi 47040, Pakistan
| | - Wazir Zada Khan
- Department of Computer Science, University of Wah, Wah Cantt, Rawalpindi 47040, Pakistan
| | - Majed Alhaisoni
- Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Usman Tariq
- Department of Management Information Systems, CoBA, Prince Sattam Bin Abdulaziz University, Al-Khraj 16278, Saudi Arabia
| | - Muhammad H. Zayyan
- Computer Science Department, Faculty of Computers and Information Sciences, Mansoura University, Mansoura 35516, Egypt
| | - Ye Jin Kim
- Department of Computer Science, Hanyang University, Seoul 04763, Korea
| | - Byoungchol Chang
- Center for Computational Social Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm. Neural Comput Appl 2022; 34:18015-18033. [PMID: 35698722 PMCID: PMC9175533 DOI: 10.1007/s00521-022-07445-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts.
Collapse
|
8
|
Mohammad F, Al-Razgan M. Deep Feature Fusion and Optimization-Based Approach for Stomach Disease Classification. SENSORS (BASEL, SWITZERLAND) 2022; 22:2801. [PMID: 35408415 PMCID: PMC9003289 DOI: 10.3390/s22072801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
Cancer is the deadliest disease among all the diseases and the main cause of human mortality. Several types of cancer sicken the human body and affect organs. Among all the types of cancer, stomach cancer is the most dangerous disease that spreads rapidly and needs to be diagnosed at an early stage. The early diagnosis of stomach cancer is essential to reduce the mortality rate. The manual diagnosis process is time-consuming, requires many tests, and the availability of an expert doctor. Therefore, automated techniques are required to diagnose stomach infections from endoscopic images. Many computerized techniques have been introduced in the literature but due to a few challenges (i.e., high similarity among the healthy and infected regions, irrelevant features extraction, and so on), there is much room to improve the accuracy and reduce the computational time. In this paper, a deep-learning-based stomach disease classification method employing deep feature extraction, fusion, and optimization using WCE images is proposed. The proposed method comprises several phases: data augmentation performed to increase the dataset images, deep transfer learning adopted for deep features extraction, feature fusion performed on deep extracted features, fused feature matrix optimized with a modified dragonfly optimization method, and final classification of the stomach disease was performed. The features extraction phase employed two pre-trained deep CNN models (Inception v3 and DenseNet-201) performing activation on feature derivation layers. Later, the parallel concatenation was performed on deep-derived features and optimized using the meta-heuristic method named the dragonfly algorithm. The optimized feature matrix was classified by employing machine-learning algorithms and achieved an accuracy of 99.8% on the combined stomach disease dataset. A comparison has been conducted with state-of-the-art techniques and shows improved accuracy.
Collapse
Affiliation(s)
- Farah Mohammad
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muna Al-Razgan
- Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
9
|
Shao M, Jiang C, Yu C, Jia H, Wang Y, Mao X. Capecitabine inhibits epithelial‑to‑mesenchymal transition and proliferation of colorectal cancer cells by mediating the RANK/RANKL pathway. Oncol Lett 2022; 23:96. [PMID: 35154427 PMCID: PMC8822391 DOI: 10.3892/ol.2022.13216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy globally. Capecitabine is an important form of chemotherapy for colorectal cancer. The present study aims to investigate the underlying mechanism of action of the drug in CRC cells. In the present study, 50 pairs of CRC and adjacent normal tissues were collected, and CRC cell lines (SW480, SW620, HT29, LOVO and HCT116) and NCM460 colonic epithelial cells were also purchased and used. Western blotting was used to measure the expression levels of proteins involved in the receptor activator of nuclear factor-κB (RANK)/receptor activator of nuclear factor-κB ligand (RANKL) pathway and epithelial-to-mesenchymal transition (EMT), including RANK, RANKL, osteoprotegerin (OPG), E-cadherin, vimentin and N-cadherin. Proliferation and migration were measured using MTT, Cell Counting Kit-8, EdU, Transwell and wound healing assays, respectively. In the present study, it was found that the RANK/RANKL pathway was activated in cancer tissues and cells. Additionally, it was observed that capecitabine treatment reduced the protein expression of RANK, RANKL and OPG in HT29 cells, suggesting that capecitabine has a repressive effect on the RANK/RANKL pathway. Furthermore, functional experiments revealed that the proliferative ability and the EMT process observed in HT29 cells were inhibited after they were treated with capecitabine or transfected with si-RANK. Rescue assays were then performed, which revealed that the promotion of RANK via transfection of cells with 50 nM pcDNA3.1-RANK reversed the inhibitory effects of capecitabine on HT29 cell proliferation and EMT. These findings suggest that the regulatory role of capecitabine is at least partially mediated through the RANK/RANKL pathway in colorectal cancer. The present study demonstrated that capecitabine-induced repression of CRC is exerted by inhibiting the RANK/RANKL pathway, where this new mechanism potentially provides a novel therapeutic target.
Collapse
Affiliation(s)
- Minghai Shao
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Caiping Jiang
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Changhui Yu
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Haijian Jia
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Yanli Wang
- Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xinli Mao
- Department of Gastroenterology, Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
10
|
Zhao PY, Han K, Yao RQ, Ren C, Du XH. Application Status and Prospects of Artificial Intelligence in Peptic Ulcers. Front Surg 2022; 9:894775. [PMID: 35784921 PMCID: PMC9244632 DOI: 10.3389/fsurg.2022.894775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Peptic ulcer (PU) is a common and frequently occurring disease. Although PU seriously threatens the lives and health of global residents, the applications of artificial intelligence (AI) have strongly promoted diversification and modernization in the diagnosis and treatment of PU. This minireview elaborates on the research progress of AI in the field of PU, from PU's pathogenic factor Helicobacter pylori (Hp) infection, diagnosis and differential diagnosis, to its management and complications (bleeding, obstruction, perforation and canceration). Finally, the challenges and prospects of AI application in PU are prospected and expounded. With the in-depth understanding of modern medical technology, AI remains a promising option in the management of PU patients and plays a more indispensable role. How to realize the robustness, versatility and diversity of multifunctional AI systems in PU and conduct multicenter prospective clinical research as soon as possible are the top priorities in the future.
Collapse
Affiliation(s)
- Peng-yue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ke Han
- Department of Gastroenterology, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Xiao-hui Du
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| |
Collapse
|
11
|
Khan S, Khan MA, Alhaisoni M, Tariq U, Yong HS, Armghan A, Alenezi F. Human Action Recognition: A Paradigm of Best Deep Learning Features Selection and Serial Based Extended Fusion. SENSORS (BASEL, SWITZERLAND) 2021; 21:7941. [PMID: 34883944 PMCID: PMC8659437 DOI: 10.3390/s21237941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023]
Abstract
Human action recognition (HAR) has gained significant attention recently as it can be adopted for a smart surveillance system in Multimedia. However, HAR is a challenging task because of the variety of human actions in daily life. Various solutions based on computer vision (CV) have been proposed in the literature which did not prove to be successful due to large video sequences which need to be processed in surveillance systems. The problem exacerbates in the presence of multi-view cameras. Recently, the development of deep learning (DL)-based systems has shown significant success for HAR even for multi-view camera systems. In this research work, a DL-based design is proposed for HAR. The proposed design consists of multiple steps including feature mapping, feature fusion and feature selection. For the initial feature mapping step, two pre-trained models are considered, such as DenseNet201 and InceptionV3. Later, the extracted deep features are fused using the Serial based Extended (SbE) approach. Later on, the best features are selected using Kurtosis-controlled Weighted KNN. The selected features are classified using several supervised learning algorithms. To show the efficacy of the proposed design, we used several datasets, such as KTH, IXMAS, WVU, and Hollywood. Experimental results showed that the proposed design achieved accuracies of 99.3%, 97.4%, 99.8%, and 99.9%, respectively, on these datasets. Furthermore, the feature selection step performed better in terms of computational time compared with the state-of-the-art.
Collapse
Affiliation(s)
- Seemab Khan
- Department of Computer Science, HITEC University Taxila, Txila 47080, Pakistan;
| | | | - Majed Alhaisoni
- College of Computer Science and Engineering, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Usman Tariq
- College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj 11942, Saudi Arabia;
| | - Hwan-Seung Yong
- Department of Computer Science & Engineering, Ewha Womans University, Seoul 120-750, Korea;
| | - Ammar Armghan
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72311, Saudi Arabia; (A.A.); (F.A.)
| | - Fayadh Alenezi
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72311, Saudi Arabia; (A.A.); (F.A.)
| |
Collapse
|
12
|
Guo X, Zhang L, Hao Y, Zhang L, Liu Z, Liu J. Multiple abnormality classification in wireless capsule endoscopy images based on EfficientNet using attention mechanism. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:094102. [PMID: 34598534 DOI: 10.1063/5.0054161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The wireless capsule endoscopy (WCE) procedure produces tens of thousands of images of the digestive tract, for which the use of the manual reading process is full of challenges. Convolutional neural networks are used to automatically detect lesions in WCE images. However, studies on clinical multilesion detection are scarce, and it is difficult to effectively balance the sensitivity to multiple lesions. A strategy for detecting multiple lesions is proposed, wherein common vascular and inflammatory lesions can be automatically and quickly detected on capsule endoscopic images. Based on weakly supervised learning, EfficientNet is fine-tuned to extract the endoscopic image features. Combining spatial features and channel features, the proposed attention network is then used as a classifier to obtain three classifications. The accuracy and speed of the model were compared with those of the ResNet121 and InceptionNetV4 models. It was tested on a public WCE image dataset obtained from 4143 subjects. On the computer-assisted diagnosis for capsule endoscopy database, the method gives a sensitivity of 96.67% for vascular lesions and 93.33% for inflammatory lesions. The precision for vascular lesions was 92.80%, and that for inflammatory lesions was 95.73%. The accuracy was 96.11%, which is 1.11% higher than that of the latest InceptionNetV4 network. Prediction for an image only requires 14 ms, which balances the accuracy and speed comparatively better. This strategy can be used as an auxiliary diagnostic method for specialists for the rapid reading of clinical capsule endoscopes.
Collapse
Affiliation(s)
- Xudong Guo
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lulu Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Youguo Hao
- Department of Rehabilitation, Shanghai Putuo People's Hospital, Shanghai 200060, China
| | - Linqi Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhang Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiannan Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Recognizing Gastrointestinal Malignancies on WCE and CCE Images by an Ensemble of Deep and Handcrafted Features with Entropy and PCA Based Features Optimization. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10481-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
3D-semantic segmentation and classification of stomach infections using uncertainty aware deep neural networks. COMPLEX INTELL SYST 2021. [DOI: 10.1007/s40747-021-00328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractWireless capsule endoscopy (WCE) might move through human body and captures the small bowel and captures the video and require the analysis of all frames of video due to which the diagnosis of gastrointestinal infections by the physician is a tedious task. This tiresome assignment has fuelled the researcher’s efforts to present an automated technique for gastrointestinal infections detection. The segmentation of stomach infections is a challenging task because the lesion region having low contrast and irregular shape and size. To handle this challenging task, in this research work a new deep semantic segmentation model is suggested for 3D-segmentation of the different types of stomach infections. In the segmentation model, deep labv3 is employed as a backbone of the ResNet-50 model. The model is trained with ground-masks and accurately performs pixel-wise classification in the testing phase. Similarity among the different types of stomach lesions accurate classification is a difficult task, which is addressed in this reported research by extracting deep features from global input images using a pre-trained ResNet-50 model. Furthermore, the latest advances in the estimation of uncertainty and model interpretability in the classification of different types of stomach infections is presented. The classification results estimate uncertainty related to the vital features in input and show how uncertainty and interpretability might be modeled in ResNet-50 for the classification of the different types of stomach infections. The proposed model achieved up to 90% prediction scores to authenticate the method performance.
Collapse
|
15
|
Bora K, Bhuyan MK, Kasugai K, Mallik S, Zhao Z. Computational learning of features for automated colonic polyp classification. Sci Rep 2021; 11:4347. [PMID: 33623086 PMCID: PMC7902635 DOI: 10.1038/s41598-021-83788-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Shape, texture, and color are critical features for assessing the degree of dysplasia in colonic polyps. A comprehensive analysis of these features is presented in this paper. Shape features are extracted using generic Fourier descriptor. The nonsubsampled contourlet transform is used as texture and color feature descriptor, with different combinations of filters. Analysis of variance (ANOVA) is applied to measure statistical significance of the contribution of different descriptors between two colonic polyps: non-neoplastic and neoplastic. Final descriptors selected after ANOVA are optimized using the fuzzy entropy-based feature ranking algorithm. Finally, classification is performed using Least Square Support Vector Machine and Multi-layer Perceptron with five-fold cross-validation to avoid overfitting. Evaluation of our analytical approach using two datasets suggested that the feature descriptors could efficiently designate a colonic polyp, which subsequently can help the early detection of colorectal carcinoma. Based on the comparison with four deep learning models, we demonstrate that the proposed approach out-performs the existing feature-based methods of colonic polyp identification.
Collapse
Affiliation(s)
- Kangkana Bora
- Department of Computer Science and IT, Cotton University, Pan Bazar, Guwahati, Assam, 781001, India
| | - M K Bhuyan
- Department of Electrical and Electronics Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kunio Kasugai
- Department of Gastroenterology, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
16
|
Liaqat A, Khan MA, Sharif M, Mittal M, Saba T, Manic KS, Al Attar FNH. Gastric Tract Infections Detection and Classification from Wireless Capsule Endoscopy using Computer Vision Techniques: A Review. Curr Med Imaging 2021; 16:1229-1242. [PMID: 32334504 DOI: 10.2174/1573405616666200425220513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 11/22/2022]
Abstract
Recent facts and figures published in various studies in the US show that approximately
27,510 new cases of gastric infections are diagnosed. Furthermore, it has also been reported that
the mortality rate is quite high in diagnosed cases. The early detection of these infections can save
precious human lives. As the manual process of these infections is time-consuming and expensive,
therefore automated Computer-Aided Diagnosis (CAD) systems are required which helps the endoscopy
specialists in their clinics. Generally, an automated method of gastric infection detections
using Wireless Capsule Endoscopy (WCE) is comprised of the following steps such as contrast preprocessing,
feature extraction, segmentation of infected regions, and classification into their relevant
categories. These steps consist of various challenges that reduce the detection and recognition
accuracy as well as increase the computation time. In this review, authors have focused on the importance
of WCE in medical imaging, the role of endoscopy for bleeding-related infections, and
the scope of endoscopy. Further, the general steps and highlighting the importance of each step
have been presented. A detailed discussion and future directions have been provided at the end.
Collapse
Affiliation(s)
- Amna Liaqat
- Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan
| | | | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan
| | - Mamta Mittal
- Department of Computer Science & Engineering, G.B. Pant Govt. Engineering College, New Delhi, India
| | - Tanzila Saba
- Department of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - K. Suresh Manic
- Department of Electrical & Computer Engineering, National University of Science & Technology, Muscat, Oman
| | | |
Collapse
|
17
|
Zahoor S, Lali IU, Khan MA, Javed K, Mehmood W. Breast Cancer Detection and Classification using Traditional Computer Vision Techniques: A Comprehensive Review. Curr Med Imaging 2021; 16:1187-1200. [PMID: 32250226 DOI: 10.2174/1573405616666200406110547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Breast Cancer is a common dangerous disease for women. Around the world, many women have died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues, there are several techniques and methods. The image processing, machine learning, and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to save a women's life. To detect the breast masses, microcalcifications, and malignant cells,different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for breast cancer survival, it is essential to improve the methods or techniques to diagnose it at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are also challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.
Collapse
Affiliation(s)
- Saliha Zahoor
- Department of Computer Science, University of Gujrat, Gujrat, Pakistan
| | - Ikram Ullah Lali
- Department of Information Technology, University of Education, Lahore, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University, Museum Road Taxila, Rawalpindi, Pakistan
| | - Kashif Javed
- Department of Robotics, SMME NUST, Islamabad, Pakistan
| | - Waqar Mehmood
- Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan
| |
Collapse
|
18
|
Attique Khan M, Mashood Nasir I, Sharif M, Alhaisoni M, Kadry S, Ahmad Chan Bukhari S, Nam Y. A Blockchain based Framework for Stomach Abnormalities Recognition. COMPUTERS, MATERIALS & CONTINUA 2021; 67:141-158. [DOI: 10.32604/cmc.2021.013217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/19/2020] [Indexed: 08/25/2024]
|
19
|
Attique Khan M, Majid A, Hussain N, Alhaisoni M, Zhang YD, Kadry S, Nam Y. Multiclass Stomach Diseases Classification Using Deep Learning Features Optimization. COMPUTERS, MATERIALS & CONTINUA 2021; 67:3381-3399. [DOI: 10.32604/cmc.2021.014983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 08/25/2024]
|
20
|
Naz J, Attique Khan M, Alhaisoni M, Song OY, Tariq U, Kadry S. Segmentation and Classification of Stomach Abnormalities Using Deep Learning. COMPUTERS, MATERIALS & CONTINUA 2021; 69:607-625. [DOI: 10.32604/cmc.2021.017101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 08/25/2024]
|
21
|
Nayyar Z, Attique Khan M, Alhussein M, Nazir M, Aurangzeb K, Nam Y, Kadry S, Irtaza Haider S. Gastric Tract Disease Recognition Using Optimized Deep Learning Features. COMPUTERS, MATERIALS & CONTINUA 2021; 68:2041-2056. [DOI: 10.32604/cmc.2021.015916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 08/25/2024]
|
22
|
Bhargava A, Bansal A. Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:19931-19946. [PMID: 33686333 PMCID: PMC7928188 DOI: 10.1007/s11042-021-10714-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/23/2020] [Accepted: 02/10/2021] [Indexed: 05/07/2023]
Abstract
The universal transmission of pandemic COVID-19 (Coronavirus) causes an immediate need to commit in the fight across the whole human population. The emergencies for human health care are limited for this abrupt outbreak and abandoned environment. In this situation, inventive automation like computer vision (machine learning, deep learning, artificial intelligence), medical imaging (computed tomography, X-Ray) has developed an encouraging solution against COVID-19. In recent months, different techniques using image processing are done by various researchers. In this paper, a major review on image acquisition, segmentation, diagnosis, avoidance, and management are presented. An analytical comparison of the various proposed algorithm by researchers for coronavirus has been carried out. Also, challenges and motivation for research in the future to deal with coronavirus are indicated. The clinical impact and use of computer vision and deep learning were discussed and we hope that dermatologists may have better understanding of these areas from the study.
Collapse
|
23
|
Sinonquel P, Eelbode T, Bossuyt P, Maes F, Bisschops R. Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal endoscopy. Dig Endosc 2021; 33:242-253. [PMID: 33145847 DOI: 10.1111/den.13888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Artificial intelligence (AI) and its application in medicine has grown large interest. Within gastrointestinal (GI) endoscopy, the field of colonoscopy and polyp detection is the most investigated, however, upper GI follows the lead. Since endoscopy is performed by humans, it is inherently an imperfect procedure. Computer-aided diagnosis may improve its quality by helping prevent missing lesions and supporting optical diagnosis for those detected. An entire evolution in AI systems has been established in the last decades, resulting in optimization of the diagnostic performance with lower variability and matching or even outperformance of expert endoscopists. This shows a great potential for future quality improvement of endoscopy, given the outstanding diagnostic features of AI. With this narrative review, we highlight the potential benefit of AI to improve overall quality in daily endoscopy and describe the most recent developments for characterization and diagnosis as well as the recent conditions for regulatory approval.
Collapse
Affiliation(s)
- Pieter Sinonquel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Departments of, Department of, Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| | - Tom Eelbode
- Medical Imaging Research Center (MIRC), University Hospitals Leuven, Leuven, Belgium.,Department of Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Peter Bossuyt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, Imelda Hospital, Bonheiden, Belgium
| | - Frederik Maes
- Medical Imaging Research Center (MIRC), University Hospitals Leuven, Leuven, Belgium.,Department of Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.,Departments of, Department of, Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Attique Khan M, Hussain N, Majid A, Alhaisoni M, Ahmad Chan Bukhari S, Kadry S, Nam Y, Zhang YD. Classification of Positive COVID-19 CT Scans using Deep Learning. COMPUTERS, MATERIALS & CONTINUA 2021; 66:2923-2938. [DOI: 10.32604/cmc.2021.013191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/17/2020] [Indexed: 08/25/2024]
|
25
|
Khan MA, Qasim M, Lodhi HMJ, Nazir M, Javed K, Rubab S, Din A, Habib U. Automated design for recognition of blood cells diseases from hematopathology using classical features selection and ELM. Microsc Res Tech 2020; 84:202-216. [PMID: 32893918 DOI: 10.1002/jemt.23578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
In the human immune system, the white blood cells (WBC) creates bone and lymphoid masses. These cells defend the human body toward several infections, such as fungi and bacteria. The popular WBC types are Eosinophils, Lymphocytes, Neutrophils, and Monocytes, which are manually diagnosis by the experts. The manual diagnosis process is complicated and time-consuming; therefore, an automated system is required to classify these WBC. In this article, a new method is presented for WBC classification using feature selection and extreme learning machine (ELM). At the very first step, data augmentation is performed to increases the number of images and then implement a new contrast stretching technique name pixel stretch (PS). In the next step, color and gray level size zone matrix (GLSZM) features are calculated from PS images and fused in one vector based on the level of high similarity. However, few redundant features are also included that affect the classification performance. For handling this problem, a maximum relevance probability (MRP) based feature selection technique is implemented. The best-selected features computed from a fitness function are ELM in this work. All maximum relevance features are put to ELM, and this process is continued until the error rate is minimized. In the end, the final selected features are classified through Cubic SVM. For validation of the proposed method, LISC and Dhruv datasets are used, and it achieved the highest accuracy of 96.60%. From the results, it is clearly shown that the proposed method results are improved as compared to other implemented techniques.
Collapse
Affiliation(s)
| | - Muhammad Qasim
- Department of Computer Science, HITEC University, Museum Road, Taxila, Pakistan
| | | | - Muhammad Nazir
- Department of Computer Science, HITEC University, Museum Road, Taxila, Pakistan
| | - Kashif Javed
- Department of Robotics, SMME NUST, Islamabad, Pakistan
| | - Saddaf Rubab
- Military College of Signals, NUST, Islamabad, Pakistan
| | - Ahmad Din
- Department of CS, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Usman Habib
- Department of Computer Science, FAST- National University of Computer & Emerging Sciences (NUCES), Chiniot-Faisalabad Campus, Faisalabad-Chiniot Road, Faisalabad, Punjab, Pakistan
| |
Collapse
|
26
|
Khan MA, Khan MA, Ahmed F, Mittal M, Goyal LM, Jude Hemanth D, Satapathy SC. Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2019.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Sharif MI, Li JP, Naz J, Rashid I. A comprehensive review on multi-organs tumor detection based on machine learning. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2019.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Khan MA, Sharif M, Akram T, Raza M, Saba T, Rehman A. Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2019.105986] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Majid A, Khan MA, Yasmin M, Rehman A, Yousafzai A, Tariq U. Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection. Microsc Res Tech 2020; 83:562-576. [PMID: 31984630 DOI: 10.1002/jemt.23447] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Automated detection and classification of gastric infections (i.e., ulcer, polyp, esophagitis, and bleeding) through wireless capsule endoscopy (WCE) is still a key challenge. Doctors can identify these endoscopic diseases by using the computer-aided diagnostic (CAD) systems. In this article, a new fully automated system is proposed for the recognition of gastric infections through multi-type features extraction, fusion, and robust features selection. Five key steps are performed-database creation, handcrafted and convolutional neural network (CNN) deep features extraction, a fusion of extracted features, selection of best features using a genetic algorithm (GA), and recognition. In the features extraction step, discrete cosine transform, discrete wavelet transform strong color feature, and VGG16-based CNN features are extracted. Later, these features are fused by simple array concatenation and GA is performed through which best features are selected based on K-Nearest Neighbor fitness function. In the last, best selected features are provided to Ensemble classifier for recognition of gastric diseases. A database is prepared using four datasets-Kvasir, CVC-ClinicDB, Private, and ETIS-LaribPolypDB with four types of gastric infections such as ulcer, polyp, esophagitis, and bleeding. Using this database, proposed technique performs better as compared to existing methods and achieves an accuracy of 96.5%.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University Museum Road, Taxila, Rawalpindi, Pakistan
| | - Mussarat Yasmin
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan
| | - Amjad Rehman
- AIDA Lab CCIS, Prince Sultan University Riyadh, Riyadh, Saudi Arabia
| | - Abdullah Yousafzai
- Department of Computer Science, HITEC University Museum Road, Taxila, Rawalpindi, Pakistan
| | - Usman Tariq
- College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
30
|
Khan MA, Sharif M, Akram T, Bukhari SAC, Nayak RS. Developed Newton-Raphson based deep features selection framework for skin lesion recognition. Pattern Recognit Lett 2020; 129:293-303. [DOI: 10.1016/j.patrec.2019.11.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Khan MA, Sarfraz MS, Alhaisoni M, Albesher AA, Wang S, Ashraf I. StomachNet: Optimal Deep Learning Features Fusion for Stomach Abnormalities Classification. IEEE ACCESS 2020; 8:197969-197981. [DOI: 10.1109/access.2020.3034217] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Affiliation(s)
| | - Muhammad Shahzad Sarfraz
- Department of Computer Science, National University of Computer and Emerging Sciences at Chiniot–Faisalabad Campus, Chiniot, Pakistan
| | - Majed Alhaisoni
- College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia
| | - Abdulaziz A. Albesher
- College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Shuihua Wang
- Department of Mathematics, University of Leicester, Leicester, U.K
| | - Imran Ashraf
- Department of Computer Science, HITEC University, Taxila, Pakistan
| |
Collapse
|
32
|
Khan MA, Kadry S, Alhaisoni M, Nam Y, Zhang Y, Rajinikanth V, Sarfraz MS. Computer-Aided Gastrointestinal Diseases Analysis From Wireless Capsule Endoscopy: A Framework of Best Features Selection. IEEE ACCESS 2020; 8:132850-132859. [DOI: 10.1109/access.2020.3010448] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|