1
|
Alzakari SA, Aldrees A, Umer M, Cascone L, Innab N, Ashraf I. Artificial intelligence-driven predictive framework for early detection of still birth. SLAS Technol 2024; 29:100203. [PMID: 39424101 DOI: 10.1016/j.slast.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Predictive modeling is becoming increasingly popular in the context of early disease detection. The use of machine learning approaches for predictive modeling can help early detection of diseases thereby enabling medical experts to appropriate medical treatments. Stillbirth prediction is a similar domain where artificial intelligence-based predictive modeling can alleviate this significant global health challenge. Despite advancements in prenatal care, the prevention of stillbirths remains a complex issue requiring further research and interventions. The cardiotocography (CTG) dataset is used in this research work from the UCI machine learning (ML) repository to investigate the efficiency of the proposed approach regarding stillbirth prediction. This research work adopts the Tabular Prior Data Fitted Network (TabPFN) model which was originally designed to solve small tabular classification. TabPFN is used to predict the still or live birth during pregnancy with 97.91% accuracy. To address this life-saving problem with more accurate results and in-depth analysis of ML models, this research work makes use of 13 renowned ML models for performance comparison with the proposed model. The proposed model is evaluated using precision, recall, F-score, Mathews Correlation Coefficient (MCC), and the area under the curve evaluation parameters and the results are 97.87%, 98.26%, 98.05%, 96.42%, and 98.88%, respectively. The results of the proposed model are further evaluated using k-fold cross-validation and its performance comparison with other state-of-the-art studies indicating the superior performance of TabPFN model.
Collapse
Affiliation(s)
- Sarah A Alzakari
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Asma Aldrees
- Department of Informatics and Computer Systems, College of Computer Science, King Khalid University, Abha, Saudi Arabia.
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Lucia Cascone
- Department of Computer Science, University of Salerno, Fisciano, Italy.
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Imran Ashraf
- Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Li H, Hayward J, Aguilar LS, Franc JM. Desired clinical applications of artificial intelligence in emergency medicine: A Delphi study. Am J Emerg Med 2024; 79:217-220. [PMID: 38458952 DOI: 10.1016/j.ajem.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Affiliation(s)
- Henry Li
- University of Alberta, Faculty of Medicine and Dentistry, Department of Emergency Medicine, 750 University Terrace Building, 8303-112 Street NW, Edmonton T6G 2T4, Canada.
| | - Jake Hayward
- University of Alberta, Faculty of Medicine and Dentistry, Department of Emergency Medicine, 750 University Terrace Building, 8303-112 Street NW, Edmonton T6G 2T4, Canada
| | - Leandro Solis Aguilar
- University of Alberta, Faculty of Medicine and Dentistry, Department of Biochemistry, 474 Medical Sciences Building, Edmonton T6G 2H7, Canada
| | - Jeffrey Michael Franc
- University of Alberta, Faculty of Medicine and Dentistry, Department of Emergency Medicine, 750 University Terrace Building, 8303-112 Street NW, Edmonton T6G 2T4, Canada; Università del Piemonte Orientale, Center for Research and Training in Disaster Medicine, Humanitarian Aid, and Global Health, Via Lanino 1, Novara 28100, Italy
| |
Collapse
|
3
|
Wang W, Chen S, Qiao L, Zhang S, Liu Q, Yang K, Pan Y, Liu J, Liu W. Four Markers Useful for the Distinction of Intrauterine Growth Restriction in Sheep. Animals (Basel) 2023; 13:3305. [PMID: 37958061 PMCID: PMC10648371 DOI: 10.3390/ani13213305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common perinatal complication in animal reproduction, with long-lasting negative effects on neonates and postnatal animals, which seriously negatively affects livestock production. In this study, we aimed to identify potential genes associated with the diagnosis of IUGR through bioinformatics analysis. Based on the 73 differentially expressed related genes obtained by differential analysis and weighted gene co-expression network analysis, we used three machine learning algorithms to identify 4 IUGR-related hub genes (IUGR-HGs), namely, ADAM9, CRYL1, NDP52, and SERPINA7, whose ROC curves showed that they are a good diagnostic target for IUGR. Next, we identified two molecular subtypes of IUGR through consensus clustering analysis and constructed a gene scoring system based on the IUGR-HGs. The results showed that the IUGR score was positively correlated with the risk of IUGR. The AUC value of IUGR scoring accuracy was 0.970. Finally, we constructed a new artificial neural network model based on the four IUGR-HGs to diagnose sheep IUGR, and its accuracy reached 0.956. In conclusion, the IUGR-HGs we identified provide new potential molecular markers and models for the diagnosis of IUGR in sheep; they can better diagnose whether sheep have IUGR. The present findings provide new perspectives on the diagnosis of IUGR.
Collapse
Affiliation(s)
- Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Sijia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Siying Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Qiaoxia Liu
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China;
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
4
|
Du Y, McNestry C, Wei L, Antoniadi AM, McAuliffe FM, Mooney C. Machine learning-based clinical decision support systems for pregnancy care: A systematic review. Int J Med Inform 2023; 173:105040. [PMID: 36907027 DOI: 10.1016/j.ijmedinf.2023.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Clinical decision support systems (CDSSs) can provide various functions and advantages to healthcare delivery. Quality healthcare during pregnancy and childbirth is of vital importance, and machine learning-based CDSSs have shown positive impact on pregnancy care. OBJECTIVE This paper aims to investigate what has been done in CDSSs in the context of pregnancy care using machine learning, and what aspects require attention from future researchers. METHODS We conducted a systematic review of existing literature following a structured process of literature search, paper selection and filtering, and data extraction and synthesis. RESULTS 17 research papers were identified on the topic of CDSS development for different aspects of pregnancy care using various machine learning algorithms. We discovered an overall lack of explainability in the proposed models. We also observed a lack of experimentation, external validation and discussion around culture, ethnicity and race from the source data, with most studies using data from a single centre or country, and an overall lack of awareness of applicability and generalisability of the CDSSs regarding different populations. Finally, we found a gap between machine learning practices and CDSS implementation, and an overall lack of user testing. CONCLUSION Machine learning-based CDSSs are still under-explored in the context of pregnancy care. Despite the open problems that remain, the few studies that tested a CDSS for pregnancy care reported positive effects, reinforcing the potential of such systems to improve clinical practice. We encourage future researchers to take into consideration the aspects we identified in order for their work to translate into clinical use.
Collapse
Affiliation(s)
- Yuhan Du
- UCD School of Computer Science, University College Dublin, Dublin, Ireland
| | - Catherine McNestry
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Lan Wei
- UCD School of Computer Science, University College Dublin, Dublin, Ireland
| | | | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Catherine Mooney
- UCD School of Computer Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Accelerating UN Sustainable Development Goals with AI-Driven Technologies: A Systematic Literature Review of Women's Healthcare. Healthcare (Basel) 2023; 11:healthcare11030401. [PMID: 36766976 PMCID: PMC9914215 DOI: 10.3390/healthcare11030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In this paper, we critically examine if the contributions of artificial intelligence (AI) in healthcare adequately represent the realm of women's healthcare. This would be relevant for achieving and accelerating the gender equality and health sustainability goals (SDGs) defined by the United Nations. Following a systematic literature review (SLR), we examine if AI applications in health and biomedicine adequately represent women's health in the larger scheme of healthcare provision. Our findings are divided into clusters based on thematic markers for women's health that are commensurate with the hypotheses that AI-driven technologies in women's health still remain underrepresented, but that emphasis on its future deployment can increase efficiency in informed health choices and be particularly accessible to women in small or underrepresented communities. Contemporaneously, these findings can assist and influence the shape of governmental policies, accessibility, and the regulatory environment in achieving the SDGs. On a larger scale, in the near future, we will extend the extant literature on applications of AI-driven technologies in health SDGs and set the agenda for future research.
Collapse
|
6
|
Maamoun I, Rushdi MA, Falyouna O, Eljamal R, Eljamal O. Insights into machine-learning modeling for Cr(VI) removal from contaminated water using nano-nickel hydroxide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Accessing Artificial Intelligence for Fetus Health Status Using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data. SENSORS 2022; 22:s22145103. [PMID: 35890783 PMCID: PMC9319518 DOI: 10.3390/s22145103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022]
Abstract
Artificial intelligence is serving as an impetus in digital health, clinical support, and health informatics for an informed patient’s outcome. Previous studies only consider classification accuracies of cardiotocographic (CTG) datasets and disregard computational time, which is a relevant parameter in a clinical environment. This paper proposes a modified deep neural algorithm to classify untapped pathological and suspicious CTG recordings with the desired time complexity. In our newly developed classification algorithm, AlexNet architecture is merged with support vector machines (SVMs) at the fully connected layers to reduce time complexity. We used an open-source UCI (Machine Learning Repository) dataset of cardiotocographic (CTG) recordings. We divided 2126 CTG recordings into 3 classes (Normal, Pathological, and Suspected), including 23 attributes that were dynamically programmed and fed to our algorithm. We employed a deep transfer learning (TL) mechanism to transfer prelearned features to our model. To reduce time complexity, we implemented a strategy wherein layers in the convolutional base were partially trained to leave others in the frozen states. We used an ADAM optimizer for the optimization of hyperparameters. The presented algorithm also outperforms the leading architectures (RCNNs, ResNet, DenseNet, and GoogleNet) with respect to real-time accuracies, sensitivities, and specificities of 99.72%, 96.67%, and 99.6%, respectively, making it a viable candidate for clinical settings after real-time validation.
Collapse
|
8
|
Human-Centered Artificial Intelligence: The Superlative Approach to Achieve Sustainable Development Goals in the Fourth Industrial Revolution. SUSTAINABILITY 2022. [DOI: 10.3390/su14137804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Artificial intelligence (AI) is currently being developed by large corporations, and governments all over the world are yearning for it. AI isn’t a futuristic concept; it is already here, and it is being implemented in a range of industries. Finance, national security, health care, criminal justice, transportation, and smart cities are all examples of this. There are countless examples of AI having a substantial impact on the world and complementing human abilities. However, due to the immense societal ramifications of these technologies, AI is on the verge of disrupting a host of industries, so the technique by which AI systems are created must be better understood. The goal of the study was to look at what it meant to be human-centred, how to create human-centred AI, and what considerations should be made for human-centred AI to achieve sustainability and the SDGs. Using a systematic literature review technique, the study discovered that a human-centred AI strategy strives to create and implement AI systems in ways that benefit mankind and serve their interests. The study also found that a human-in-the-loop concept should be used to develop procedures for creating human-centred AI, as well as other initiatives, such as the promotion of AI accountability, encouraging businesses to use autonomy wisely, to motivate businesses to be aware of human and algorithmic biases, to ensure that businesses prioritize customers, and form multicultural teams to tackle AI research. The study concluded with policy recommendations for human-centred AI to help accomplish the SDGs, including expanding government AI investments, addressing data and algorithm biases, and resolving data access issues, among other things.
Collapse
|
9
|
Adedinsewo DA, Pollak AW, Phillips SD, Smith TL, Svatikova A, Hayes SN, Mulvagh SL, Norris C, Roger VL, Noseworthy PA, Yao X, Carter RE. Cardiovascular Disease Screening in Women: Leveraging Artificial Intelligence and Digital Tools. Circ Res 2022; 130:673-690. [PMID: 35175849 PMCID: PMC8889564 DOI: 10.1161/circresaha.121.319876] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease remains the leading cause of death in women. Given accumulating evidence on sex- and gender-based differences in cardiovascular disease development and outcomes, the need for more effective approaches to screening for risk factors and phenotypes in women is ever urgent. Public health surveillance and health care delivery systems now continuously generate massive amounts of data that could be leveraged to enable both screening of cardiovascular risk and implementation of tailored preventive interventions across a woman's life span. However, health care providers, clinical guidelines committees, and health policy experts are not yet sufficiently equipped to optimize the collection of data on women, use or interpret these data, or develop approaches to targeting interventions. Therefore, we provide a broad overview of the key opportunities for cardiovascular screening in women while highlighting the potential applications of artificial intelligence along with digital technologies and tools.
Collapse
Affiliation(s)
- Demilade A. Adedinsewo
- Department of Cardiovascular Medicine (D.A.A., A.W.P., S.D.P.), Mayo Clinic, Jacksonville, FL
| | - Amy W. Pollak
- Department of Cardiovascular Medicine (D.A.A., A.W.P., S.D.P.), Mayo Clinic, Jacksonville, FL
| | - Sabrina D. Phillips
- Department of Cardiovascular Medicine (D.A.A., A.W.P., S.D.P.), Mayo Clinic, Jacksonville, FL
| | - Taryn L. Smith
- Division of General Internal Medicine (T.L.S.), Mayo Clinic, Jacksonville, FL
| | - Anna Svatikova
- Department of Cardiovascular Diseases (A.S.), Mayo Clinic, Phoenix, AZ
| | - Sharonne N. Hayes
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
| | - Sharon L. Mulvagh
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
- Division of Cardiology, Dalhousie University, Halifax, Nova Scotia, Canada (S.L.M.)
| | - Colleen Norris
- Cardiovascular Health and Stroke Strategic Clinical Network, Edmonton, Canada (C.N.)
| | - Veronique L. Roger
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
- Department of Quantitative Health Sciences (V.L.R.), Mayo Clinic, Rochester, MN
- Epidemiology and Community Health Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (V.L.R.)
| | - Peter A. Noseworthy
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
| | - Xiaoxi Yao
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (X.Y.), Mayo Clinic, Rochester, MN
| | - Rickey E. Carter
- Department of Quantitative Health Sciences (R.E.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
10
|
Bertini A, Salas R, Chabert S, Sobrevia L, Pardo F. Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review. Front Bioeng Biotechnol 2022; 9:780389. [PMID: 35127665 PMCID: PMC8807522 DOI: 10.3389/fbioe.2021.780389] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Artificial intelligence is widely used in medical field, and machine learning has been increasingly used in health care, prediction, and diagnosis and as a method of determining priority. Machine learning methods have been features of several tools in the fields of obstetrics and childcare. This present review aims to summarize the machine learning techniques to predict perinatal complications.Objective: To identify the applicability and performance of machine learning methods used to identify pregnancy complications.Methods: A total of 98 articles were obtained with the keywords “machine learning,” “deep learning,” “artificial intelligence,” and accordingly as they related to perinatal complications (“complications in pregnancy,” “pregnancy complications”) from three scientific databases: PubMed, Scopus, and Web of Science. These were managed on the Mendeley platform and classified using the PRISMA method.Results: A total of 31 articles were selected after elimination according to inclusion and exclusion criteria. The features used to predict perinatal complications were primarily electronic medical records (48%), medical images (29%), and biological markers (19%), while 4% were based on other types of features, such as sensors and fetal heart rate. The main perinatal complications considered in the application of machine learning thus far are pre-eclampsia and prematurity. In the 31 studies, a total of sixteen complications were predicted. The main precision metric used is the AUC. The machine learning methods with the best results were the prediction of prematurity from medical images using the support vector machine technique, with an accuracy of 95.7%, and the prediction of neonatal mortality with the XGBoost technique, with 99.7% accuracy.Conclusion: It is important to continue promoting this area of research and promote solutions with multicenter clinical applicability through machine learning to reduce perinatal complications. This systematic review contributes significantly to the specialized literature on artificial intelligence and women’s health.
Collapse
Affiliation(s)
- Ayleen Bertini
- Metabolic Diseases Research Laboratory (MDRL), Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), Center for Biomedical Research (CIB), Universidad de Valparaíso, Valparaiso, Chile
- PhD Program Doctorado en Ciencias e Ingeniería para La Salud, Faculty of Medicine, Universidad de Valparaíso, Valparaiso, Chile
| | - Rodrigo Salas
- School of Biomedical Engineering, Faculty of Engineering, Universidad de Valparaíso, Valparaiso, Chile
- Centro de Investigación y Desarrollo en INGeniería en Salud – CINGS, Universidad de Valparaíso, Valparaiso, Chile
- Instituto Milenio Intelligent Healthcare Engineering, Valparaíso, Chile
| | - Steren Chabert
- School of Biomedical Engineering, Faculty of Engineering, Universidad de Valparaíso, Valparaiso, Chile
- Centro de Investigación y Desarrollo en INGeniería en Salud – CINGS, Universidad de Valparaíso, Valparaiso, Chile
- Instituto Milenio Intelligent Healthcare Engineering, Valparaíso, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, Australia
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory (MDRL), Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), Center for Biomedical Research (CIB), Universidad de Valparaíso, Valparaiso, Chile
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Medicine, Campus San Felipe, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
- *Correspondence: Fabián Pardo,
| |
Collapse
|
11
|
Lidströmer N, Davids J, Sood HS, Ashrafian H. AIM in Primary Healthcare. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Delanerolle G, Yang X, Shetty S, Raymont V, Shetty A, Phiri P, Hapangama DK, Tempest N, Majumder K, Shi JQ. Artificial intelligence: A rapid case for advancement in the personalization of Gynaecology/Obstetric and Mental Health care. ACTA ACUST UNITED AC 2021; 17:17455065211018111. [PMID: 33990172 PMCID: PMC8127586 DOI: 10.1177/17455065211018111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To evaluate and holistically treat the mental health sequelae and potential psychiatric comorbidities associated with obstetric and gynaecological conditions, it is important to optimize patient care, ensure efficient use of limited resources and improve health-economic models. Artificial intelligence applications could assist in achieving the above. The World Health Organization and global healthcare systems have already recognized the use of artificial intelligence technologies to address 'system gaps' and automate some of the more cumbersome tasks to optimize clinical services and reduce health inequalities. Currently, both mental health and obstetric and gynaecological services independently use artificial intelligence applications. Thus, suitable solutions are shared between mental health and obstetric and gynaecological clinical practices, independent of one another. Although, to address complexities with some patients who may have often interchanging sequelae with mental health and obstetric and gynaecological illnesses, 'holistically' developed artificial intelligence applications could be useful. Therefore, we present a rapid review to understand the currently available artificial intelligence applications and research into multi-morbid conditions, including clinical trial-based validations. Most artificial intelligence applications are intrinsically data-driven tools, and their validation in healthcare can be challenging as they require large-scale clinical trials. Furthermore, most artificial intelligence applications use rate-limiting mock data sets, which restrict their applicability to a clinical population. Some researchers may fail to recognize the randomness in the data generating processes in clinical care from a statistical perspective with a potentially minimal representation of a population, limiting their applicability within a real-world setting. However, novel, innovative trial designs could pave the way to generate better data sets that are generalizable to the entire global population. A collaboration between artificial intelligence and statistical models could be developed and deployed with algorithmic and domain interpretability to achieve this. In addition, acquiring big data sets is vital to ensure these artificial intelligence applications provide the highest accuracy within a real-world setting, especially when used as part of a clinical diagnosis or treatment.
Collapse
Affiliation(s)
| | - Xuzhi Yang
- Southern University of Science and Technology, Shenzhen, China
| | | | | | - Ashish Shetty
- University College London, London, UK.,University College London NHS Foundation Trust, London, UK
| | - Peter Phiri
- Southern Health NHS Foundation Trust, Southampton, UK.,Primary Care, Population Sciences and Medical Education, University of Southampton, Southampton, UK
| | | | | | - Kingshuk Majumder
- University of Manchester Hospitals NHS Foundation Trust, Manchester, UK
| | - Jian Qing Shi
- Southern University of Science and Technology, Shenzhen, China.,The Alan Turing Institute, London, UK
| |
Collapse
|
13
|
Borges do Nascimento IJ, Marcolino MS, Abdulazeem HM, Weerasekara I, Azzopardi-Muscat N, Gonçalves MA, Novillo-Ortiz D. Impact of Big Data Analytics on People's Health: Overview of Systematic Reviews and Recommendations for Future Studies. J Med Internet Res 2021; 23:e27275. [PMID: 33847586 PMCID: PMC8080139 DOI: 10.2196/27275] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although the potential of big data analytics for health care is well recognized, evidence is lacking on its effects on public health. Objective The aim of this study was to assess the impact of the use of big data analytics on people’s health based on the health indicators and core priorities in the World Health Organization (WHO) General Programme of Work 2019/2023 and the European Programme of Work (EPW), approved and adopted by its Member States, in addition to SARS-CoV-2–related studies. Furthermore, we sought to identify the most relevant challenges and opportunities of these tools with respect to people’s health. Methods Six databases (MEDLINE, Embase, Cochrane Database of Systematic Reviews via Cochrane Library, Web of Science, Scopus, and Epistemonikos) were searched from the inception date to September 21, 2020. Systematic reviews assessing the effects of big data analytics on health indicators were included. Two authors independently performed screening, selection, data extraction, and quality assessment using the AMSTAR-2 (A Measurement Tool to Assess Systematic Reviews 2) checklist. Results The literature search initially yielded 185 records, 35 of which met the inclusion criteria, involving more than 5,000,000 patients. Most of the included studies used patient data collected from electronic health records, hospital information systems, private patient databases, and imaging datasets, and involved the use of big data analytics for noncommunicable diseases. “Probability of dying from any of cardiovascular, cancer, diabetes or chronic renal disease” and “suicide mortality rate” were the most commonly assessed health indicators and core priorities within the WHO General Programme of Work 2019/2023 and the EPW 2020/2025. Big data analytics have shown moderate to high accuracy for the diagnosis and prediction of complications of diabetes mellitus as well as for the diagnosis and classification of mental disorders; prediction of suicide attempts and behaviors; and the diagnosis, treatment, and prediction of important clinical outcomes of several chronic diseases. Confidence in the results was rated as “critically low” for 25 reviews, as “low” for 7 reviews, and as “moderate” for 3 reviews. The most frequently identified challenges were establishment of a well-designed and structured data source, and a secure, transparent, and standardized database for patient data. Conclusions Although the overall quality of included studies was limited, big data analytics has shown moderate to high accuracy for the diagnosis of certain diseases, improvement in managing chronic diseases, and support for prompt and real-time analyses of large sets of varied input data to diagnose and predict disease outcomes. Trial Registration International Prospective Register of Systematic Reviews (PROSPERO) CRD42020214048; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=214048
Collapse
Affiliation(s)
- Israel Júnior Borges do Nascimento
- School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Medicine, School of Medicine, Medical College of Wisconsin, Wauwatosa, WI, United States
| | - Milena Soriano Marcolino
- Department of Internal Medicine, University Hospital, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,School of Medicine and Telehealth Center, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ishanka Weerasekara
- School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Callaghan, Australia.,Department of Physiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Natasha Azzopardi-Muscat
- Division of Country Health Policies and Systems, World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | - Marcos André Gonçalves
- Department of Computer Science, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David Novillo-Ortiz
- Division of Country Health Policies and Systems, World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| |
Collapse
|
14
|
Lidströmer N, Davids J, Sood HS, Ashrafian H. AIM in Primary Healthcare. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
A pharmacometrician's role in enhancing medication use in pregnancy and lactation. J Pharmacokinet Pharmacodyn 2020; 47:267-269. [PMID: 32803462 PMCID: PMC7473842 DOI: 10.1007/s10928-020-09707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Moore JH, Barnett I, Boland MR, Chen Y, Demiris G, Gonzalez-Hernandez G, Herman DS, Himes BE, Hubbard RA, Kim D, Morris JS, Mowery DL, Ritchie MD, Shen L, Urbanowicz R, Holmes JH. Ideas for how informaticians can get involved with COVID-19 research. BioData Min 2020; 13:3. [PMID: 32419848 PMCID: PMC7216865 DOI: 10.1186/s13040-020-00213-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on population health and wellbeing. Biomedical informatics is central to COVID-19 research efforts and for the delivery of healthcare for COVID-19 patients. Critical to this effort is the participation of informaticians who typically work on other basic science or clinical problems. The goal of this editorial is to highlight some examples of COVID-19 research areas that could benefit from informatics expertise. Each research idea summarizes the COVID-19 application area, followed by an informatics methodology, approach, or technology that could make a contribution. It is our hope that this piece will motivate and make it easy for some informaticians to adopt COVID-19 research projects.
Collapse
Affiliation(s)
- Jason H. Moore
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Ian Barnett
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Mary Regina Boland
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - George Demiris
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Graciela Gonzalez-Hernandez
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Daniel S. Herman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Rebecca A. Hubbard
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Jeffrey S. Morris
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Danielle L. Mowery
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - Ryan Urbanowicz
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| | - John H. Holmes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6116 USA
| |
Collapse
|