1
|
Gummesson A, Zack F, Buettner A. 2,4-dinitrophenol intoxication and its morphological findings as an indication of substance intake. J Pharm Biomed Anal 2025; 252:116498. [PMID: 39378760 DOI: 10.1016/j.jpba.2024.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Lethal intoxications can only very rarely be recognized during an external examination of corpses, as poisoning does not leave any characteristic findings on the deceased. The present study is a retrospective review on 2,4-dinitrophenol (2,4-DNP) intoxications in human subjects from the beginning of the 20th century until today, as well as a case report on a fatal intoxication of a 50-year old obese man in Rostock (Germany) and an introduction for toxicological analysis in post-mortem specimens of the substance ingested in these rare cases. Via selective literature search, the information on occurrence and localization of abnormal pathomorphological external and/or internal findings in cases of 2,4-DNP ingestion/ intoxication was gathered. By 2021, a total of 13 case reports with information on morphological findings due to 2,4-DNP ingestion/intoxication were found. The external findings were dominated by yellowing of the skin, followed by exanthemas/rashes and yellowing of the sclera. The internal findings included yellowing of the internal organs, yellow color of the stomach contents, yellowing of the mucous membranes and an intense yellow color of the urine. Yellowish discoloration of the skin, sclera, mucous membranes, internal organs, sweat and/or an intensive yellow discoloration of the urine are not observed in every 2,4-DNP intoxication. However, when they do occur, they are a characteristic indication of 2,4-DNP ingestion and, if localized to the skin, indicate prolonged consumption. A fatal case from Rostock in 2016 due to prolonged intake of 2,4-DNP for weight loss is exemplified. A simple, fast and cost-effective workup combined with HPLC-DAD for post-mortem toxicology ultimately delivers reliable analysis results.
Collapse
Affiliation(s)
- Anja Gummesson
- Rostock University Medical Center, Institute of Legal Medicine, Rostock, Germany.
| | - Fred Zack
- Rostock University Medical Center, Institute of Legal Medicine, Rostock, Germany
| | - Andreas Buettner
- Rostock University Medical Center, Institute of Legal Medicine, Rostock, Germany
| |
Collapse
|
2
|
Yang R, Ding Q, Ding J, Zhu L, Pei Q. Physiologically based pharmacokinetic modeling in obesity: applications and challenges. Expert Opin Drug Metab Toxicol 2024:1-12. [PMID: 39101366 DOI: 10.1080/17425255.2024.2388690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Rising global obesity rates pose a threat to people's health. Obesity causes a series of pathophysiologic changes, making the response of patients with obesity to drugs different from that of nonobese, thus affecting the treatment efficacy and even leading to adverse events. Therefore, understanding obesity's effects on pharmacokinetics is essential for the rational use of drugs in patients with obesity. AREAS COVERED Articles related to physiologically based pharmacokinetic (PBPK) modeling in patients with obesity from inception to October 2023 were searched in PubMed, Embase, Web of Science and the Cochrane Library. This review outlines PBPK modeling applications in exploring factors influencing obesity's effects on pharmacokinetics, guiding clinical drug development and evaluating and optimizing clinical use of drugs in patients with obesity. EXPERT OPINION Obesity-induced pathophysiologic alterations impact drug pharmacokinetics and drug-drug interactions (DDIs), altering drug exposure. However, there is a lack of universal body size indices or quantitative pharmacology models to predict the optimal for the patients with obesity. Therefore, dosage regimens for patients with obesity must consider individual physiological and biochemical information, and clinically individualize therapeutic drug monitoring for highly variable drugs to ensure effective drug dosing and avoid adverse effects.
Collapse
Affiliation(s)
- Ruwei Yang
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Qin Ding
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Junjie Ding
- Center for Tropical Medicine and Global Health, Oxford Medical School, Oxford, UK
| | - Liyong Zhu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Pei
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Acevedo A, Jones AE, Danna BT, Turner R, Montales KP, Benincá C, Reue K, Shirihai OS, Stiles L, Wallace M, Wang Y, Bertholet AM, Divakaruni AS. The BCKDK inhibitor BT2 is a chemical uncoupler that lowers mitochondrial ROS production and de novo lipogenesis. J Biol Chem 2024; 300:105702. [PMID: 38301896 PMCID: PMC10910128 DOI: 10.1016/j.jbc.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid) is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and branched-chain α-ketoacid levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here, we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show that BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly sixfold less potent than the prototypical uncoupler 2,4-dinitrophenol and phenocopies 2,4-dinitrophenol in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest that the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Aracely Acevedo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Bezawit T Danna
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Rory Turner
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Katrina P Montales
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Cristiane Benincá
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Orian S Shirihai
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Linsey Stiles
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Yibin Wang
- DukeNUS School of Medicine, Signature Research Program in Cardiovascular and Metabolic Diseases, Singapore, Singapore
| | - Ambre M Bertholet
- Department of Physiology, University of California, Los Angeles, Los Angeles, California, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
4
|
Liang S, Li Z, Bao C, Liu B, Zhang H, Yuan Y, Yan H, Chen S, Zhang H, Shi W, Ren F, Li Y. Non-Cardiotoxic Tetradecanoic Acid-2,4-Dinitrophenol Ester Nanomicelles in Microneedles Exert Potent Anti-Obesity Effect by Regulating Adipocyte Browning and Lipogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301751. [PMID: 37259675 DOI: 10.1002/smll.202301751] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Sustained oral uncoupler 2,4-dinitrophenol (DNP) administration exerts prominent anti-obesity effects, but the adipose tissue off-target disadvantage leads to systemic adverse effects. A novel non-cardiotoxicity DNP delivery method using a biocompatible microneedles patch containing the amphiphilic tetradecanoic acid-DNP ester (TADNP) is described, which is synthesized via esterification on the phenolic hydroxyl of DNP. The TADNP is self-assembled as nanomicelles, which enhance the endocytosis rate of DNP by adipocytes and its permeation in isolated adipose tissues. The microenvironment of adipose tissues promotes the massive release of DNP and plasma and simulated gastrointestinal fluids. The microneedles-delivered TADNP nanomicelles (MN-TADNP) effectively deliver DNP in treated adipose tissues and reduce DNP content in off-target organs. Both oral and MN patch-delivered TADNP micelles effectively exert anti-obesity effects in a mouse model of high-fat diet-induced obesity; and noteworthily, MN-TADNP exhibit more satisfactory biosafety than oral administration. Here, a smart MN patch loaded with tetradecanoic acid-modified DNP is reported, which enhances its accumulation in adipose tissues and exerts an anti-obesity effect without causing any systemic toxicity.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Cheng Bao
- School of Life Science, Ludong University, Yantai, 264000, China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Huijuan Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiling Yan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hui Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
5
|
Acevedo A, Jones AE, Danna BT, Turner R, Montales KP, Benincá C, Reue K, Shirihai OS, Stiles L, Wallace M, Wang Y, Bertholet AM, Divakaruni AS. The BCKDK inhibitor BT2 is a chemical uncoupler that lowers mitochondrial ROS production and de novo lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553413. [PMID: 37645724 PMCID: PMC10461965 DOI: 10.1101/2023.08.15.553413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids (BCKAs) are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and BCKA levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly five-fold less potent than the prototypical uncoupler 2,4-dinitrophenol (DNP), and phenocopies DNP in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Aracely Acevedo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bezawit T Danna
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rory Turner
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Katrina P Montales
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cristiane Benincá
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Yibin Wang
- DukeNUS School of Medicine, Signature Research Program in Cardiovascular and Metabolic Diseases, 8 College Road, Mail Code 169857, Singapore
| | - Ambre M Bertholet
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Lead contact
| |
Collapse
|
6
|
Kang Y, Gao Y, Li X, Guo X, Liu Z, Li W, Wei J, Qi Y. Bupleurum chinense exerts a mild antipyretic effect on LPS-induced pyrexia rats involving inhibition of peripheral TNF-α production. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116375. [PMID: 36934787 DOI: 10.1016/j.jep.2023.116375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleuri Radix, the dried roots of Bupleurum chinense DC. (BC) or Bupleurum scorzonerifolium Willd., is one of the most frequently used traditional Chinese medicines. As the species in Xiao-Chai-Hu decoction, BC has been used as an antipyretic medicine with a long history. However, its antipyretic characteristics and underlying mechanism(s) remain unclear. AIM OF THE STUDY To elucidate the antipyretic characteristics and mechanism(s) of BC used in its traditional way. METHODS The water extract of BC (BCE) was prepared according to the traditional decocting mode. Murine fever and endotoxemia models were induced by intravenous injection of lipopolysaccharide (LPS). In vitro complement activation assay and the levels of TNF-α, IL-6, IL-1β, and C5a were determined by ELISA. RESULTS BCE exerted a confirmed but mild antipyretic effect on LPS-induced fever of rat. In vitro, it significantly lowered LPS-elevated TNF-α in the supernatant of rat complete blood cells and THP-1 cells, but failed to decrease IL-6 and IL-1β. In murine endotoxemia models, BCE markedly decreased serum TNF-α, but had no impact on IL-6 and IL-1β. BCE also restricted complement activation in vitro and in vivo. Nevertheless, the mixture of saikosaponin A and D could not suppress supernatant TNF-α of monocytes and serum TNF-α of endotoxemia mice. CONCLUSIONS The present study dissects the peripheral mechanism for the antipyretic effect of BC used in the traditional way. Our findings indicate that BCE directly suppresses monocyte-produced TNF-α, thus decreasing circulating TNF-α, which may be responsible for its mild but confirmed antipyretic action.
Collapse
Affiliation(s)
- Yuan Kang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhuangzhuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Wenjing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
7
|
Zhang J, Ji K, Ning Y, Sun L, Fan M, Shu C, Zhang Z, Tu T, Cao J, Gao F, Chen Y. Biological Hyperthermia-Inducing Nanoparticles for Specific Remodeling of the Extracellular Matrix Microenvironment Enhance Pro-Apoptotic Therapy in Fibrosis. ACS NANO 2023. [PMID: 37229569 DOI: 10.1021/acsnano.2c12831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The extracellular matrix (ECM) is a major driver of fibrotic diseases and forms a dense fibrous barrier that impedes nanodrug delivery. Because hyperthermia causes destruction of ECM components, we developed a nanoparticle preparation to induce fibrosis-specific biological hyperthermia (designated as GPQ-EL-DNP) to improve pro-apoptotic therapy against fibrotic diseases based on remodeling of the ECM microenvironment. GPQ-EL-DNP is a matrix metalloproteinase (MMP)-9-responsive peptide, (GPQ)-modified hybrid nanoparticle containing fibroblast-derived exosomes and liposomes (GPQ-EL) and is loaded with a mitochondrial uncoupling agent, 2,4-dinitrophenol (DNP). GPQ-EL-DNP can specifically accumulate and release DNP in the fibrotic focus, inducing collagen denaturation through biological hyperthermia. The preparation was able to remodel the ECM microenvironment, decrease stiffness, and suppress fibroblast activation, which further enhanced GPQ-EL-DNP delivery to fibroblasts and sensitized fibroblasts to simvastatin-induced apoptosis. Therefore, simvastatin-loaded GPQ-EL-DNP achieved an improved therapeutic effect on multiple types of murine fibrosis. Importantly, GPQ-EL-DNP did not induce systemic toxicity to the host. Therefore, the nanoparticle GPQ-EL-DNP for fibrosis-specific hyperthermia can be used as a potential strategy to enhance pro-apoptotic therapy in fibrotic diseases.
Collapse
Affiliation(s)
- Jinru Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Keqin Ji
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanmeng Ning
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingna Sun
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingrui Fan
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chunjie Shu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ziqi Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyu Tu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyun Cao
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanzuo Chen
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|