1
|
Pirazzini M, Azarnia Tehran D, Zanetti G, Rossetto O, Montecucco C. Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon 2017; 147:32-37. [PMID: 29111118 DOI: 10.1016/j.toxicon.2017.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
Botulinum (BoNTs) and tetanus (TeNT) neurotoxins are the most toxic substances known and form the growing family of Clostridial neurotoxins (CNT), the etiologic agents of botulism and tetanus. CNT are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol, where its substrates, the three SNARE proteins, are localized. L translocation is accompanied by unfolding and, once delivered on the cytosolic side of the endosome membrane, it has to be reduced and reacquire the native fold to be active. The Thioredoxin-Thioredoxin Reductase system (Trx-TrxR) specifically reduces the interchain disulfide bond while the cytosolic chaperone protein Hsp90 mediates L refolding. Both steps are essential for CNT activity and their inhibition efficiently blocks the neurotoxicity in cultured neurons and mice. Trx and its reductase physically interact with Hsp90 and are loosely bound to the cytosolic side of synaptic vesicles, the organelle exploited by CNT to enter nerve terminals and wherefrom L is translocated into the cytosol. Therefore, Trx, TrxR and Hsp90 orchestrate a chaperone-redox molecular machinery that enables the catalytic activity of the L inside nerve terminals. Given the fundamental role of L reduction and refolding, this machinery represents a rational target for the development of mechanism-based antitoxins.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy.
| | - Domenico Azarnia Tehran
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Giulia Zanetti
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy; Istituto CNR di Neuroscienze, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
2
|
On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:467-74. [PMID: 26307528 DOI: 10.1016/j.bbamem.2015.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
3
|
Galloux M, Vitrac H, Montagner C, Raffestin S, Popoff MR, Chenal A, Forge V, Gillet D. Membrane Interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J Biol Chem 2008; 283:27668-27676. [PMID: 18693250 DOI: 10.1074/jbc.m802557200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation of the catalytic domain through the membrane of the endosome to the cell cytoplasm is a key step of intoxication by botulinum neurotoxin (BoNT). This step is mediated by the translocation (T) domain upon endosome acidification, although the mechanism of interaction of the T domain with the membrane is still poorly understood. Using physicochemical approaches and spectroscopic methods, we studied the interaction of the BoNT/A T domain with the membrane as a function of pH. We found that the interaction with membranes does not involve major secondary or tertiary structural changes, as reported for other toxins like diphtheria toxin. The T domain becomes insoluble around its pI value and then penetrates into the membrane. At that stage, the T domain becomes able to permeabilize lipid vesicles. This occurs for pH values lower than 5.5, in agreement with the pH encountered by the toxin within endosomes. Electrostatic interactions are also important for the process. The role of the so-called belt region was investigated with four variant proteins presenting different lengths of the N-extremity of the T domain. We observed that this part of the T domain, which contains numerous negatively charged residues, limits the protein-membrane interaction. Indeed, interaction with the membrane of the protein deleted of this extremity takes place for higher pH values than for the entire T domain. Overall, the data suggest that acidification eliminates repulsive electrostatic interactions between the T domain and the membrane, allowing its penetration into the membrane without triggering detectable structural changes.
Collapse
Affiliation(s)
- Marie Galloux
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS), Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), F-91191 Gif sur Yvette, France
| | - Heidi Vitrac
- Institut de Recherche en Technologies et Sciences pour le Vivant (IRTSV), Laboratoire de Chimie Biologie des Métaux (LCBM), UMR CEA-CNRS-UJF 5249, F-38054 Grenoble, France
| | - Caroline Montagner
- Institut de Recherche en Technologies et Sciences pour le Vivant (IRTSV), Laboratoire de Chimie Biologie des Métaux (LCBM), UMR CEA-CNRS-UJF 5249, F-38054 Grenoble, France
| | - Stéphanie Raffestin
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS), Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), F-91191 Gif sur Yvette, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France
| | - Alexandre Chenal
- Unité de Biochimie des Interactions Moléculaires, URA CNRS 2185, Département de Biologie Structurale et Chimie, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Vincent Forge
- Institut de Recherche en Technologies et Sciences pour le Vivant (IRTSV), Laboratoire de Chimie Biologie des Métaux (LCBM), UMR CEA-CNRS-UJF 5249, F-38054 Grenoble, France.
| | - Daniel Gillet
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS), Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), F-91191 Gif sur Yvette, France.
| |
Collapse
|