1
|
Wang SC, Du ST, Hashmi S, Cui SM, Li L, Handschuh-Wang S, Zhou X, Stadler FJ. Understanding Gel-Powers: Exploring Rheological Marvels of Acrylamide/Sodium Alginate Double-Network Hydrogels. Molecules 2023; 28:4868. [PMID: 37375423 DOI: 10.3390/molecules28124868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the rheological properties of dual-network hydrogels based on acrylamide and sodium alginate under large deformations. The concentration of calcium ions affects the nonlinear behavior, and all gel samples exhibit strain hardening, shear thickening, and shear densification. The paper focuses on systematic variation of the alginate concentration-which serves as second network building blocks-and the Ca2+-concentration-which shows how strongly they are connected. The precursor solutions show a typical viscoelastic solution behavior depending on alginate content and pH. The gels are highly elastic solids with only relatively small viscoelastic components, i.e., their creep and creep recovery behavior are indicative of the solid state after only a very short time while the linear viscoelastic phase angles are very small. The onset of the nonlinear regime decreases significantly when closing the second network (alginate) upon adding Ca2+, while at the same time the nonlinearity parameters (Q0, I3/I1, S, T, e3/e1, and v3/v1) increase significantly. Further, the tensile properties are significantly improved by closing the alginate network by Ca2+ at intermediate concentrations.
Collapse
Affiliation(s)
- Shi-Chang Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Shu-Tong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Saud Hashmi
- Department of Polymer & Petrochemical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
| | - Shu-Ming Cui
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Ling Li
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
2
|
Patel P, Thareja P. Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Denzer BR, Kulchar RJ, Huang RB, Patterson J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021; 7:158. [PMID: 34698172 PMCID: PMC8544384 DOI: 10.3390/gels7040158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
With the increased research on supramolecular hydrogels, many spectroscopic, diffraction, microscopic, and rheological techniques have been employed to better understand and characterize the material properties of these hydrogels. Specifically, spectroscopic methods are used to characterize the structure of supramolecular hydrogels on the atomic and molecular scales. Diffraction techniques rely on measurements of crystallinity and help in analyzing the structure of supramolecular hydrogels, whereas microscopy allows researchers to inspect these hydrogels at high resolution and acquire a deeper understanding of the morphology and structure of the materials. Furthermore, mechanical characterization is also important for the application of supramolecular hydrogels in different fields. This can be achieved through atomic force microscopy measurements where a probe interacts with the surface of the material. Additionally, rheological characterization can investigate the stiffness as well as the shear-thinning and self-healing properties of the hydrogels. Further, mechanical and surface characterization can be performed by micro-rheology, dynamic light scattering, and tribology methods, among others. In this review, we highlight state-of-the-art techniques for these different characterization methods, focusing on examples where they have been applied to supramolecular hydrogels, and we also provide future directions for research on the various strategies used to analyze this promising type of material.
Collapse
Affiliation(s)
- Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA;
| | - Richard B. Huang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
- Independent Consultant, 3000 Leuven, Belgium
| |
Collapse
|
4
|
T. Somasekharan L, Kasoju N, Raju R, Bhatt A. Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel) 2020; 7:bioengineering7030108. [PMID: 32916945 PMCID: PMC7552778 DOI: 10.3390/bioengineering7030108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Layer-by-layer additive manufacturing process has evolved into three-dimensional (3D) "bio-printing" as a means of constructing cell-laden functional tissue equivalents. The process typically involves the mixing of cells of interest with an appropriate hydrogel, termed as "bioink", followed by printing and tissue maturation. An ideal bioink should have adequate mechanical, rheological, and biological features of the target tissues. However, native extracellular matrix (ECM) is made of an intricate milieu of soluble and non-soluble extracellular factors, and mimicking such a composition is challenging. To this end, here we report the formulation of a multi-component bioink composed of gelatin and alginate -based scaffolding material, as well as a platelet-rich plasma (PRP) suspension, which mimics the insoluble and soluble factors of native ECM respectively. Briefly, sodium alginate was subjected to controlled oxidation to yield alginate dialdehyde (ADA), and was mixed with gelatin and PRP in various volume ratios in the presence of borax. The formulation was systematically characterized for its gelation time, swelling, and water uptake, as well as its morphological, chemical, and rheological properties; furthermore, blood- and cytocompatibility were assessed as per ISO 10993 (International Organization for Standardization). Printability, shape fidelity, and cell-laden printing was evaluated using the RegenHU 3D Discovery bioprinter. The results indicated the successful development of ADA-gelatin-PRP based bioink for 3D bioprinting and biofabrication applications.
Collapse
Affiliation(s)
- Lakshmi T. Somasekharan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India;
| | - Riya Raju
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
- Correspondence: ; Tel.: +91-471-252-0219
| |
Collapse
|
5
|
Yan ZC, Stadler FJ, Guillet P, Mugemana C, Fustin CA, Gohy JF, Bailly C. Linear and Nonlinear Dynamic Behavior of Polymer Micellar Assemblies Connected by Metallo-Supramolecular Interactions. Polymers (Basel) 2019; 11:E1532. [PMID: 31546998 PMCID: PMC6835675 DOI: 10.3390/polym11101532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
The linear and nonlinear rheology of associative colloidal polymer assemblies with metallo-supramolecular interactions is herein studied. Polystyrene-b-poly(tert-butylacrylate) with a terpyridine ligand at the end of the acrylate block is self-assembled into micelles in ethanol, a selective solvent for the latter block, and supramolecularly connected by complexation to divalent metal ions. The dependence of the system elasticity on polymer concentration can be semi-quantitatively understood by a geometrical packing model. For strongly associated (Ni2+, Fe2+) and sufficiently concentrated systems (15 w/v%), any given ligand end-group has a virtually 100% probability of being located in an overlapping hairy region between two micelles. By assuming a 50% probability of intermicellar crosslinks being formed, an excellent prediction of the plateau modulus was achieved and compared with the experimental results. For strongly associated but somewhat more dilute systems (12 w/v%) that still have significant overlap between hairy regions, the experimental modulus was lower than the predicted value, as the effective number of crosslinkers was further reduced along with possible density heterogeneities. The reversible destruction of the network by shear forces can be observed from the strain dependence of the storage and loss moduli. The storage moduli of the Ni2+ and Zn2+ systems at a lower concentration (12 w/v%) showed a rarely observed feature (i.e., a peak at the transition from linear to nonlinear regime). This peak disappeared at a higher concentration (15 w/v%). This behavior can be rationalized based on concentration-dependent network stretchability.
Collapse
Affiliation(s)
- Zhi-Chao Yan
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Florian J Stadler
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.
| | - Pierre Guillet
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.
- Equipe Chimie Bioorganique et Systèmes Amphiphiles, Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM) & Avignon University, 301 rue Baruch de Spinoza, 84916 Avignon CEDEX 9, France.
| | - Clément Mugemana
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.
- Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.
| | - Christian Bailly
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter Division (BSMA), Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Guo X, Pfeifer C, Wilhelm M, Luy B, Guthausen G. Structure of Superabsorbent Polyacrylate Hydrogels and Dynamics of Counterions by Nuclear Magnetic Resonance. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoai Guo
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Christoph Pfeifer
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Gisela Guthausen
- Institute for Mechanical Process Engineering and Mechanics and Engler‐Bunte‐InstitutChair of Water Chemistry and Water TechnologyKarlsruhe Institute of Technology (KIT) Strasse am Forum 8 76131 Karlsruhe Germany
| |
Collapse
|