1
|
Liu Q, Yu D, Duan Z, Qin S, Wang A, Li L, Guo H, Deng B, Li H, Li D. Melt-spun polylactide/ethylene vinyl alcohol copolymer fiber. Int J Biol Macromol 2024; 273:133136. [PMID: 38889826 DOI: 10.1016/j.ijbiomac.2024.133136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Polylactide/ethylene vinyl alcohol copolymer (PLA/EVOH) blends and fibers with different weight ratios were prepared by melt blending, and two-step melt spinning, respectively. PLA and EVOH in PLA/EVOH blends were immiscible. When EVOH content was ≤60 %, EVOH with the average diameter of about 3 μm was dispersed in PLA matrix uniformly. The dual continuous phases could be observed in PLA/EVOH blend with 70 wt% EVOH. When the EVOH content was ≥80 %, the spherical PLA phase with the diameter of 0.25 to 1 μm was dispersed in EVOH matrix. The introduction of EVOH as nucleating agent could promote the crystallization of PLA. Both PLA and EVOH components in PLA/EVOH blends formed individual crystal phases. The viscosity of PLA/EVOH blend with 5 % EVOH was lower than that of neat PLA. The viscosity of PLA/EVOH blends with the EVOH content of ≥10 % was much higher than that of neat PLA, which showed obvious shear thinning behavior. With the increase of EVOH content, the shear thinning behavior became obvious and the critical shear rate decreased gradually. The drawn PLA/EVOH fibers with the tensile strength of ≥16 cN/tex exhibited good mechanical properties. In addition, the introduction of EVOH could improve the hydrophilicity of PLA fibers.
Collapse
Affiliation(s)
- Qingsheng Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Dongzheng Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zeping Duan
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shihua Qin
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Aming Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ling Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Haiyang Guo
- Jiangsu Doway New Materials Science & Technology Co., Ltd., Suqian 223800, People's Republic of China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
2
|
Boruvka M, Base R, Novak J, Brdlik P, Behalek L, Ngaowthong C. Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends. Polymers (Basel) 2024; 16:192. [PMID: 38256991 PMCID: PMC10819591 DOI: 10.3390/polym16020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The inherent brittleness of poly(lactic acid) (PLA) limits its use in a wider range of applications that require plastic deformation at higher stress levels. To overcome this, a series of poly(l-lactic acid) (PLLA)/biodegradable thermoplastic polyester elastomer (TPE) blends and their ternary blends with an ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer as a compatibilizer were prepared via melt blending to improve the poor impact strength and low ductility of PLAs. The thermal behavior, crystallinity, and miscibility of the binary and ternary blends were analyzed by differential scanning calorimetry (DSC). Tensile tests revealed a brittle-ductile transition when the binary PLLA/20TPE blend was compatibilized by 8.6 wt. % EMA-GMA, and the elongation at break increased from 10.9% to 227%. The "super tough" behavior of the PLLA/30TPE/12.9EMA-GMA ternary blend with the incomplete break and notched impact strength of 89.2 kJ∙m-2 was observed at an ambient temperature (23 °C). In addition, unnotched PLLA/40TPE samples showed a tremendous improvement in crack initiation resistance at sub-zero test conditions (-40 °C) with an impact strength of 178.1 kJ∙m-2. Morphological observation by scanning electron microscopy (SEM) indicates that EMA-GMA is preferentially located at the PLLA/TPE interphase, where it is partially incorporated into the matrix and partially encapsulates the TPE. The excellent combination of good interfacial adhesion, debonding cavitation, and subsequent matrix shear yielding worked synergistically with the phase transition from sea-island to co-continuous morphology to form an interesting super-toughening mechanism.
Collapse
Affiliation(s)
- Martin Boruvka
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Roman Base
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Jan Novak
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Pavel Brdlik
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Lubos Behalek
- Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studenstka 2, 461 17 Liberec, Czech Republic; (R.B.); (J.N.); (P.B.); (L.B.)
| | - Chakaphan Ngaowthong
- Department of Agricultural Engineering for Industry, Faculty of Industrial Technology and Management, King Mongkut’s University of Technology North Bangkok Prachinburi Campus, 29 Moo 6, Tumbon Noenhom, Muang 25230, Prachinburi, Thailand;
| |
Collapse
|
3
|
Li D, Chen Y, Sun L, Zhou J, Dong L, Ren J. The Role of Interchain Force and/or Chain Entanglement in the Melt Strength and Ductility of PLA-Based Materials. Chem Asian J 2023; 18:e202300577. [PMID: 37466153 DOI: 10.1002/asia.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
As an eco-friendly material, PLA was a desirable alternative to polyethylene and polypropylene films due to its biodegradability. The preferable melt strength of PLA-based materials was a key factor in ensuring its processing using extrusion blow. This paper focuses on the influence of interchain force and/or chain entanglement on the melt strength and ductility of PLA-based materials in recent years. In addition, the preparation of PLA-based materials via physical blending or reactive processing was also summarized. The blending of PLA with a flexible heteropolymer, driven by the interchain force and/or chain entanglements, were characterized as a practicable method for toughening PLA-based materials. Also, the restructuring of PLA chains, by branching based on chain entanglement, was suitable for increasing chain entanglements in PLA matrix, yielding satisfactory melt strength and ductility. This review aims to elucidate the relationship between interchain forces and/or entanglement with the melt strength and ductility of PLA-based materials. An essential and systematic understanding of the tailoring melt strength and rheological properties of PLA by interchain forces and/or entanglement was apt to improve and perfect the processing technology of the extrusion blow, and consequently improve the tensile strength and toughness of PLA films.
Collapse
Affiliation(s)
- Deling Li
- College of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Ying Chen
- College of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Limei Sun
- College of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Jun Zhou
- College of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Liming Dong
- College of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Jizhen Ren
- College of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
4
|
Hao C, Li Z, Zheng S, Sun S. Polylacitde nanocomposites with better crystallinity, conductivity, stiffness and toughness balance by cooperation of MWCNT and reactive core–shell modifier. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Zhao X, Liu J, Li J, Liang X, Zhou W, Peng S. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. Int J Biol Macromol 2022; 218:115-134. [PMID: 35868408 DOI: 10.1016/j.ijbiomac.2022.07.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Poly(lactic acid) (PLA) has attracted much attention as a substitute for petroleum-based plastics, but its low heat resistance limits its application range in packaging fields and disposable products. This paper summarizes the structural factors affecting the heat resistance of PLA and systematically summarizes methods to improve its heat resistance. PLA is a semi-crystalline polymer, and crystallinity, crystal size, and other factors are important factors affecting heat resistance. This paper systematically analyzes the means to control the crystallization behavior of PLA, and summarizes the effects of nucleating agents, cross-linking, grafting, and annealing processes on the crystallization behavior and heat resistance of PLA. The effects of PLA molecular chain cross-linking and grafting on the motility of PLA molecular chains and the heat resistance of PLA materials are further discussed from the perspective of PLA molecular chain segment movement. The research work on combining PLA with reinforcements such as high heat-resistant polymer materials, fiber, and nanoparticles to improve the mechanical properties and heat resistance of PLA by introducing rigid groups or structures is described in detail. Improving the heat resistance of PLA material is an important strategy to promote the application of biodegradable materials, and has broad research value and application prospects.
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| | - Jinchao Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Juncheng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Xinyu Liang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Weiyi Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| |
Collapse
|
6
|
Recycled Poly(Ethylene Terephthalate) from Waste Textiles with Improved Thermal and Rheological Properties by Chain Extension. Polymers (Basel) 2022; 14:polym14030510. [PMID: 35160503 PMCID: PMC8838686 DOI: 10.3390/polym14030510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Annual production of textile fibers is continuing to rise and the substantial discharge of undegradable waste polyester fibers can cause serious environmental and even health problems. Thus, the recycling and reuse of recycled poly(ethylene terephthalate) from waste textiles (rPET-F) is highly desirable but still challenging. Here, five chain extenders with a different number of epoxy groups per molecules were used to blend with discarded PET fibers and improve its viscosity and quality loss in the recycling process. The molecule weight, thermal properties, rheological properties and macromolecular architecture of modified r-PET were investigated. It was found that all modified rPET-F samples show higher viscosities and better thermal properties. rPET-F modified by difunctional EXOP molecules show linear structure and improved rheological properties. rPET-F modified by polyfunctional commercial ADR and synthesized copolymers exhibit a long chain branched structure and better crystallization. This study reveals a deeper understanding of the chain extension and opens an avenue for the recycling of PET textiles.
Collapse
|
7
|
Novel environmentally sustainable xylitol-based plasticizer: synthesis and application. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Sun X, Luo F, Yan D. The preparation of chain branching PLLA by intermolecular hydrogen bonding with 3-Pentadecylphenol and its crystallization, relaxation behavior and thermal stability. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1729-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|