1
|
Kumar M, Suman S, Pugazhendi S, Dhamodharan K, Venkatesan KA. Orthogonal signal correction assisted multivariate regression approach for the estimation of uranium and acidity in PUREX process streams. Talanta 2024; 280:126673. [PMID: 39121619 DOI: 10.1016/j.talanta.2024.126673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A direct UV-Visible absorbance spectrophotometric method was developed for the simultaneous determination of uranium and nitric acid concentration in the PUREX process samples. The simulated system consisted of uranium and nitric acid in concentration range corresponding to reprocessing of spent nuclear fuel discharged from nuclear reactor was prepared. The absorbance of these samples was measured in the range of 400-470 nm at a scan speed of 100 nm/s and resultant spectra were recorded. The changes in wavelength maxima of U(VI) absorption spectrum at different nitric acid concentration was utilized to determine the concentration of uranium and nitric acid in the sample by orthogonal signal correction assisted principal component regression. After the principle component regression the RMSEP for test data (Uranium: 3-21 g/L and acidity: 2-12 M) were 0.7 g/L and 0.4 M respectively. This method is superior to conventional method being followed for routine analysis of plant control samples in view of minimizing the generation of radioactive analytical waste consisting other corrosive reagents and reducing radiation exposure to operators during analysis. This method is amenable for online monitoring also.
Collapse
Affiliation(s)
- Mukesh Kumar
- Process Radiochemistry Reprocessing Research and Development Division, Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamilnadu, India; Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, 400094, Maharashtra, India
| | - Saurabh Suman
- Process Radiochemistry Reprocessing Research and Development Division, Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamilnadu, India
| | - S Pugazhendi
- Process Radiochemistry Reprocessing Research and Development Division, Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamilnadu, India
| | - K Dhamodharan
- Process Radiochemistry Reprocessing Research and Development Division, Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamilnadu, India
| | - K A Venkatesan
- Process Radiochemistry Reprocessing Research and Development Division, Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamilnadu, India; Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
2
|
Song X, Li J, Xiong Z, Sha H, Wang G, Liu Q, Zeng T. Effects of Detoxifying Substances on Uranium Removal by Bacteria Isolated from Mine Soils: Performance, Mechanisms, and Bacterial Communities. MICROBIAL ECOLOGY 2024; 87:111. [PMID: 39231820 PMCID: PMC11374843 DOI: 10.1007/s00248-024-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
In this study, we investigated the effect of detoxifying substances on U(VI) removal by bacteria isolated from mine soil. The results demonstrated that the highest U(VI) removal efficiency (85.6%) was achieved at pH 6.0 and a temperature of 35 °C, with an initial U(VI) concentration of 10 mg/L. For detoxifying substances, signaling molecules acyl homoserine lactone (AHLs, 0.1 µmol/L), anthraquinone-2, 6-disulfonic acid (AQDS, 1 mmol/L), reduced glutathione (GSH, 0.1 mmol/L), selenium (Se, 1 mg/L), montmorillonite (MT, 1 g/L), and ethylenediaminetetraacetic acid (EDTA, 0.1 mmol/L) substantially enhanced the bacterial U(VI) removal by 34.9%, 37.4%, 54.5%, 35.1%, 32.8%, and 47.8% after 12 h, respectively. This was due to the alleviation of U(VI) toxicity in bacteria through detoxifying substances, as evidenced by lower malondialdehyde (MDA) content and higher superoxide dismutase (SOD) and catalase (CAT) activities for bacteria exposed to U(VI) and detoxifying substances, compared to those exposed to U(VI) alone. FTIR results showed that hydroxyl, carboxyl, phosphorus, and amide groups participated in the U(VI) removal. After exposure to U(VI), the relative abundances of Chryseobacterium and Stenotrophomonas increased by 48.5% and 12.5%, respectively, suggesting their tolerance ability to U(VI). Gene function prediction further demonstrated that the detoxifying substances AHLs alleviate U(VI) toxicity by influencing bacterial metabolism. This study suggests the potential application of detoxifying substances in the U(VI)-containing wastewater treatment through bioremediation.
Collapse
Affiliation(s)
- Xin Song
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Jun Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Zhiyu Xiong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Haichao Sha
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Qin Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Ghosh TK, Maity S, Ghosh S, Gomila RM, Frontera A, Ghosh A. Role of Redox-Inactive Metal Ions in Modulating the Reduction Potential of Uranyl Schiff Base Complexes: Detailed Experimental and Theoretical Studies. Inorg Chem 2022; 61:7130-7142. [PMID: 35467851 DOI: 10.1021/acs.inorgchem.2c00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear uranyl complex, [UO2L] (1), has been synthesized with the ligand N,N'-bis(3-methoxy-2-hydroxybenzylidene)-1,6-diamino-3-azahexane (H2L). The complex showed a reversible U(VI)/U(V) redox couple in cyclic voltammetric measurements. The reduction potential of this couple showed a positive shift upon the addition of redox-inactive alkali- and alkaline-earth Lewis acidic metal ions (Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) to an acetonitrile solution of complex 1. The positive shift of the reduction potential has been explained on the basis of the Lewis acidity and internal electric-field effect of the respective metal ions. The bimetallic complexes [UO2LLi(NO3)] (2), [UO2LNa(BF4)]2 (3), [UO2LK(PF6)]2 (4), [(UO2L)2Ca]·(ClO4)2·CH3CN (5), [(UO2L)2Sr(H2O)2]·(ClO4)2·CH3CN (6), and [(UO2L)2Ba(ClO4)]·(ClO4) (7) have also been isolated in the solid state by reacting complex 1 with the corresponding metal ions and characterized by single-crystal X-ray diffraction. Density functional theory calculations of the optimized [UO2LM]n+ complexes have been used to rationalize the experimental reduction and electric-field potentials imposed by the non-redox-active cations.
Collapse
Affiliation(s)
- Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Soumavo Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
4
|
Jia L, Li Z, Shi W, Shen X. A novel CPE procedure by oil-in-water microemulsion for preconcentrating and analyzing thorium and uranium. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A novel cloud point extraction (CPE) procedure was developed to preenrich Th4+ and UO2
2+ by oil-in-water (O/W) microemulsion. Coupling CPE to ICP-MS, the separation and analysis were achieved at a trace level, in which the low detection limits were 0.019 and 0.042 ng mL−1 for Th(IV) and U(VI), respectively. N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen), as an extremely hydrophobic extractant, was failed to dissolve in single or mixed micelles, but was successfully solubilized to CPE system owing to O/W microemulsion. The extraction efficiency and selectivity for Th4+ and UO2
2+ were excellent under acidic condition of 1.0 mol L−1 HNO3, and the recovery of ultra-trace Th4+ and UO2
2+ was almost 100% even at the presence of large amounts of lanthanides, exhibiting high tolerance limits for lanthanides. The solubilization, extraction and coordination behaviours were studied systematically via DLS, UV–vis, 1H NMR and FT-IR. Moreover, the solubilization of N,N′-dioctyl-N,N′-dioctyl-2,9-diamide-1,10-phenanthroline (Oct-Oct-DAPhen) and efficient extraction for UO2
2+ were also realized by O/W microemulsion, which further proved the feasibility of the method.
Collapse
Affiliation(s)
- Lipei Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , P. R. China
| | - Zejun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xinghai Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , P. R. China
| |
Collapse
|
5
|
Mukhopadhyay C, Dhamodharan K, Sharma PK, Rekha V, Ananthasivan K, Rao RVS. Spectrophotometric analysis of uranium concentration at trace level in PuO2 product. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Partitioning of heat generating fission product (137Cs & 90Sr) from acidic medium by 1,3-dioctyloxy-calix[4]arenecrown-6 (CC6) & Octabenzyloxyoctakis[[[(N,N-diethylamino)carbonyl)]methyl]oxy]calix[8]arene (BOC8A) in nitro octane diluent: Batch scale study & process parameter optimization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Wu X, Yin Q, Huang Q, Mao Y, Hu Q, Wang H. Rational designing an azo colorimetric sensor with high selectivity and sensitivity for uranium environmental monitoring. Anal Chim Acta 2020; 1140:153-167. [DOI: 10.1016/j.aca.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
|
8
|
Bhunia P, Ghosh S, Gomila RM, Frontera A, Ghosh A. Reaction of Cu(II) Chelates with Uranyl Nitrate to Form a Coordination Complex or H-Bonded Adduct: Experimental Observations and Rationalization by Theoretical Calculations. Inorg Chem 2020; 59:15848-15861. [PMID: 33078932 DOI: 10.1021/acs.inorgchem.0c02338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Four new heterometallic Cu(II)-U(VI) species, [{(CuL1)(CH3CN)}UO2(NO3)2] (1), [{(CuL2)(CH3CN)}UO2(NO3)2] (2), [{(CuL3)(H2O)}UO2(NO3)2] (3), and [UO2(NO3)2(H2O)2]·2[CuL4]·H2O (4), were synthesized using four different metalloligands ([CuL1], [CuL2], [CuL3], and [CuL4], respectively) derived from four unsymmetrically dicondensed N,O-donor Schiff bases. Single-crystal structural analyses revealed that complexes 1, 2, and 3 have a discrete dinuclear [Cu-UO2] core in which one metalloligand, [CuL], is connected to the uranyl moiety via a double phenoxido bridge. Two chelating nitrate ions complete the octa-coordination around uranium. Species 4 is a cocrystal, where a uranyl nitrate dihydrate is sandwiched between two metalloligands [CuL4] by the formation of strong hydrogen bonds between the H atoms of the coordinated water molecules to U(VI) and the O atoms of [CuL4]. Spectrophotometric titrations of these four metalloligands with uranyl nitrate dihydrate in acetonitrile showed a well-anchored isosbestic point between 300 and 500 nm in all cases, conforming with the coordination of [CuL1], [CuL2], [CuL3], and the H-bonding interaction of [CuL4] with UO2(NO3)2. This behavior of [CuL4] was utilized to selectively bind metal ions (e.g., Mg2+, Ca2+, Sr2+, Ba2+, and La3+) in the presence of UO2(NO3)2·2H2O in acetonitrile. The formation of these Cu(II)-U(VI) species in solution was also evaluated by steady-state fluorescence quenching experiments. The difference in the coordination behavior of these metalloligands toward [UO2(NO3)2(H2O)2] was studied by density functional theory calculations. The lower flexibility of the ethylenediamine ring and a large negative binding energy obtained from the evaluation of H bonds and supramolecular interactions between [CuL4] and [UO2(NO3)2(H2O)2] corroborate the formation of cocrystal 4. A very good linear correlation (r2 = 0.9949) was observed between the experimental U═O stretching frequencies and the strength of the equatorial bonds that connect the U atom to the metalloligand.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Soumavo Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India.,Rani Rashmoni Green University, Hooghly 712410, West Bengal, India
| |
Collapse
|
9
|
Khan PN, Bhattacharyya A, Sharma JN, Manohar S. The recovery of strontium from acidic medium using novel strontium selective extractant: An experimental and DFT study. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122476. [PMID: 32416382 DOI: 10.1016/j.jhazmat.2020.122476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
In view of the limited solvent system known for the Sr2+ extraction from acidic media, extraction and recovery of 90Sr from acidic medium using novel Octabenzyloxyoctakis[[[(N,N-diethylamino)carbonyl)]methyl]oxy]calix[8]arene (BOC8A) extractant in nitro alkane medium are presented in this paper. BOC8A and nitro alkanes have been synthesized and characterized by 1H NMR, 13C NMR, FTIR and GC-MS techniques. Solvent composition of 0.01 M BOC8A in nitro octane (NO) has been optimized for substantial amount of extraction of strontium from feed acidity of 3.5-4 M nitric acid, (D3.5-4 M HNO3 = 7.1-7.8). Poor extraction of Pu4+, Ba2+, Na+ and UO22+ and negligible extraction of Am3+, Cs+, Ru3+, Nd3+, Zr2+ and trivalent lanthanides are observed. Ion dissociation mechanism was found to be operative involving an extractable complex having Sr2+, BOC8A and HNO3 in a ratio of 1:1:2. About 99 % of Sr2+ from the loaded solvent was recovered with 0.01 M HNO3. DFT calculations were used to predict the structures of free, protonated BOC8A and its complex with Sr2+. DFT result showed reorientation in conformation of BOC8A due to protonation resulting in the Sr2+ extraction from acidic medium with significantly high interaction energy between Sr2+ and diprotonated form of BOC8A.
Collapse
Affiliation(s)
- Pasupati Nath Khan
- Nuclear Recycle Group, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - A Bhattacharyya
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radio Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - J N Sharma
- G&AMD, Materials Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Manohar
- Nuclear Recycle Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
10
|
Kamel S, A. Khattab T. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. BIOSENSORS 2020; 10:E67. [PMID: 32560377 PMCID: PMC7345568 DOI: 10.3390/bios10060067] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cellulose has attracted much interest, particularly in medical applications such as advanced biosensing devices. Cellulose could provide biosensors with enhanced biocompatibility, biodegradability and non-toxicity, which could be useful for biosensors. Thus, they play a significant role in environmental monitoring, medical diagnostic tools, forensic science, and foodstuff processing safety applications. This review summarizes the recent developments in cellulose-based biosensors targeting the molecular design principles toward medical detection purposes. The recognition/detection mechanisms of cellulose-based biosensors demonstrate two major classes of measurable signal generation, including optical and electrochemical cellulosic biosensors. As a result of their simplicity, high sensitivity, and low cost, cellulose-based optical biosensors are particularly of great interest for including label-free and label-driven (fluorescent and colorimetric) biosensors. There have been numerous types of cellulose substrates employed in biosensors, including several cellulose derivatives, nano-cellulose, bacterial cellulose, paper, gauzes, and hydrogels. These kinds of cellulose-based biosensors were discussed according to their preparation procedures and detection principle. Cellulose and its derivatives with their distinctive chemical structure have demonstrated to be versatile materials, affording a high-quality platform for accomplishing the immobilization process of biologically active molecules into biosensors. Cellulose-based biosensors exhibit a variety of desirable characteristics, such as sensitivity, accuracy, convenience, quick response, and low-cost. For instance, cellulose paper-based biosensors are characterized as being low-cost and easy to operate, while nano-cellulose biosensors are characterized as having a good dispersion, high absorbance capacity, and large surface area. Cellulose and its derivatives have been promising materials in biosensors which could be employed to monitor various bio-molecules, such as urea, glucose, cell, amino acid, protein, lactate, hydroquinone, gene, and cholesterol. The future interest will focus on the design and construction of multifunctional, miniaturized, low-cost, environmentally friendly, and integrated biosensors. Thus, the production of cellulose-based biosensors is very important.
Collapse
Affiliation(s)
- Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt;
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
11
|
Sharma J, Khan PN, Dhami P, Jagasia P, Tessy V, Kaushik C. Separation of strontium-90 from a highly saline high level liquid waste solution using 4,4′(5′)-[di-tert-butyldicyclohexano]-18-crown-6 + isodecyl alcohol/n-dodecane solvent. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Multisyringe flow injection analysis for the spectrophotometric determination of uranium (VI) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
|
14
|
Cloud point extractive spectrophotometric method for determination of uranium in raffinate streams during spent nuclear fuel reprocessing. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06704-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Extraction of uranium from carbonate solution using synthesized Schiff base and its application for spectrophotometric determination. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00724-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zeng T, Li L, Mo G, Wang G, Liu H, Xie S. Analysis of uranium removal capacity of anaerobic granular sludge bacterial communities under different initial pH conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5613-5622. [PMID: 30612368 DOI: 10.1007/s11356-018-4017-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The bacterial community of an anaerobic granular sludge associated with uranium depletion was investigated following its exposure to uranium under different initial pH conditions (pH 4.5, 5.5, and 6.5). The highest uranium removal efficiency (98.1%) was obtained for the sample with an initial pH of 6.5, which also supported the highest bacterial community richness and diversity. Venn diagrams visualized the decrease in the number of genera present in both the inoculum and the uranium-exposed biomass as the initial pH decreased from 6.5 to 4.5. Compared with the inoculum, a significant increase in the abundances of the phyla Chloroflexi and Proteobacteria was observed following uranium exposure. At initial pH conditions of 6.5 to 4.5, the proportions of the taxa Anaerolineaceae, Chryseobacterium, Acinetobacter, Pseudomonas, and Sulfurovum increased significantly, likely contributing to the observed uranium removal. Uranium exposure induced a greater level of dynamic diversification of bacterial abundances than did the initial pH difference.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China.
| | - Licheng Li
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guanhai Mo
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Haiyan Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
17
|
Elhefnawy OA. A new optical sensor for spectrophotometric determination of uranium (VI) and thorium (IV) in acidic medium. RADIOCHIM ACTA 2017. [DOI: 10.1515/ract-2017-2772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A spectrophotometric method was developed for U(VI) and Th(IV) determination in acidic medium by using proposed optical sensor. This sensor is base on the complexation reaction of the ionophore midodrine hydrochloride (L) with U(VI)/Th(IV) in plasticized (o-NPOE) high molecular weight (PVC). Several parameters such as effect of acidic medium, response time and sensor compositions were studied. The determination of the complexes stoichiometry was also studied using Job’s method. The complexes stoichiometry were measured at the absorbance spectra 302 nm and the results were found to be 1:1 for both complexes U(VI)-L and Th(IV)-L. The complexation reaction was extremely rapid at room temperature; it takes 5, 10 min to complete the complexation reaction in U(VI) and Th(IV), respectively. Under the optimum conditions the calibration curves of U(VI)/Th(IV) determination, have good linearity at different acidic medium nitric, sulfuric, and phosphoric acids with low detection and quantification limits. The accuracy and precision studies proved that the proposed optical sensor is valid and qualified for U(VI)/Th(IV) spectrophotometric determination in different acidic medium. The selectivity of the proposed optical sensor was studied. The proposed optical sensor was applied successfully for U(VI)/Th(IV) determination in research and development (R&D) nuclear waste samples with satisfactory results. A comparative study of the proposed optical sensor with other previous spectrophotometric sensors for U(VI)/Th(IV) determination, proved the high efficiency of the proposed optical sensor, that it presents wide linear range and low detection limit. The proposed optical sensor could be applied for a quantitative determination of U(VI)/Th(IV) in acidic waste samples.
Collapse
Affiliation(s)
- O. A. Elhefnawy
- Nuclear Safeguards and Physical Protection Department, Nuclear and Radiological Regulatory Authority (NRRA) , P.O. Box 7551 , Cairo , Egypt , Tel.: +2 01007117101, Fax: +2 2274 02 38
| |
Collapse
|
18
|
Hu L, Yan XW, Li Q, Zhang XJ, Shan D. Br-PADAP embedded in cellulose acetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:205-210. [PMID: 28178635 DOI: 10.1016/j.jhazmat.2017.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 05/21/2023]
Abstract
In this work, a new visual colorimetric strip based on cellulose acetate nanofiber mats modified by 2-(5-Bromo-2-pyridylazo)-5-(diethylamino) phenol was successfully prepared via electrospinning technology. The prepared colorimetric strip showed high sensitivity towards UO22+ with the yellow-to-purple color change signal. Upon the optimal conditions of solution pH at 6.0 and response time for 80min, the detection limit for UO22+ can reach 50 ppb. Moreover, the strip also exhibited excellent anti-interference ability in the presence of other metal ions. In order to achieve the quantitative detection for UO22+, a color-differentiation map was established, which was prepared from converted H values. Finally, the strip was also used to detect UO22+ in the seawater and showed high sensitivity.
Collapse
Affiliation(s)
- Lin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Wu Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
19
|
Expeditious method to determine uranium in the process control samples of chemical plant separating 233 U from thoria irradiated in power reactors. Talanta 2016; 160:347-353. [DOI: 10.1016/j.talanta.2016.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 11/21/2022]
|
20
|
Zhu JH, Zhao X, Yang J, Tan YT, Zhang L, Liu SP, Liu ZF, Hu XL. Selective colorimetric and fluorescent quenching determination of uranyl ion via its complexation with curcumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:146-150. [PMID: 26845580 DOI: 10.1016/j.saa.2016.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/10/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Under pH4.0 HAc-NaAc buffer medium, curcumin alone possesses extraordinary weak fluorescence emission. Nevertheless, the introduction of Triton X-100 micelles can largely enhance the fluorescence intensity of curcumin. Uranyl ions can complex with micelles-capped curcumin, along with the slight red shift of curcumin fluorescence (about 1-7 nm), a clear decrement of absorbance (424 nm) and fluorescence (507 nm) intensities, and a distinct color change from bright yellow to orange. The fluorescence decrements (ΔF, 507 nm) are positively correlated to the amount of uranyl ions in the concentration range of 3.7×10(-6)-1.4×10(-5) mol L(-1). The detection limit of this fluorescence quenching methods is 3.7×10(-6) mol L(-1), which is nearly 9000 times lower than the maximum allowable level in drinking water proposed by World Health Organization. Good selectivity is achieved because of a majority of co-existing substances (such as Ce(4+), La(3+), and Th(4+)) do not affect the detection. The content of uranyl ions in tap water samples was determined by the proposed method with satisfactory results.
Collapse
Affiliation(s)
- Jing-Hui Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xin Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jidong Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, PR China; School of Chemistry and Environment Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, PR China
| | - Yu-Ting Tan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shao-Pu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhong-Fang Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao-Li Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
21
|
In-situ causticization, a new process for management of DBP containing alkaline low level radioactive liquid waste. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bağda E, Tuzen M. Ionic liquid dispersive microextraction and spectrophotometric determination of trace uranyl ion in water samples. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4126-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
On-site monitoring of uranium in low level liquid waste streams using U-Br-PADAP strip indicator paper technique. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3664-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Sharma J, Kumar A, Kumar V, Pahan S, Janardanan C, Tessi V, Wattal P. Process development for separation of cesium from acidic nuclear waste solution using 1,3-dioctyloxycalix[4]arene-crown-6 + isodecyl alcohol/ n -dodecane solvent. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Elucidation of Selectivity for Uranyl Ions with an ICT Organosilane-Modified Fluorescent Receptor. J Fluoresc 2014; 24:727-33. [DOI: 10.1007/s10895-013-1345-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/27/2013] [Indexed: 01/28/2023]
|
26
|
Gao S, Sun T, Chen Q, Shen X. Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:562-568. [PMID: 24225581 DOI: 10.1016/j.jhazmat.2013.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/22/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
The cloud point extraction (CPE) of uranyl ions by different kinds of extractants in Triton X-114 (TX-114) micellar solution was investigated upon the addition of ionic liquids (ILs) with various anions, i.e., bromide (Br(-)), tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)) and bis[(trifluoromethyl)sulfonyl]imide (NTf2(-)). A significant increase of the extraction efficiency was found on the addition of NTf2(-) based ILs when using neutral extractant tri-octylphosphine oxide (TOPO), and the extraction efficiency kept high at both nearly neutral and high acidity. However, the CPE with acidic extractants, e.g., bis(2-ethylhexyl) phosphoric acid (HDEHP) and 8-hydroxyquinoline (8-HQ) which are only effective at nearly neutral condition, was not improved by ILs. The results of zeta potential and (19)F NMR measurements indicated that the anion NTf2(-) penetrated into the TX-114 micelles and was enriched in the surfactant-rich phase during the CPE process. Meanwhile, NTf2(-) may act as a counterion in the CPE of UO2(2+) by TOPO. Furthermore, the addition of IL increased the separation factor of UO2(2+) and La(3+), which implied that in the micelle TOPO, NTf2(-) and NO3(-) established a soft template for UO2(2+). Therefore, the combination of CPE and IL provided a supramolecular recognition to concentrate UO2(2+) efficiently and selectively.
Collapse
Affiliation(s)
- Song Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
27
|
Kedari C, Pandit S, Gandhi P. Separation by competitive transport of uranium(VI) and thorium(IV) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as metal carrier. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Development of an extractive spectrophotometric method for uranium using MWCNTs as solid phase and arsenazo(III) as chromophore. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-012-2376-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Development of a colorimetric test for quantification of uranium in drinking water. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-012-2385-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Separation and purification of 90Sr from PUREX HLLW using N,N,N′,N′-tetra(2-ethylhexyl) diglycolamide. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-2302-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Biswas S, Pathak PN, Roy SB. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 91:222-227. [PMID: 22381794 DOI: 10.1016/j.saa.2012.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision.
Collapse
Affiliation(s)
- Sujoy Biswas
- Uranium Extraction Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
32
|
Advanced Measuring (Instrumentation) Methods for Nuclear Installations: A Review. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS 2012. [DOI: 10.1155/2012/672876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation) methods for nuclear installations and the applications of these instruments and methods.
Collapse
|
33
|
Kadi MW, El-Shahawi MS. Selective determination of thorium in water using dual-wavelength β-correction spectrophotometry and the reagent 4-(2-pyridylazo)-resorcinol. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1139-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|