1
|
Maximov P, Dasi E, Kalinina N, Ruban A, Pokidko B, Rudmin M. Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6729. [PMID: 37895713 PMCID: PMC10608737 DOI: 10.3390/ma16206729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
This study reports on the development of nanocomposites utilizing a mineral inhibitor and a micronutrient filler. The objective was to produce a slow release fertilizer, with zinc sulfate as the filler and halloysite nanotubes as the inhibitor. The study seeks to chemically activate the intercalation of zinc into the macro-, meso-, and micropores of the halloysite nanotubes to enhance their performance. As a result, we obtained three nanocomposites in zinc sulfate solution with concentrations of 2%, 20%, and 40%, respectively, which we named Hly-7Å-Zn2, Hly-7Å-Zn20, and Hly-7Å-Zn40. We investigated the encapsulation of zinc sulfate in halloysite nanotubes using X-ray diffraction analysis, transmission electron spectroscopy, infrared spectroscopy (FTIR), and scanning electron microscopy with an energy-dispersive spectrometer. No significant changes were observed in the initial mineral parameters when exposed to a zinc solution with a concentration of 2 mol%. It was proven that zinc was weakly intercalated in the micropore space of the halloysite through the increase in its interlayer distance from 7.2 to 7.4. With an increase in the concentration of the reacted solution, the average diameter of the nanotubes increased from 96 nm to 129 nm, indicating that the macropore space of the nanotubes, also known as the "site", was filled. The activated nanocomposites exhibit a maximum fixed content of adsorbed zinc on the nanotube surface of 1.4 wt%. The TEM images reveal an opaque appearance in the middle section of the nanotubes. S SEM images revealed strong adhesion of halloysite nanotubes to plant tissues. This property guarantees prolonged retention of the fertilizer on the plant surface and its resistance to leaching through irrigation or rainwater. Surface spraying of halloysite nanotubes offers accurate delivery of zinc to plants and prevents soil and groundwater contamination, rendering this fertilizer ecologically sound. The suggested approach of activating halloysite with a zinc solution appears to be a possible route forward, with potential for the production of tailored fertilizers in the days ahead.
Collapse
Affiliation(s)
- Prokopiy Maximov
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Evan Dasi
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Natalia Kalinina
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Alexey Ruban
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Boris Pokidko
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS), 119017 Moscow, Russia
| | - Maxim Rudmin
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia
| |
Collapse
|
2
|
Zhang H, Zhao Y, Hou D, Hao H. Cementitious binders modified with halloysite nanotubes for enhanced lead immobilization. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Kinetics and Mechanism of Aniline and Chloroanilines Degradation Photocatalyzed by Halloysite-TiO2 and Halloysite-Fe2O3 Nanocomposites. Catalysts 2021. [DOI: 10.3390/catal11121548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The kinetics of photocatalytic degradation of aniline, 2-chloroaniline, and 2,6-dichloroaniline in the presence of halloysite-TiO2 and halloysite-Fe2O3 nanocomposites, halloysite containing naturally dispersed TiO2, Fe2O3, commercial TiO2, P25, and α-Fe2O3 photocatalysts, were investigated with two approaches: the Langmuir–Hinshelwood and first-order equations. Adsorption equilibrium constants and adsorption enthalpies, photodegradation rate constants, and activation energies for photocatalytic degradation were calculated for all studied amines photodegradation. The photodegradation mechanism was proposed according to organic intermediates identified by mass spectrometry and electrophoresis methods. Based on experimental results, it can be concluded that after 300 min of irradiation, aniline, 2-chloro-, and 2,6-dichloroaniline were completely degraded in the presence of used photocatalysts. Research results allowed us to conclude that higher adsorption capacity and immobilization of TiO2 and Fe2O3 on the halloysite surface in the case of halloysite-TiO2 and halloysite-Fe2O3 nanocomposites significantly increases photocatalytic activity of these materials in comparison to the commercial photocatalyst: TiO2, Fe2O3, and P25.
Collapse
|
4
|
Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts 2021. [DOI: 10.3390/catal11101160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of ion doping and the incorporation of additives on photocatalysts’ textural properties have been reviewed. Generally, it can be summarised that ion doping and additives have beneficial effects on photocatalytic efficiency and not all have an increase in the surface area. The excessive amount of dopants and additives will produce larger aggregated particles and also cover the mesoporous structures, thereby increasing the pore size (Pd) and pore volume (Pv). An excessive amount of dopants also leads to visible light shielding effects, thus influence photocatalytic performance. Ion doping also shows some increment in the surface areas, but it has been identified that synergistic effects of the surface area, porosity, and dopant amount contribute to the photocatalytic performance. It is therefore important to understand the effect of doping and the application of additives on the textural properties of photocatalysts, thus, their performance. This review will provide an insight into the development of photocatalyst with better performance for wastewater treatment applications.
Collapse
|
5
|
Son BT, Long NV, Nhat Hang NT. Fly ash-, foundry sand-, clay-, and pumice-based metal oxide nanocomposites as green photocatalysts. RSC Adv 2021; 11:30805-30826. [PMID: 35498918 PMCID: PMC9041310 DOI: 10.1039/d1ra05647f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxides possess exceptional physicochemical properties which make them ideal materials for critical photocatalytic applications. However, of major interest, their photocatalytic applications are hampered by several drawbacks, consisting of prompt charge recombination of charge carriers, low surface area, inactive under visible light, and inefficient as well as expensive post-treatment recovery. The immobilization of metal oxide semiconductors on materials possessing high binding strength eliminates the impractical and costly recovery of spent catalysts in large-scale operations. Notably, the synthesis of green material (ash, clay, foundry sand, and pumice)-based metal oxides could provide a synergistic effect of the superior adsorption capacity of supporting materials and the photocatalytic activity of metal oxides. This phenomenon significantly improves the overall degradation efficiency of emerging pollutants. Inspired by the novel concept of "treating waste with waste", this contribution highlights recent advances in the utilization of natural material (clay mineral and pumice)- and waste material (ash and foundry sand)-based metal oxide nanocomposites for photodegradation of various pollutants. First, principles, mechanism, challenges towards using metal oxide as photocatalysts, and immobilization techniques are systematically summarized. Then, sources, classifications, properties, and chemical composition of green materials are briefly described. Recent advances in the utilization of green materials-based metal oxide composites for the photodegradation of various pollutants are highlighted. Finally, in the further development of green materials-derived photocatalysts, we underlined the current gaps that are worthy of deeper research in the future.
Collapse
Affiliation(s)
- Bui Thanh Son
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | - Nguyen Viet Long
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | | |
Collapse
|
6
|
Ajumobi O, Su Y, Farinmade A, Yu L, He J, Valla JA, John VT. Integrating Halloysite Nanostraws in Porous Catalyst Supports to Enhance Molecular Transport. ACS APPLIED NANO MATERIALS 2021; 4:8455-8464. [PMID: 34485846 PMCID: PMC8406414 DOI: 10.1021/acsanm.1c01678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 05/11/2023]
Abstract
In many porous catalyst supports, the accessibility of interior catalytic sites to reactant species could be restricted due to limitations of reactant transport through pores comparable to reactant dimensions. The interplay between reaction and diffusion in porous catalysts is defined through the Thiele modulus and the effectiveness factor, with diffusional restrictions leading to high Thiele moduli, reduced effectivess factors, and a reduction in the observed reaction rate. We demonstrate a method to integrate ceramic nanostraws into the interior of ordered mesoporous silica MCM-41 to mitigate diffusional restrictions. The nanostraws are the natural aluminosilicate tubular clay minerals known as halloysite. Such halloysite nanotubes (HNTs) have a lumen diameter of 15-30 nm, which is significantly larger than the 2-4 nm pores of MCM-41, thus facilitating entry and egress of larger molecules to the interior of the pellet. The method of integrating HNT nanostraws into MCM-41 is through a ship-in-a-bottle approach of synthesizing MCM-41 in the confined volume of an aerosol droplet that contains HNT nanotubes. The concept is applied to a system in which microcrystallites of Ni@ZSM-5 are incorporated into MCM-41. Using the liquid phase reduction of nitrophenol as a model reaction catalyzed by Ni@ZSM-5, we show that the insertion of HNT nanostraws into this composite leads to a 50% increase in the effectiveness factor. The process of integrating nanostraws into MCM-41 through the aerosol-assisted approach is a one-step facile method that complements traditional catalyst preparation techniques. The facile and scalable synthesis technique toward the mitigation of diffusional restrictions has implications to catalysis and separation technologies.
Collapse
Affiliation(s)
- Oluwole Ajumobi
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Yang Su
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Azeem Farinmade
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Lei Yu
- Department
of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jibao He
- Coordinated
Instrumentation Facility, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Julia A. Valla
- Department
of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Vijay T. John
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| |
Collapse
|
7
|
Ahmad N, Anae J, Khan MZ, Sabir S, Yang XJ, Thakur VK, Campo P, Coulon F. Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113362. [PMID: 34346390 DOI: 10.1016/j.jenvman.2021.113362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This review compiles recent advances and challenges on photocatalytic treatment of wastewater using nanoparticles, nanocomposites, and polymer nanocomposites as photocatalyst. The review provides an overview of the fundamental principles of photocatalytic treatment along the recent advances on photocatalytic treatment, especially on the modification strategies and operational conditions to enhance treatment efficiency and removal of recalcitrant organic contaminants. The different types of photocatalysts along the key factors influencing their performance are also critically discussed and recommendations for future research are provided.
Collapse
Affiliation(s)
- Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK; Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK.
| |
Collapse
|
8
|
Evaluation of the use of free or supported phenalenone based on natural halloysite for phenol photodegradation in aqueous solution. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Zare Pirhaji J, Moeinpour F, Mirhoseini Dehabadi A, Yasini Ardakani SA. Experimental study and modelling of effective parameters on removal of Cd(II) from water by halloysite/graphene quantum dots magnetic nanocomposite as an adsorbent using response surface methodology. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jamileh Zare Pirhaji
- Department of Agriculture and Natural resources, Yazd BranchIslamic Azad University Yazd Iran
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas BranchIslamic Azad University Bandar Abbas 7915893144 Iran
| | | | | |
Collapse
|
10
|
Halloysite nanotubes: an eco-friendly adsorbent for the adsorption of Th(IV)/U(VI) ions from aqueous solution. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07142-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zare Pirhaji J, Moeinpour F, Mirhoseini Dehabadi A, Yasini Ardakani SA. Synthesis and characterization of halloysite/graphene quantum dots magnetic nanocomposite as a new adsorbent for Pb(II) removal from water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Halloysite Nanotubes as Adsorptive Material for Phosphate Removal from Aqueous Solution. WATER 2019. [DOI: 10.3390/w11020203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we were aiming at testing halloysite nanotubes as an efficient adsorbent for the removal of phosphate from agricultural runoff. Adsorption of phosphate onto powder and granular form of halloysite nanotubes has been examined by using the classical batch method and diffusion experiments at room temperature. Different forms of halloysite nanotubes were investigated to explore the effect of structure on the adsorption of phosphate. The maximum adsorption efficiency was obtained for powder halloysite nanotubes (79.5%) and granular form (94.7%). It is believed that the pore space of the granular halloysite nanotubes accommodates phosphorus in addition to physico-chemically bound phosphate at surfaces. The pseudo-first order and pseudo-second order model fitted well the experimental kinetic data for both powder and granular form of halloysite nanotubes. The fit of the Freundlich isotherm model was superior as compared with the Langmuir approach, implying that the halloysite nanotubes are heterogeneous because of multiple surface groups and different pore structures. The two forms of halloysite nanotube tested have the abundant potential for removal of phosphate from agriculture runoff. Additional investigations at the pilot scale are, however, required to draw definite conclusions.
Collapse
|
13
|
|
14
|
Fizir M, Dramou P, Dahiru NS, Ruya W, Huang T, He H. Halloysite nanotubes in analytical sciences and in drug delivery: A review. Mikrochim Acta 2018; 185:389. [PMID: 30046919 DOI: 10.1007/s00604-018-2908-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/29/2018] [Indexed: 01/17/2023]
Abstract
Halloysite (HNT) is a natural inorganic mineral that has many applications in manufacturing. This review (with 192 references) covers (a) the chemical properties of halloysites, (b) the effects of alkali and acid etching on the loading capacity and the release behavior of halloysites, (c) the use of halloysite nanotubes in analytical sciences and drug delivery, and (d) recent trends in the preparation of magnetic HNTs. Synthetic methods such as co-precipitation, thermal decomposition, and solvothermal method are discussed, with emphasis on optimal magnetization. In the analytical field, recent advancements are summarized in terms of applications of HNT-nanocomposites for extraction and detection of heavy metal ions, dyes, organic pollutants, and biomolecules. The review also covers methods for synthesizing molecularly imprinted polymer-modified HNTs and magnetic HNTs. With respect to drug delivery, the toxicity, techniques for drug loading and the various classes of drug-halloysite nanocomposites are discussed. This review gives a general insight on the utilization of HNT in analytical determination and drug delivery systems which may be useful for researchers to generate new ideas. Graphical abstract Schematic presentation of the structure of halloysite nanotubes, selected examples of modifications and functionalization, and represetative field of applications.
Collapse
Affiliation(s)
- Meriem Fizir
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Pierre Dramou
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Nasiru Sintali Dahiru
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Wang Ruya
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Tao Huang
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Hua He
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, China.
| |
Collapse
|
15
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Gustav Nyström
- Angewandte Holzforschung; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Departement Gesundheitswissenschaften und Technologie; ETH Zürich; Schmelzbergstrasse 9 CH-8092 Zürich Schweiz
| |
Collapse
|
16
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew Chem Int Ed Engl 2018; 57:7580-7608. [DOI: 10.1002/anie.201709014] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Gustav Nyström
- Applied Wood Materials Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Department of Health Science and Technology; ETH Zurich; Schmelzbergstrasse 9 CH-8092 Zürich Switzerland
| |
Collapse
|
17
|
Simultaneous Determination of Pesticides at Trace Levels in Water Using Functionalized Multiwalled Carbon Nanotubes as Solid-Phase Extractant and Partial Least-Squares (PLS) Method. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-46835-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
|
19
|
Banaś D, Kubala-Kukuś A, Braziewicz J, Majewska U, Pajek M, Wudarczyk-Moćko J, Czech K, Garnuszek M, Słomkiewicz P, Szczepanik B. Study of properties of chemically modified samples of halloysite mineral with X-ray fluorescence and X-ray powder diffraction methods. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2013.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Interaction of U(VI) with Na-attapulgite in the presence and absence of humic acid as a function of pH, ionic strength and temperature. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-2265-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Li J, Wen F, Pan L, Liu Z, Dong Y. Removal of radiocobalt ions from aqueous solutions by natural halloysite nanotubes. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1823-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|