1
|
Bok S, Korampally VR, Stanley JK, Gangopadhyay K, Gangopadhyay S, Steevens JA. Development of High Surface Area Organosilicate Nanoparticulate Thin Films for Use in Sensing Hydrophobic Compounds in Sediment and Water. BIOSENSORS 2024; 14:288. [PMID: 38920592 PMCID: PMC11201756 DOI: 10.3390/bios14060288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
The scope of this study was to apply advances in materials science, specifically the use of organosilicate nanoparticles as a high surface area platform for passive sampling of chemicals or pre-concentration for active sensing in multiple-phase complex environmental media. We have developed a novel nanoporous organosilicate (NPO) film as an extraction phase and proof of concept for application in adsorbing hydrophobic compounds in water and sediment. We characterized the NPO film properties and provided optimization for synthesis and coatings in order to apply the technology in environmental media. NPO films in this study had a very high surface area, up to 1325 m2/g due to the high level of mesoporosity in the film. The potential application of the NPO film as a sorbent phase for sensors or passive samplers was evaluated using a model hydrophobic chemical, polychlorinated biphenyls (PCB), in water and sediment. Sorption of PCB to this porous high surface area nanoparticle platform was highly correlated with the bioavailable fraction of PCB measured using whole sediment chemistry, porewater chemistry determined by solid-phase microextraction fiber methods, and the Lumbriculus variegatus bioaccumulation bioassay. The surface-modified NPO films in this study were found to highly sorb chemicals with a log octanol-water partition coefficient (Kow) greater than four; however, surface modification of these particles would be required for application to other chemicals.
Collapse
Affiliation(s)
- Sangho Bok
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80208, USA;
| | - Venumadhav R. Korampally
- Department of Electrical Engineering, Northern Illinois University, 590 Garden Road, Dekalb, IL 60115, USA
| | - Jacob K. Stanley
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Keshab Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, 349 Engineering Building West, Columbia, MO 65211, USA (S.G.)
| | - Shubhra Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, 349 Engineering Building West, Columbia, MO 65211, USA (S.G.)
| | - Jeffery A. Steevens
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Road, Columbia, MO 65201, USA
| |
Collapse
|
2
|
Davoodbeygi Y, Askari M, Salehi E, Kheirieh S. A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117577. [PMID: 36848812 DOI: 10.1016/j.jenvman.2023.117577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
In the era of rapid and conspicuous progress of water treatment technologies, combined adsorption and membrane filtration systems have gained great attention as a novel and efficient method for contaminant removal from aqueous phase. Further development of these techniques for water/wastewater treatment applications will be promising for the recovery of water resources as well as reducing the water tension throughout the world. This review introduces the state-of-the-art on the capabilities of the combined adsorption-membrane filtration systems for water and wastewater treatment applications. Technical information including employed materials, superiorities, operational limitations, process sustainability and upgradeing strategies for two general configurations i.e. hybrid (pre-adsorption and post-adsorption) and integrated (film adsorbents, low pressure membrane-adsorption coupling and membrane-adsorption bioreactors) systems has been surveyed and presented. Having a systematic look at the fundamentals of hybridization/integration of the two well-established and efficient separation methods as well as spotlighting the current status and prospectives of the combination strategies, this work will be valuable to all the interested researchers working on design and development of cutting-edge wastewater/water treatment techniques. This review also draws a clear roadmap for either decision making and choosing the best alternative for a specific target in water treatment or making a plan for further enhancement and scale-up of an available strategy.
Collapse
Affiliation(s)
- Yegane Davoodbeygi
- Department of Chemical Engineering, University of Hormozgan, Bandar Abbas, Iran; Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar Abbas, Iran
| | - Mahdi Askari
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| | - Sareh Kheirieh
- Department of Chemical Engineering, University of Kashan, Kashan, Iran
| |
Collapse
|
3
|
Patel S, Hedayati Marzbali M, Hakeem IG, Veluswamy G, Rathnayake N, Nahar K, Agnihotri S, Bergmann D, Surapaneni A, Gupta R, Sharma A, Shah K. Production of H 2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 159:146-153. [PMID: 36764239 DOI: 10.1016/j.wasman.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion is a popular unit operation in wastewater treatment to degrade organic contaminants, thereby generating biogas (methane-rich gas stream). Catalytic decomposition of the biogas could be a promising upcycling approach to produce renewable hydrogen and sequester carbon in the form of carbon nanomaterials (CNMs). Biosolids are solid waste generated during the wastewater treatment process, which can be valorised to biochar via pyrolysis. This work demonstrates the use of biosolids-derived biochar compared with ilmenite as catalysts for biogas decomposition to hydrogen and CNMs. Depending on the reaction time, biosolids-derived biochar achieved a CH4 and CO2 conversion of 50-70 % and 70-90 % at 900 °C with a weight hourly space velocity (WHSV) of 1.2 Lg-1h-1. The high conversion rate was attributed to the formation of amorphous carbon on the biochar surface, where the carbon deposits acted as catalysts and substrates for the further decomposition of CH4 and CO2. Morphological characterisation of biochar after biogas decomposition revealed the formation of high-quality carbon nanospheres (200-500 nm) and carbon nanofibres (10-100 nm) on its surface. XRD pattern and Raman spectroscopy also signified the presence of graphitic structures with ID/IG ratio of 1.19, a reduction from 1.33 in the pristine biochar. Finally, the produced CNM-loaded biochar was tested for PFAS adsorption from contaminated wastewater. A removal efficiency of 79 % was observed for CNM-coated biochar which was 10-60 % higher than using biochar and ilmenite alone. This work demonstrated an integrated approach for upcycling waste streams generated in wastewater treatment facilities.
Collapse
Affiliation(s)
- Savankumar Patel
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia
| | - Mojtaba Hedayati Marzbali
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia
| | - Ibrahim Gbolahan Hakeem
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia
| | - Ganesh Veluswamy
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia
| | - Nimesha Rathnayake
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia
| | - Kamrun Nahar
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia
| | - Shivani Agnihotri
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia
| | - David Bergmann
- South East Water Corporation, Frankston, VIC 3199, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia; South East Water Corporation, Frankston, VIC 3199, Australia
| | - Rajender Gupta
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| | - Abhishek Sharma
- ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia; Department of Chemical Engineering, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
4
|
Jiang M, Huang J, Yang G, Wang H, Wang HF, Peng F, Cao Y, Yu H. In-Situ Regeneration of Carbon Monoliths as an Environmental-Benign Adsorbent for Environmental Remediation via a Flow-through Model. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
|
6
|
Gupta A, Sharma V, Sharma K, Kumar V, Choudhary S, Mankotia P, Kumar B, Mishra H, Moulick A, Ekielski A, Mishra PK. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4702. [PMID: 34443225 PMCID: PMC8398132 DOI: 10.3390/ma14164702] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.
Collapse
Affiliation(s)
- Archana Gupta
- Department of Chemistry, MCM DAV College for Women, Sector 36,
Chandigarh 160036, India;
| | - Vishal Sharma
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh 160011, India;
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Srinagar 190006, India;
| | - Sonal Choudhary
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Priyanka Mankotia
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Brajesh Kumar
- Post Graduate Department of Chemistry, TATA College, Jharkhand, Chaibasa 833202, India;
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui 171103, Ecuador
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Amitava Moulick
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
7
|
Zhou S, Zhang J, Yang Z, Zhang X. Highly Selective Adsorption and Desorption of Charged Molecules in Three-Dimensional Networks of Polydopamine-Modified Carbon Nanotube Sponges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4523-4531. [PMID: 33822634 DOI: 10.1021/acs.langmuir.1c00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the selective adsorption and desorption behaviors of charged molecules (calcein, brilliant green, and methylene blue) dissolved in water using polydopamine-modified carbon nanotube (CNT) sponges. Porous CNT sponges (CNTSs) as a scaffold for the selective adsorption and desorption of aqueous molecules were fabricated by using a chemical vapor deposition technique. To improve the hydrophilicity of porous CNTS and to control the adsorption and desorption of aqueous molecules, CNT sidewalls were decorated with a hydrophilic polydopamine layer through noncovalent interactions between CNT sidewalls and polydopamine. After this noncovalent chemical modification, the water contact angle of CNTS was close to 0, and the aqueous solution can rapidly infiltrate the three-dimensional (3D) networks of polydopamine-modified CNTS (Pdop-CNTS). The incorporation of pH-responsive polydopamine in CNTS showed an evident advantage of adsorbing positively charged molecules over a pH range of 10.5-4. In aqueous solutions with pH value of ≤3, Pdop-CNTS selectively adsorbed negatively charged molecules. Aqueous molecules carrying net charges were successfully separated from mixture solutions. Moreover, charged calcein and methylene blue molecules adsorbed on the 3D networks of Pdop-CNTS were selectively desorbed from Pdop-CNTS by tuning the pH value of the desorption solution.
Collapse
Affiliation(s)
- Shenglin Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Jiapeng Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhaohui Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
8
|
Rauwel P, Rauwel E. Towards the Extraction of Radioactive Cesium-137 from Water via Graphene/CNT and Nanostructured Prussian Blue Hybrid Nanocomposites: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E682. [PMID: 31052518 PMCID: PMC6566935 DOI: 10.3390/nano9050682] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
Cesium is a radioactive fission product generated in nuclear power plants and is disposed of as liquid waste. The recent catastrophe at the Fukushima Daiichi nuclear plant in Japan has increased the 137Cs and 134Cs concentrations in air, soil and water to lethal levels. 137Cs has a half-life of 30.4 years, while the half-life of 134Cs is around two years, therefore the formers' detrimental effects linger for a longer period. In addition, cesium is easily transported through water bodies making water contamination an urgent issue to address. Presently, efficient water remediation methods towards the extraction of 137Cs are being studied. Prussian blue (PB) and its analogs have shown very high efficiencies in the capture of 137Cs+ ions. In addition, combining them with magnetic nanoparticles such as Fe3O4 allows their recovery via magnetic extraction once exhausted. Graphene and carbon nanotubes (CNT) are the new generation carbon allotropes that possess high specific surface areas. Moreover, the possibility to functionalize them with organic or inorganic materials opens new avenues in water treatment. The combination of PB-CNT/Graphene has shown enhanced 137Cs+ extraction and their possible applications as membranes can be envisaged. This review will survey these nanocomposites, their efficiency in 137Cs+ extraction, their possible toxicity, and prospects in large-scale water remediation and succinctly survey other new developments in 137Cs+ extraction.
Collapse
Affiliation(s)
- Protima Rauwel
- Institute of Technology, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51014 Tartu, Estonia.
| | - Erwan Rauwel
- Institute of Technology, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51014 Tartu, Estonia.
| |
Collapse
|
9
|
Hosseinzadeh H, Pashaei S, Hosseinzadeh S, Khodaparast Z, Ramin S, Saadat Y. Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:303-314. [PMID: 29860005 DOI: 10.1016/j.scitotenv.2018.05.326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
In the present work, polymer-coated multiwalled carbon nanotube (MWCNT) was prepared via RAFT method. First, a novel trithiocarbonate-based RAFT agent was prepared attached chemically into the surface of MWCNT. In addition, the RAFT co-polymerization of acrylic acid and acrylamide monomers was conducted through the prepared RAFT agent. In the next age, the surface morphology and chemical properties of the prepared components were fully examined by using FTIR, 1HNMR, SEM, TEM, XRD and TGA/DTG techniques. Finally, the modified MWCNT composite was employed as an excellent adsorbent for the adsorption of copper (II) ions. The results indicated that ion adsorption basically relies on adsorbing time, solution pH, initial copper concentration, and adsorbent dosage. Further, the adsorption kinetics and isotherm analysis demonstrated that the adsorption mode was fitted with the pseudo-second-order and Langmuir isotherm models, respectively. Based on the results of thermodynamic study, the ion adsorption process was endothermic and spontaneous. Finally, based on the experimental results, the surface functionalized MWCNT with hydrophilic groups could be successfully used as a promising selective adsorbent material in wastewater treatment.
Collapse
Affiliation(s)
| | - Shahryar Pashaei
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | | | - Zahra Khodaparast
- Chemical Engineering Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Sonia Ramin
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Younes Saadat
- Polymer Engineering Department, Mahshahr Branch, Islamic Azad University, College of Polymer Engineering, Mahshahr, Iran
| |
Collapse
|
10
|
Vilardi G, Mpouras T, Dermatas D, Verdone N, Polydera A, Di Palma L. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. CHEMOSPHERE 2018; 201:716-729. [PMID: 29547860 DOI: 10.1016/j.chemosphere.2018.03.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/27/2018] [Accepted: 03/05/2018] [Indexed: 05/24/2023]
Abstract
Carbon Nanotubes (CNTs) and nano Zero-Valent Iron (nZVI) particles, as well as two nanocomposites based on these novel nanomaterials, were employed as nano-adsorbents for the removal of hexavalent chromium, selenium and cobalt, from aqueous solutions. Nanomaterials characterization included the determination of their point of zero charge and particle size distribution. CNTs were further analyzed using scanning electron microscopy, thermogravimetric analysis and Raman spectroscopy to determine their morphology and structural properties. Batch experiments were carried out to investigate the removal efficiency and the possible competitive interactions among metal ions. Adsorption was found to be the main removal mechanism, except for Cr(VI) treatment by nZVI, where reduction was the predominant mechanism. The removal efficiency was estimated in decreasing order as CNTs-nZVI > nZVI > CNTs > CNTs-nZVI* independently upon the tested heavy metal. In the case of competitive adsorption, Cr(VI) exhibited the highest affinity for every adsorbent. The preferable Cr(VI) removal was also observed using binary systems of the tested metals by means of the CNTs-nZVI nanocomposite. Single species adsorption was better described by the non-linear Sips model, whilst competitive adsorption followed the modified Langmuir model. The CNTs-nZVI nanocomposite was tested for its reusability, and showed high adsorption efficiency (the qmax values decreased less than 50% with respect to the first use) even after three cycles of use.
Collapse
Affiliation(s)
- Giorgio Vilardi
- Department of Chemical Materials Environmental Engineering, 'La Sapienza' University of Rome, Rome, Italy.
| | - Thanasis Mpouras
- School of Civil Engineering, Department of Water Resources and Environmental Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Zografou, Athens, Greece
| | - Dimitris Dermatas
- School of Civil Engineering, Department of Water Resources and Environmental Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Zografou, Athens, Greece
| | - Nicola Verdone
- Department of Chemical Materials Environmental Engineering, 'La Sapienza' University of Rome, Rome, Italy
| | - Angeliki Polydera
- School of Civil Engineering, Department of Water Resources and Environmental Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Zografou, Athens, Greece
| | - Luca Di Palma
- Department of Chemical Materials Environmental Engineering, 'La Sapienza' University of Rome, Rome, Italy
| |
Collapse
|
11
|
Preparation, characterization and evaluation of a hybrid material based on multiwall carbon nanotubes and titanium dioxide for the removal of thorium from aqueous solution. PROGRESS IN NUCLEAR ENERGY 2017. [DOI: 10.1016/j.pnucene.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Characterization of bare and modified nano-zirconium oxide (ZrO2) and their applications as adsorbents for the removal of bivalent heavy metals. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0259-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Tartaric acid modified graphene oxide as a novel adsorbent for high-efficiently removal of Cu(II) and Pb(II) from aqueous solutions. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.06.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Ali Tahir A, Ullah H, Sudhagar P, Asri Mat Teridi M, Devadoss A, Sundaram S. The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices. CHEM REC 2016; 16:1591-634. [PMID: 27230414 DOI: 10.1002/tcr.201500279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/07/2022]
Abstract
Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience.
Collapse
Affiliation(s)
- Asif Ali Tahir
- Environment and Sustainability Institute (ESI) University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Habib Ullah
- Environment and Sustainability Institute (ESI) University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - Pitchaimuthu Sudhagar
- School of Chemistry and Chemical Engineering Queen's University Belfast David Keir Building, Belfast, BT9 5AG, UK.
| | - Mohd Asri Mat Teridi
- Solar Energy Research Institute National University of Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Anitha Devadoss
- College of Engineering Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute (ESI) University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
15
|
Chen JJ, Liu BF. Kinetic Study on the Heavy Metal Ions Removal from Aqueous Solutions Using Multi-Walled Carbon Nanotubes. ACTA ACUST UNITED AC 2016. [DOI: 10.18052/www.scipress.com/ilcpa.65.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kinetic study on the removal of zinc(II), copper(II), lead(II) and cadmium(II) from the aqueous solutions using multi-walled carbon nanotubes (MWNTs) was carried out to examine the temperature effect on the adsorption of zinc(II), copper(II), lead(II) and cadmium(II) as well as to explore the potentiality of using carbon nanotubes as a promising adsorbent for environmental remediation. Multi-walled carbon nanotubes were characterized by BET (Brunauer-Emmett-Teller), FE-SEM (Field emission scanning electron microscopy), and DPASV (differential pulse anodic stripping voltammetry). Adsorption experiments were carried out and comparisons with the previous work were made. Experimental results showed that the multi-walled carbon nanotubes can successfully remove zinc(II), copper(II), lead(II) and cadmium(II) from aqueous solutions. Increasing solution temperature can significantly improve the removal efficiency because of the endothermic nature of adsorption process. The kinetics of zinc(II), copper(II), lead(II) and cadmium(II) adsorption on multi-walled carbon nanotubes were analyzed, and the calculation results showed that the heavy metal ions adsorption is a pseudo-second-order process, and its capacity increases with increasing solution temperature. The binding of the metal ions by the multi-walled carbon nanotubes was evaluated from the adsorption capacities and found in the following order: copper(II) > lead(II) > zinc(II) > cadmium(II). Finally, multi-walled carbon nanotubes demonstrated that they are a promising adsorbent for the removal of heavy metal ions from aqueous solutions.
Collapse
|
16
|
Yu JG, Yue BY, Wu XW, Liu Q, Jiao FP, Jiang XY, Chen XQ. Removal of mercury by adsorption: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5056-5076. [PMID: 26620868 DOI: 10.1007/s11356-015-5880-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.
Collapse
Affiliation(s)
- Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Bao-Yu Yue
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xiong-Wei Wu
- College of Science, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fei-Peng Jiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- Collaborative Innovation Center of Resource-Conserving and Environment-Friendly Society and Ecological Civilization, Changsha, Hunan, 410083, China
| |
Collapse
|
17
|
Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.11.039] [Citation(s) in RCA: 781] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant. SUSTAINABILITY 2015. [DOI: 10.3390/su71014026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Wu ZL, Liu Q, Chen XQ, Yu JG. Preconcentration and analysis of Rhodamine B in water and red wine samples by using magnesium hydroxide/carbon nanotube composites as a solid-phase extractant. J Sep Sci 2015; 38:3404-11. [DOI: 10.1002/jssc.201500246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/13/2015] [Accepted: 07/08/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi-Liang Wu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
| | - Qi Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
- Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization; Changsha Hunan China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan China
| |
Collapse
|
20
|
Zhao XH, Jiao FP, Yu JG, Xi Y, Jiang XY, Chen XQ. Removal of Cu(II) from aqueous solutions by tartaric acid modified multi-walled carbon nanotubes. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Habuda-Stanić M, Nujić M. Arsenic removal by nanoparticles: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8094-123. [PMID: 25791264 DOI: 10.1007/s11356-015-4307-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/02/2015] [Indexed: 05/21/2023]
Abstract
Contamination of natural waters with arsenic, which is both toxic and carcinogenic, is widespread. Among various technologies that have been employed for arsenic removal from water, such as coagulation, filtration, membrane separation, ion exchange, etc., adsorption offers many advantages including simple and stable operation, easy handling of waste, absence of added reagents, compact facilities, and generally lower operation cost, but the need for technological innovation for water purification is gaining attention worldwide. Nanotechnology is considered to play a crucial role in providing clean and affordable water to meet human demands. This review presents an overview of nanoparticles and nanobased adsorbents and its efficiencies in arsenic removal from water. The paper highlights the application of nanomaterials and their properties, mechanisms, and advantages over conventional adsorbents for arsenic removal from contaminated water.
Collapse
Affiliation(s)
- Mirna Habuda-Stanić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Mirna Habuda-Stanić, Franje Kuhača 20, 31000, Osijek, Croatia,
| | | |
Collapse
|
22
|
Carbon nanoparticles pillared multi-walled carbon nanotubes for adsorption of 1-naphthol: Thermodynamics, kinetics and isotherms. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Yu JG, Yu LY, Yang H, Liu Q, Chen XH, Jiang XY, Chen XQ, Jiao FP. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:70-9. [PMID: 25244035 DOI: 10.1016/j.scitotenv.2014.08.077] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 05/22/2023]
Abstract
Due to their high adsorption capacities, carbon-based nanomaterials such as carbon nanotubes, activated carbons, fullerene and graphene are widely used as the currently most promising functional materials. Since its discovery in 2004, graphene has exhibited great potential in many technological fields, such as energy storage materials, supercapacitors, resonators, quantum dots, solar cells, electronics, and sensors. The large theoretical specific surface area of graphene nanosheets (2630 m(2)·g(-1)) makes them excellent candidates for adsorption technologies. Further, graphene nanosheets could be used as substrates for decorating the surfaces of nanoparticles, and the corresponding nanocomposites could be applied as novel adsorbents for the removal of low concentrated contaminants from aqueous solutions. Therefore, graphene nanosheets will challenge the current existing adsorbents, including other types of carbon-based nanomaterials.
Collapse
Affiliation(s)
- Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Lin-Yan Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiao-Hong Chen
- Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Fei-Peng Jiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
24
|
Das R, Abd Hamid SB, Ali ME, Ismail AF, Annuar M, Ramakrishna S. Multifunctional carbon nanotubes in water treatment: The present, past and future. DESALINATION 2014; 354:160-179. [DOI: 10.1016/j.desal.2014.09.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Singha Deb A, Ali S, Shenoy K, Ghosh S. Adsorption of Eu3+and Am3+ion towards hard donor-based diglycolamic acid-functionalised carbon nanotubes: density functional theory guided experimental verification. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.977891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|