1
|
Ji DB, Hao SX, Fan XQ, Liang RL, Qiao ZQ, Bai ZH, Ji DQ, Gao QH, Wu HJ. A strategy for the preparation of super-hydrophilic molybdenum disulfide composites applied to remove uranium from wastewater. Dalton Trans 2024; 53:5020-5033. [PMID: 38294042 DOI: 10.1039/d3dt03553k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Due to the radioactivity of uranium, the discharged nuclear wastewater not only causes certain damage to the ecology, but also causes certain harm to human life and health. Adsorption is considered to be one of the most effective ways to remove uranium. In this paper, a kind of MoS2 adsorbent was prepared by the solid phase synthesis method and functionalized with NiCo-LDH. The raw materials of MoS2 are cheap and easy to obtain, and the preparation conditions are simple, and large quantities can be obtained without limitations. MoS2 functionalized with NiCo-LDH provides more adsorption sites for the adsorbent and at the same time improves the hydrophilicity of the adsorbent, so that the active sites can fully combine with uranyl ions. The maximum adsorption capacity of the Langmuir isothermal adsorption model is 492.83 mg g-1. The selective adsorption capacity of uranium can reach 76.12% in the multi-ion coexistence system. By analyzing the adsorption mechanism with FT-IR and XRD, it is believed that on the one hand, UO22+ forms a covalent bond with Mo in MoS2 and coordinates with S on the surface of MoS2. On the other hand, UO22+ enters the NiCo-LDH layer for ion exchange with NO3- and coordinates with -OH on the surface of NiCo-LDH. The successful preparation of the MoS2/NiCo-LDH composite provides a certain application prospect for the uranium adsorption field.
Collapse
Affiliation(s)
- De-Bin Ji
- National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, Heilongjiang 163318, P. R. China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Shao-Xian Hao
- National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, Heilongjiang 163318, P. R. China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Xue-Qi Fan
- National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, Heilongjiang 163318, P. R. China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Rui-Long Liang
- National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, Heilongjiang 163318, P. R. China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Zhi-Qiang Qiao
- National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, Heilongjiang 163318, P. R. China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Zi-Heng Bai
- State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - De-Qiang Ji
- National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, Heilongjiang 163318, P. R. China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Qing-He Gao
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing Normal University, Daqing 163712, P. R. China.
| | - Hong-Jun Wu
- National Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, Heilongjiang 163318, P. R. China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| |
Collapse
|
2
|
Zhang Y, Jiang Y, Bai S, Dong Z, Cao X, Wei Q, Wang Y, Zhang Z, Liu Y. Ultra-fast uranium capture via the synergistic interaction of the intrinsic sulfur atoms and the phosphoric acid groups adhered to edge sulfur of MoS 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131745. [PMID: 37295327 DOI: 10.1016/j.jhazmat.2023.131745] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
In order to deal with the sudden nuclear leakage event to suppress the spread of radioactive contaminants in a short period of time, it is extremely urgent needed to explore an adsorbent that could be capable of in-situ remedial actions to rapidly capture the leaked radionuclides in split second. An adsorbent was developed that MoS2 via ultrasonic to expose more surface defects afterwards functionalized by phosphoric acid resulting in more active sites being endowed on the edge S atoms of Mo-vacancy defects, while simultaneously increased the hydrophilicity and interlayer spacing. Hence, an overwhelming fast adsorption rates (adsorption equilibrium within 30 s) are presented and place the MoS2-PO4 at the top of performing sorbent materials. Moreover, the maximum capacity calculated from Langmuir model is as high as 354.61 mg·g-1, the selective adsorption capacity (SU) achieving 71.2% in the multi-ion system and with more than 91% capacity retention after 5 cycles of recycling. Finally, XPS and DFT insight into the adsorption mechanism, which can be explained as interaction of UO22+ on the surface of MoS2-PO4 by forming U-O and U-S bonds. The successful fabrication of such a material may provide a promising solution for emergency treatment of radioactive wastewater during nuclear leakage events.
Collapse
Affiliation(s)
- Yinshan Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yuanping Jiang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Shuxuan Bai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Qianglin Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yingcai Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| |
Collapse
|
3
|
Pan Y, Zhang C, Sheng G, Li M, Linghu W, Huang R. Highly efficient scavenging of uranium(VI) by molybdenum disulfide loaded ferrous sulfide composites: Kinetics, thermodynamics and mechanism aspects. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
4
|
Tang J, Tang J, Lei H, Chen Y, Zhao J, Wang X, Pan N. Iron phosphonate for highly efficient capture of U(VI) from acidic solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151005. [PMID: 34662619 DOI: 10.1016/j.scitotenv.2021.151005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel, high surface area iron phosphonate (IP) for highly efficient adsorption of uranyl ion in acidic medium was described. The as-prepared IP was amorphous with its specific surface area and total pore volume as high as 268 m2/g and 1.04 cm3/g, respectively. Particularly, the as-prepared IP with ferrous ions and oxygen, nitrogen-bearing functional groups prove excellent U(VI) adsorption capacity (154.6 mg/g) as compared to that of amorphous FePO4 (67.3 mg/g) and Fe3(PO4)2(H2O)8 (33.8 mg/g). Surprising, the saturation adsorption capacity could achieve up to 353.9 mg/g. Besides, the IP also had a fast adsorption rate for attaining adsorption equilibrium within 20 min, and followed pseudo-second-order kinetic and Freundlich models. Moreover, both the Dubinin-Radushkevich isotherm adsorption model and the value of enthalpy indicated a chemisorption process. Otherwise, the Na+-independent U(VI) adsorption on IP and the adsorption-desorption isotherm studies revealed that inner-layer surface complexation is the control step for U(VI) adsorption process, and the adsorbent featured an irreversible adsorption process. The structure and functional groups of the adsorbent remained unchanged after capture of U(VI). Further, X-ray photoelectron spectra (XPS) analysis demonstrated that the capture mechanism of U(VI) on IP from acidic aqueous solution was due to not only redox reaction, but also ascribed to the coordinated chemical adsorption.
Collapse
Affiliation(s)
- Jiao Tang
- Fundamental Science on Nuclear Wastes, Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Junxiang Tang
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hao Lei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yong Chen
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiang Zhao
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoqiang Wang
- Fundamental Science on Nuclear Wastes, Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Ning Pan
- Fundamental Science on Nuclear Wastes, Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Effect of bi-functionalization silica micro beads on uranium adsorption from synthetic and washing pregnant uranyl solutions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07945-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Elshehy EA. Hexagonal Cylinder Mesoporous Sorbent for Separation of Uranium Ions from Nitrate Media. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emad A. Elshehy
- Nuclear Materials Authority (NMA) P.O. Box 530, El-Maadi 11728 Cairo Egypt
| |
Collapse
|
7
|
Removal of Uranyl Ion from Wastewater by Magnetic Adsorption Material of Polyaniline Combined with CuFe2O4. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/5584158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The magnetic adsorption material of polyaniline (PANI) with amino functional group combined with CuFe2O4 (CuFe2O4/PANI nanocomposite) has been described in this work. It has been characterized by TEM, XRD, XPS, BET, FTIR, and VSM, respectively. Significantly, it exhibits extremely high maximum adsorption capacity (322.6 mg/g) for removal of uranyl ions from wastewater at a pH of 4. The adsorption process is consistent with the quasisecond-order kinetic equation, and the isotherm and kinetic data are accurately described by the Langmuir isothermal adsorption model. Furthermore, the magnetic CuFe2O4/PANI displays stable adsorption performance for uranyl ions after five cycles of recovery in acid medium, which indicates it possesses good recovery due to its magnetism and excellent regeneration ability for reusability.
Collapse
|
8
|
Manganese ferrite/porous graphite carbon nitride composites for U(VI) adsorption from aqueous solutions. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07281-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Hamza MF, Mubark AE, Wei Y, Vincent T, Guibal E. Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption-Application to Ore Acidic Leachate. Gels 2020; 6:E12. [PMID: 32235683 PMCID: PMC7345210 DOI: 10.3390/gels6020012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/17/2022] Open
Abstract
The necessity to recover uranium from dilute solutions (for environmental/safety and resource management) is driving research towards developing new sorbents. This study focuses on the enhancement of U(VI) sorption properties of composite algal/Polyethylenimine beads through the quaternization of the support (by reaction with glycidyltrimethylammonium chloride). The sorbent is fully characterized by FTIR, XPS for confirming the contribution of protonated amine and quaternary ammonium groups on U(VI) binding (with possible contribution of hydroxyl and carboxyl groups, depending on the pH). The sorption properties are investigated in batch with reference to pH effect (optimum value: pH 4), uptake kinetics (equilibrium: 40 min) and sorption isotherms (maximum sorption capacity: 0.86 mmol U g-1). Metal desorption (with 0.5 M NaCl/0.5 M HCl) is highly efficient and the sorbent can be reused for five cycles with limited decrease in performance. The sorbent is successfully applied to the selective recovery of U(VI) from acidic leachate of uranium ore, after pre-treatment (cementation of copper, precipitation of rare earth elements with oxalate, and precipitation of iron). A pure yellow cake is obtained after precipitation of the eluate.
Collapse
Affiliation(s)
- Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo11835, Egypt;
| | - Amal E. Mubark
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo11835, Egypt;
| | - Yuezou Wei
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
- Department of Nuclear Engineering and Radiological Sciences (NERS), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Thierry Vincent
- Polymers Composites and hybrids (PCH), IMT-Mines Ales, 6, avenue de Clavières, F-30319 Alès cedex, France;
| | - Eric Guibal
- Polymers Composites and hybrids (PCH), IMT-Mines Ales, 6, avenue de Clavières, F-30319 Alès cedex, France;
| |
Collapse
|