Baruah B, Phillips GD, Ferreira DR, Boone NJ, Mcnutt DA. Comparing Cs
+ binding affinity of Keggin type polyoxometalate and sodium Tetrakis(4-florophenyl)borate in solution and from Cs-doped pure phase vermiculite.
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022;
253-254:107008. [PMID:
36095854 DOI:
10.1016/j.jenvrad.2022.107008]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We assessed the aptitude of cesium (Cs+) binding by Keggin type polyoxometalates (POMs) and compared the results with the Cs+ binding by sodium tetrakis(4-fluorophenyl)-borate (Na-TFPB). In this work, we aimed to establish a system to treat radioactive Cs+ contaminated soil with POMs economically. We evaluated the effect of initial Cs+ concentration (0.1M) and precipitant (POMs and TFPB) concentrations (0.01M) on Cs+ precipitation. Our comparison of Cs+ precipitation by three different POMs and TFPB was obtained by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). We synthesized POMs molybdovanadophosphoric acid, H5PMo10V2O40 (MVPA), and silicotungstic acid, H4SiW12O40 (STA), and used commercially available phosphotungstic acid, H3PW12O40 (PTA), and TFPB. Cs-doped pure phase vermiculite was also used to demonstrate the extraction potential of Cs+ by TFPB, STA, and PTA. All the POMs and corresponding Cs-bound POMs were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray powder diffraction (XRD). In this simulation study, we demonstrated that the Cs+ removal by POMs is much more effective than TFPB and could be a promising method for the treatment of radiocesium contaminated soil.
Collapse