1
|
Chang YJ, Huang C, Chang JS, Lee DJ. Efficient removal of manganese ions from waters using hypochlorite-modified granular activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123577. [PMID: 39657478 DOI: 10.1016/j.jenvman.2024.123577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
Conventional drinking waterworks generally disregard the manganese removal efficiencies. For the first time, this study demonstrates the potential of ClO--modified activated carbon for efficient Mn removal from raw water. The 10% NaClO-modified granular activated carbon increases the Mn2+ adsorption capacity from 4.28 mg/g to 28.1 mg/g at an initial Mn concentration of 50 mg/L at pH 7 and 25 °C. Conversely, applying strong acids, bases, oxidants, or microwave treatments adversely impacts the adsorption capacity of the modified activated carbon. The kinetic adsorption tests and equilibrium measurements reveal increased Mn2+ adsorption capacities with ClO- concentration and initial Mn2⁺ concentration, peaking at 35 °C. The mechanistic studies show that the chemical complexation with the C=C bonds on the carbon's surface from ClO--modification principally contributes to the enhanced Mn2⁺ adsorption. Jar tests demonstrate that 5% NaClO-modified activated carbon can completely remove 0.3 mg/L Mn2+ or over 98% of 1 mg/L Mn2⁺ in the presence of competing Fe2⁺ ions. The ClO-modified granular activated carbon has excellent potential for practical drinking water production since all materials used are certified by the National Sanitation Foundation (NSF).
Collapse
Affiliation(s)
- Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chihpin Huang
- Institute of Environmental Engineering, National Yang-Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
2
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
3
|
Chen Z, Jia S, Sun H, Tang J, Guo Y, Yao Y, Pan T, Feng M, Huang X. All-in-one treatment: Capture and immobilization of 137Cs by ultra-stable inorganic solid acid materials HMMoO 6·nH 2O (M = Ta, Nb). WATER RESEARCH 2024; 255:121459. [PMID: 38513370 DOI: 10.1016/j.watres.2024.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Capture and immobilization of 137Cs is urgent for radioactive contamination remediation and spent fuel treatment. Herein, an effective all-in-one treatment method to simultaneously adsorb and immobilize Cs+ without high-temperature treatment is proposed. According to the strategy of incorporating high-valency metal ions into molybdates to increase the material stability and affinity towards radionuclides, layered HMMoO6·nH2O (M = Ta (1), Nb (2)) are prepared. Both materials exhibit excellent acid resistance (even 15 mol/L HNO3). They maintain remarkable adsorption capacity for Cs+ in 1 mol/L HNO3 solutions and can selectively capture Cs+ under excessive competitive ions. Furthermore, they show successful cleanup for actual 137Cs-liquid-wastes generated during industrial production. In particular, adsorbed Cs+ can be firmly immobilized in interlayer spaces of materials due to the highly stable anionic framework. The removal mechanism is attributed to ion exchange between Cs+ and interlayer H+ by multiple characterizations. Study of the structure-function relationship shows that the occurrence of Cs+ ion exchange is closely related to plate-like layered structure. This work develops an efficient all-in-one treatment method for capturing and immobilizing radiocesium by ultra-stable inorganic solid acid materials with low energy consumption and high safety for radionuclide remediation.
Collapse
Affiliation(s)
- Zhihua Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Haiyan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Junhao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanling Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Yuexin Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Tianyu Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Meiling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Chen S, Wu L, Wu Z, Liu Z, Qiu Z, Chi L. Highly efficient removal of Sr 2+ from aqueous solutions using a polyacrylic acid/crown-ether/graphene oxide hydrogel composite. RSC Adv 2024; 14:7825-7835. [PMID: 38444965 PMCID: PMC10913416 DOI: 10.1039/d3ra08789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
With the development of nuclear power, efficiently treating nuclear wastes generated during operation has attracted extensive attention. Hydrogels are common adsorbent materials in the treatment of wastewater due to their high swelling rate and easy post-treatment. In this work, a novel polyacrylic acid/crown-ether/graphene oxide (PAA/DB18C6/GO) hydrogel composite was synthesized by a radical cross-linking copolymerization method and characterized using various analytical tools such as SEM, FT-IR, TGA and XPS. The effects of time, pH, initial Sr2+ concentration, and temperature on Sr2+ adsorption onto the PAA/DB18C6/GO were studied. The PAA/DB18C6/GO shows a high adsorption capacity of 379.35 mg g-1 at an initial Sr2+ concentration of 772 mg L-1 due to the unique structure of dibenzo-18-crown-ether-6 and high swelling. The composite has a high selectivity for Sr2+ with a removal rate of 82.4% when concentrations of Na+ and K+ were 10 times higher than that of Sr2+. The pH and temperature have no apparent impact on adsorption performance of the PAA/DB18C6/GO under the experimental conditions. The composite shows excellent reusability with more than 92% removal rate for Sr2+ after five continuous cycles. In addition, the mechanism of Sr2+ adsorption by PAA/DB18C6/GO was analyzed by fitting the adsorption data to the theoretical models and XPS data.
Collapse
Affiliation(s)
- Sheng Chen
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Lina Wu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhicheng Wu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhikun Liu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhihua Qiu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Lisheng Chi
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| |
Collapse
|
5
|
Wang H, Zhang F, Ang R, Ren D. Hydrothermal Synthesis of Cancrinite from Coal Gangue for the Immobilization of Sr. MATERIALS (BASEL, SWITZERLAND) 2024; 17:573. [PMID: 38591394 PMCID: PMC10856052 DOI: 10.3390/ma17030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
The primary objective of this study is to investigate and develop a rapid and effective method for the immobilization of Sr in the event of a nuclear leakage incident. Coal gangue, an underutilized form of solid waste from the coal industry, can be used as a raw material for curing Sr due to its high content of silica-alumina oxides. In the present study, Sr was successfully solidified in cancrinite synthesized using a hydrothermal method with coal gangue as raw material. A stable cancrinite phase was formed at a relative alkali concentration of more than 6 M. When the Sr/Al(Si) ratio was <1/6, cancrinite was the only stable phase that varied with the hydrothermal temperature and time. When the Sr/Al(Si) ratio increased to 1/2, the cancrinite phase completely disappeared, and a new strontium feldspar phase (SrAl2Si2O8) appeared. PCT leaching experiments showed that when Sr/Al(Si) < 1/6, the Sr leaching rate of Sr-cancrinite samples obtained by hydrothermal synthesis at 180 °C for 24 h was very low.
Collapse
Affiliation(s)
| | | | | | - Ding Ren
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China; (H.W.); (F.Z.); (R.A.)
| |
Collapse
|
6
|
Li J, Lan J, Cao R, Sun J, Ding X, Liu X, Yuan L, Shi W. Water-Mediated Hydrogen Bond Network Drives Highly Crystalline Structure Formation of Crown Ether-Based Covalent Organic Framework for Sr Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59544-59551. [PMID: 38090804 DOI: 10.1021/acsami.3c15170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Covalent organic frameworks (COFs) with crown ether units have drawn great attention due to their potential applications in adsorption, catalysis, and sensing. However, employing crown ethers to construct COFs is still challenging in light of the flexible nature of macrocycles. Here, a highly crystalline one-dimensional covalent organic framework (1D-18C6-COF) with crown ether units on the ribbon edge was synthesized. The water-mediated hydrogen bond network and π-π stacking hold the 1D COF ribbons together. The combination of experimental and DFT studies demonstrated that the hydrogen bond network plays a crucial role in the structure crystallinity. The 1D-18C6-COF was applied as an adsorbent for strontium, and it exhibited rapid kinetics with good selectivity. In the competitive adsorption experiment, a separation factor of 1900 was achieved, representing one of the largest values for cesium/strontium separation. This work provides new insights into the design and functional exploration of crystalline COFs with flexible units.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianhui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Runjian Cao
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Xue Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Sheha RR, Sheta SM, Hamouda MA, El-Sheikh SM, Kandil AT, Ali OI. A comprehensive study for the potential removal of 152+154Eu radionuclides using a promising modified strontium-based MOF. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107287. [PMID: 37677908 DOI: 10.1016/j.jenvrad.2023.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
A facile modification of a strontium-based MOF using oxalic acid was carried out to prepare MTSr-OX MOF, which was used as a potential substance for eliminating 152+154Eu radioisotopes. Various analytical techniques were used to characterize MTSr-OX-MOF. The prepared MOF had a rod-like structure with a BET surface area of 101.55 m2 g-1. Batch sorption experiments were used to investigate the sorption performance of MTSr-OX-MOF towards 152+154Eu radionuclides where different parameters like pH, contact time, initial 152+154Eu concentration, ionic strength, and temperature were scrutinized to determine the optimum conditions for 152+154Eu removal. MTSr-OX-MOF showed superior effectiveness in the elimination of 152+154Eu with a maximum sorption capacity of 234.72 mg g-1 at pH 3.5. Kinetics fitted with the pseudo-second-order model and the Langmuir model correctly described the sorption mechanism. The thermodynamic variables were carefully examined, demonstrating that the 152+154Eu sorption was endothermic as well as spontaneous. The MTSr-OX-MOF has been found to be a significantly more effective sorbent towards 152+154Eu than that of many other adsorbents. When applied to real active waste, MTSr-OX-MOF demonstrated excellent removal performance for a wide range of radionuclides. As a result, the MTSr-OX-MOF can be recognized as an attractive solution for the 152+154Eu purification from active waste.
Collapse
Affiliation(s)
- Reda R Sheha
- Nuclear Chem. Dept., Hot Lab Center, Egyptian Atomic Energy Authority, P. O. 13759, Cairo, Egypt.
| | - Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt.
| | - Mohamed A Hamouda
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical R & D Institute, Cairo, 11421, Egypt
| | - A T Kandil
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| |
Collapse
|
8
|
Mushtaq S, Husnain SM, Kazmi SAR, Abbas Y, Jeon J, Kim JY, Shahzad F. MXene/AgNW composite material for selective and efficient removal of radioactive cesium and iodine from water. Sci Rep 2023; 13:19696. [PMID: 37952015 PMCID: PMC10640589 DOI: 10.1038/s41598-023-47075-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
Toxic fission products, such as cesium (137Cs) and iodine (129I) are of great concern because of their long half-lives and high solubility in water. The simultaneous removal of Cs and I using a single adsorbent is an area of increasing interest. In this study, MXene/silver nanowire (AgNW) composite was synthesized through physical mixing and employed for simultaneous removal of iodide (I-) and cesium (Cs+) ions from contaminated water. The MXene/AgNW composite demonstrated excellent adsorption capacities of 84.70 and 26.22 mg/g for I- and Cs+, respectively. The experimental data supported the hypothesis of multilayer adsorption of Cs+ owing to the inter-lamellar structures and the presence of heterogeneous adsorption sites in MXene. The interaction between I- and the AgNW involved chemisorption followed by monolayer adsorption. MXene/AgNW composite material exhibited promising results in the presence of competitive ions under extreme pH conditions. Thus, synthesized composite materials holds promising potential as an adsorbent for the remediation of radioactive liquid waste.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Division of RI-Applied Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Korea.
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad, 45650, Pakistan.
| | - Syed M Husnain
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, 45650, Pakistan
| | - Syed Asad Raza Kazmi
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, 45650, Pakistan
| | - Yawar Abbas
- Department of Physics, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Jongho Jeon
- Department of Chemistry, Kyungpook National University, Daegu 80, Republic of Korea
| | - Jung Young Kim
- Division of RI-Applied Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Korea
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, 45650, Pakistan.
- Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Șenilă M, Neag E, Tănăselia C, Șenilă L. Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2965. [PMID: 37109801 PMCID: PMC10145197 DOI: 10.3390/ma16082965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The radionuclides of cesium (Cs) and strontium (Sr) are dangerous products of nuclear fission that can be accidentally released into wastewater. In the present work, the capacity of thermally treated natural zeolite (NZ) from Macicasu (Romania) to remove Cs+ and Sr2+ ions from aqueous solutions in batch mode was investigated by contacting different zeolite quantities (0.5, 1, and 2 g) of 0.5-1.25 mm (NZ1) and 0.1-0.5 mm (NZ2) particle size fractions with 50 mL working solutions of Cs+ and Sr2+ (10, 50, and 100 mg L-1 initial concentrations) for 180 min. The concentration of Cs in the aqueous solutions was determined by inductively coupled plasma mass spectrometry (ICP-MS), whereas the Sr concentration was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The removal efficiency of Cs+ varied between 62.8 and 99.3%, whereas Sr2+ ranged between 51.3 and 94.5%, depending on the initial concentrations, the contact time, the amount, and particle size of the adsorbent material. The sorption of Cs+ and Sr2+ was analyzed using the nonlinear form of Langmuir and Freundlich isotherm models and pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. The results indicated that the sorption kinetics of Cs+ and Sr2+ on thermally treated natural zeolite was described by the PSO kinetic model. Chemisorption dominates the retention of both Cs+ and Sr2+ by strong coordinate bonds with an aluminosilicate zeolite skeleton.
Collapse
Affiliation(s)
- Marin Șenilă
- Correspondence: (M.Ș.); (E.N.); Tel.: +40-264-420-590 (E.N.)
| | - Emilia Neag
- Correspondence: (M.Ș.); (E.N.); Tel.: +40-264-420-590 (E.N.)
| | | | | |
Collapse
|
10
|
Wu L, Wang H, Kong X, Wei H, Chen S, Chi L. High strontium adsorption performance of layered zirconium phosphate intercalated with a crown ether. RSC Adv 2023; 13:6346-6355. [PMID: 36824231 PMCID: PMC9942561 DOI: 10.1039/d2ra07757d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Effective removal of strontium isotopes in radioactive waste streams has important implications for the environment and the sustainable development of nuclear energy. In this work, a zirconium phosphate/18-crown-ether-6 (ZrP/18C6) composite was prepared using the intercalation method by loading crown ether into zirconium phosphate. The composite was structurally and morphologically characterized by XRD, FT-IR, XPS, and SEM. The adsorption experiments of Sr2+ onto the ZrP/18C6 composite were conducted as a function of temperature, pH, Sr2+ concentration and competing ions. The results indicate ZrP/18C6 can adsorb 98.6% of Sr2+ within 30 minutes at an Sr2+ concentration of 100 mg L-1 and maintain a high removal rate with a distribution coefficient of 7 × 105 mL g-1 when Sr2+ is at a low level of 4.28 mg L-1. The ZrP/18C6 composite reached a maximum adsorption capacity of 195.74 mg g-1 at an Sr2+ concentration of 380 mg L-1, which is significantly higher than the 43.03 mg g-1 of α-ZrP. The adsorption performance of Sr2+ onto ZrP/18C6 is not significantly affected by temperature, pH and competing ions. Furthermore, the adsorption kinetics and thermodynamics were analyzed based on the adsorption data obtained in the present work. It is shown that the adsorption of Sr2+ onto ZrP/18C6 follows the pseudo-second-order model and the Langmuir monolayer model, respectively. Additionally, the adsorption mechanism of Sr2+ by ZrP/18C6 is discussed.
Collapse
Affiliation(s)
- Lina Wu
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350116 China.,Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Huiping Wang
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350116 China.,Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Xiangqian Kong
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350116 China.,Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Haibo Wei
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350116 China.,Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Sheng Chen
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350116 China.,Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Lisheng Chi
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350116 China.,Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| |
Collapse
|
11
|
Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, Rinklebe J, Chen X, Peng W. A strategy for bioremediation of nuclear contaminants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120964. [PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
Collapse
Affiliation(s)
- Zhaolin Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA, 6009, Australia
| | - Jörg Rinklebe
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation, Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Yusan S, Aytas S, Sert S, Akpolat O, Elmastas Gultekin O. Development of environment-friendly magnetic nanobiocomposites and full factorial design (FFD) analysis for strontium removal from aqueous solutions. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Yu X, Peng S, Cao W, Huang G. Response surface methodology approach for optimization of removal of strontium by in-situ electrochemical synthesis of monohydric phosphate intercalated layered double hydroxides. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Chen Y, Wang Z, Liu S, Zhang G, Dong L, Gu P, Hou L. Layered metal sulfide NMTS for rapid removal of radioactive strontium ions from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Sumalatha B, Narayana AV, Khan AA, Venkateswarulu TC, Reddy GS, Reddy PR, Babu DJ. A Sustainable Green Approach for Efficient Capture of Strontium from Simulated Radioactive Wastewater Using Modified Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:75. [DOI: 10.1007/s41742-022-00452-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 09/27/2023]
|
16
|
Eid MA, Abass MR, El-Kenany WM. Fabrication and application of nanosized stannic oxide for sorption of some hazardous metal ions from aqueous solutions. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A batch equilibrium method was utilized to evaluate the retention of Fe(III) and Pb(II) onto stannic oxide (SnO2) nanomaterial. SnO2 was prepared by a simple precipitation method and characterized by different analytical apparatuses like FT-IR, SEM, TEM, and XRD. Scherrer’s formula and Williamson-Hall (WH) analysis were utilized to detect the crystallite size and lattice strain. The XRD and TEM data revealed that SnO2 has a nanoscale and crystalline nature. The retention study for Fe(III) and Pb(II) includes the influence of shaking time, batch factor, pH, initial concentrations, capacity, and applications. The data reveal that the maximum uptake of SnO2 was achieved at pH 2.5 and 3.7 for Fe(III) and Pb(II), respectively. SnO2 has a fast kinetic (60 min) and the reaction kinetic data obey the pseudo–second-order model. The capacity has values of 50.4 and 48.8 mg/g for Fe(III) and Pb(II), respectively. The real sample applications proved that SnO2 is an excellent sorbent for the capture of Pb(II) and Fe(III) from industrial wastewater and low-grade monazite (LGM) respectively, in addition to the capture of 59Fe radionuclide from low-level radioactive waste (LLRW).
Collapse
Affiliation(s)
- Marwa Ahmed Eid
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority , 13759 Cairo , Egypt
| | - Mohamed Ragab Abass
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority , 13759 Cairo , Egypt
| | - Wafaa Mohamed El-Kenany
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority , 13759 Cairo , Egypt
| |
Collapse
|
17
|
Zhang Z, Cheng M, Xiao X, Bi K, Song T, Hu KQ, Dai Y, Zhou L, Liu C, Ji X, Shi WQ. Machine-Learning-Guided Identification of Coordination Polymer Ligands for Crystallizing Separation of Cs/Sr. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33076-33084. [PMID: 35801670 DOI: 10.1021/acsami.2c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Separation of Cs/Sr is one of many coordination-chemistry-centered processes in the grand scheme of spent nuclear fuel reprocessing, a critical link for a sustainable nuclear energy industry. To deploy a crystallizing Cs/Sr separation technology, we planned to systematically screen and identify candidate ligands that can efficiently and selectively bind to Sr2+ and form coordination polymers. Therefore, we mined the Cambridge Structural Database for characteristic structural information and developed a machine-learning-guided methodology for ligand evaluation. The optimized machine-learning model, correlating the molecular structures of the ligands with the predicted coordinative properties, generated a ranking list of potential compounds for Cs/Sr selective crystallization. The Sr2+ sequestration capability and selectivity over Cs+ of the promising ligands identified (squaric acid and chloranilic acid) were subsequently confirmed experimentally, with commendable performances, corroborating the artificial-intelligence-guided strategy.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Min Cheng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xinyi Xiao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Kexin Bi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ting Song
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yiyang Dai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Li Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xu Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|