1
|
|
2
|
Seki E, Yanagisawa T, Kuratani M, Sakamoto K, Yokoyama S. Fully Productive Cell-Free Genetic Code Expansion by Structure-Based Engineering of Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase. ACS Synth Biol 2020; 9:718-732. [PMID: 32182048 DOI: 10.1021/acssynbio.9b00288] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). In this study, we achieved the full productivity of cell-free protein synthesis for difficult, bulky non-canonical amino acids, such as Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-l-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS. First, based on the crystal structure of M. alvus PylRS, the productivities for various non-canonical amino acids were greatly increased by rational engineering of the amino acid-binding pocket. The productivities were further enhanced by using a much higher concentration of PylRS over that of M. mazei PylRS, or by mutating the outer layer of the amino acid-binding pocket. Thus, we achieved full productivity even for TCO*Lys. The quantity and quality of the cell-free-produced antibody fragment containing TCO*Lys were drastically improved. These results demonstrate the importance of full productivity for the expanded genetic code.
Collapse
|
3
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
4
|
Cell-Free Protein Synthesis Using S30 Extracts from Escherichia coli RFzero Strains for Efficient Incorporation of Non-Natural Amino Acids into Proteins. Int J Mol Sci 2019; 20:ijms20030492. [PMID: 30678326 PMCID: PMC6387211 DOI: 10.3390/ijms20030492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/01/2022] Open
Abstract
Cell-free protein synthesis is useful for synthesizing difficult targets. The site-specific incorporation of non-natural amino acids into proteins is a powerful protein engineering method. In this study, we optimized the protocol for cell extract preparation from the Escherichia coli strain RFzero-iy, which is engineered to lack release factor 1 (RF-1). The BL21(DE3)-based RFzero-iy strain exhibited quite high cell-free protein productivity, and thus we established the protocols for its cell culture and extract preparation. In the presence of 3-iodo-l-tyrosine (IY), cell-free protein synthesis using the RFzero-iy-based S30 extract translated the UAG codon to IY at various sites with a high translation efficiency of >90%. In the absence of IY, the RFzero-iy-based cell-free system did not translate UAG to any amino acid, leaving UAG unassigned. Actually, UAG was readily reassigned to various non-natural amino acids, by supplementing them with their specific aminoacyl-tRNA synthetase variants (and their specific tRNAs) into the system. The high incorporation rate of our RFzero-iy-based cell-free system enables the incorporation of a variety of non-natural amino acids into multiple sites of proteins. The present strategy to create the RFzero strain is rapid, and thus promising for RF-1 deletions of various E. coli strains genomically engineered for specific requirements.
Collapse
|
5
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
6
|
Matsuda T, Ito T, Takemoto C, Katsura K, Ikeda M, Wakiyama M, Kukimoto-Niino M, Yokoyama S, Kurosawa Y, Shirouzu M. Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction. PLoS One 2018; 13:e0193158. [PMID: 29462206 PMCID: PMC5819829 DOI: 10.1371/journal.pone.0193158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022] Open
Abstract
Growing numbers of therapeutic antibodies offer excellent treatment strategies for many diseases. Elucidation of the interaction between a potential therapeutic antibody and its target protein by structural analysis reveals the mechanism of action and offers useful information for developing rational antibody designs for improved affinity. Here, we developed a rapid, high-yield cell-free system using dialysis mode to synthesize antibody fragments for the structural analysis of antibody–antigen complexes. Optimal synthesis conditions of fragments (Fv and Fab) of the anti-EGFR antibody 059–152 were rapidly determined in a day by using a 30-μl-scale unit. The concentration of supplemented disulfide isomerase, DsbC, was critical to obtaining soluble antibody fragments. The optimal conditions were directly applicable to a 9-ml-scale reaction, with linear scalable yields of more than 1 mg/ml. Analyses of purified 059-152-Fv and Fab showed that the cell-free synthesized antibody fragments were disulfide-bridged, with antigen binding activity comparable to that of clinical antibodies. Examination of the crystal structure of cell-free synthesized 059-152-Fv in complex with the extracellular domain of human EGFR revealed that the epitope of 059-152-Fv broadly covers the EGF binding surface on domain III, including residues that formed critical hydrogen bonds with EGF (Asp355EGFR, Gln384EGFR, H409EGFR, and Lys465EGFR), so that the antibody inhibited EGFR activation. We further demonstrated the application of the cell-free system to site-specific integration of non-natural amino acids for antibody engineering, which would expand the availability of therapeutic antibodies based on structural information and rational design. This cell-free system could be an ideal antibody-fragment production platform for functional and structural analysis of potential therapeutic antibodies and for engineered antibody development.
Collapse
Affiliation(s)
- Takayoshi Matsuda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Takuhiro Ito
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Chie Takemoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Kazushige Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Mariko Ikeda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Motoaki Wakiyama
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Mutsuko Kukimoto-Niino
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- * E-mail:
| |
Collapse
|
7
|
Fujiwara K, Sawamura T, Niwa T, Deyama T, Nomura SIM, Taguchi H, Doi N. In vitro transcription-translation using bacterial genome as a template to reconstitute intracellular profile. Nucleic Acids Res 2017; 45:11449-11458. [PMID: 28977538 PMCID: PMC5737407 DOI: 10.1093/nar/gkx776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
In vitro transcription–translation systems (TX–TL) can synthesize most of individual genes encoded in genomes by using strong promoters and translation initiation sequences. This fact raises a possibility that TX–TL using genome as a template can reconstitute the profile of RNA and proteins in living cells. By using cell extracts and genome prepared from different organisms, here we developed a system for in vitro genome transcription–translation (iGeTT) using bacterial genome and cell extracts, and surveyed de novo synthesis of RNA and proteins. Two-dimensional electrophoresis and nano LC–MS/MS showed that proteins were actually expressed by iGeTT. Quantitation of transcription levels of 50 genes for intracellular homeostasis revealed that the levels of RNA synthesis by iGeTT are highly correlated with those in growth phase cells. Furthermore, activity of iGeTT was influenced by transcription derived from genome structure and gene location in genome. These results suggest that intracellular profiles and characters of genome can be emulated by TX–TL using genome as a template.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
- To whom correspondence should be addressed. Tel: +81 45 566 1533;
| | - Tsunehito Sawamura
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tatsuki Deyama
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Shin-ichiro M. Nomura
- Department of Robotics, School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
8
|
Foshag D, Henrich E, Hiller E, Schäfer M, Kerger C, Burger-Kentischer A, Diaz-Moreno I, García-Mauriño SM, Dötsch V, Rupp S, Bernhard F. The E. coli S30 lysate proteome: A prototype for cell-free protein production. N Biotechnol 2017; 40:245-260. [PMID: 28943390 DOI: 10.1016/j.nbt.2017.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Protein production using processed cell lysates is a core technology in synthetic biology and these systems are excellent to produce difficult toxins or membrane proteins. However, the composition of the central lysate of cell-free systems is still a "black box". Escherichia coli lysates are most productive for cell-free expression, yielding several mgs of protein per ml of reaction. Their preparation implies proteome fractionation, resulting in strongly biased and yet unknown lysate compositions. Many metabolic pathways are expected to be truncated or completely removed. The lack of knowledge of basic cell-free lysate proteomes is a major bottleneck for directed lysate engineering approaches as well as for assay design using non-purified reaction mixtures. This study is starting to close this gap by providing a blueprint of the S30 lysate proteome derived from the commonly used E. coli strain A19. S30 lysates are frequently used for cell-free protein production and represent the basis of most commercial E. coli cell-free expression systems. A fraction of 821 proteins was identified as the core proteome in S30 lysates, representing approximately a quarter of the known E. coli proteome. Its classification into functional groups relevant for transcription/translation, folding, stability and metabolic processes will build the framework for tailored cell-free reactions. As an example, we show that SOS response induction during cultivation results in tuned S30 lysate with better folding capacity, and improved solubility and activity of synthesized proteins. The presented data and protocols can serve as a platform for the generation of customized cell-free systems and product analysis.
Collapse
Affiliation(s)
- Daniel Foshag
- Institute for Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Ekkehard Hiller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Miriam Schäfer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Christian Kerger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | | | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Waberer L, Henrich E, Peetz O, Morgner N, Dötsch V, Bernhard F, Volknandt W. The synaptic vesicle protein SV31 assembles into a dimer and transports Zn 2. J Neurochem 2016; 140:280-293. [PMID: 27917477 DOI: 10.1111/jnc.13886] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 01/20/2023]
Abstract
The integral synaptic vesicle protein SV31 has been shown to bind divalent cations. Here, we demonstrate that SV31 protein synthesized within a cell-free system binds Zn2+ and to a lower extent Ni2+ and Cu2+ ions. Expression with Zn2+ stabilized the protein and increased solubility. SV31 was preferentially monomeric in detergent and revealed specific binding of Zn2+ . When co-translationally inserted into defined nanodisc bilayers, SV31 assembled into dimeric complexes, resulting in increased binding of Zn2+ . Putative Zn2+ -binding motifs within SV31 comprise aspartic acid and histidine residues. Site-directed mutagenesis of two conserved aspartic acid residues leads to a potent decrease in Zn2+ binding but did not affect dimerization. Chemical modification of histidine residues abolished some of the Zn2+ -binding capacity. We demonstrate proton-dependent transport of Zn2+ as by accumulation of fluorescent FluoZin-1 inside of SV31-containing proteoliposomes. Transport activity has a Km value of 44.3 μM and required external Zn2+ and internal acidic pH. Our results demonstrate that the synaptic vesicle-integral protein SV31 functions as a proton-dependent Zn2+ transporter. SV31 may attribute specific and yet undiscovered functions to subsets of synapses.
Collapse
Affiliation(s)
- Lisa Waberer
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
10
|
|
11
|
Gagoski D, Polinkovsky ME, Mureev S, Kunert A, Johnston W, Gambin Y, Alexandrov K. Performance benchmarking of four cell-free protein expression systems. Biotechnol Bioeng 2015; 113:292-300. [PMID: 26301602 DOI: 10.1002/bit.25814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/20/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022]
Abstract
Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.
Collapse
Affiliation(s)
- Dejan Gagoski
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Mark E Polinkovsky
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Anne Kunert
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia.
| |
Collapse
|
12
|
Buntru M, Vogel S, Stoff K, Spiegel H, Schillberg S. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates. Biotechnol Bioeng 2015; 112:867-78. [PMID: 25421615 DOI: 10.1002/bit.25502] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023]
Abstract
Cell-free protein synthesis is a powerful method for the high-throughput production of recombinant proteins, especially proteins that are difficult to express in living cells. Here we describe a coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates (BYLs). Using a combination of fractional factorial designs and response surface models, we developed a cap-independent system that produces more than 250 μg/mL of functional enhanced yellow fluorescent protein (eYFP) and about 270 μg/mL of firefly luciferase using plasmid templates, and up to 180 μg/mL eYFP using linear templates (PCR products) in 18 h batch reactions. The BYL contains actively-translocating microsomal vesicles derived from the endoplasmic reticulum, promoting the formation of disulfide bonds, glycosylation and the cotranslational integration of membrane proteins. This was demonstrated by expressing a functional full-size antibody (∼ 150 μg/mL), the model enzyme glucose oxidase (GOx) (∼ 7.3 U/mL), and a transmembrane growth factor (∼ 25 μg/mL). Subsequent in vitro treatment of GOx with peptide-N-glycosidase F confirmed the presence of N-glycans. Our results show that the BYL can be used as a high-throughput expression and screening platform that is particularly suitable for complex and cytotoxic proteins.
Collapse
Affiliation(s)
- Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen, 52074, Germany
| | | | | | | | | |
Collapse
|
13
|
Nianios D, Thierbach S, Steimer L, Lulchev P, Klostermeier D, Fetzner S. Nickel quercetinase, a "promiscuous" metalloenzyme: metal incorporation and metal ligand substitution studies. BMC BIOCHEMISTRY 2015; 16:10. [PMID: 25903361 PMCID: PMC4416304 DOI: 10.1186/s12858-015-0039-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/01/2015] [Indexed: 11/12/2022]
Abstract
BACKGROUND Quercetinases are metal-dependent dioxygenases of the cupin superfamily. While fungal quercetinases are copper proteins, recombinant Streptomyces quercetinase (QueD) was previously described to be capable of incorporating Ni(2+) and some other divalent metal ions. This raises the questions of which factors determine metal selection, and which metal ion is physiologically relevant. RESULTS Metal occupancies of heterologously produced QueD proteins followed the order Ni > Co > Fe > Mn. Iron, in contrast to the other metals, does not support catalytic activity. QueD isolated from the wild-type Streptomyces sp. strain FLA contained mainly nickel and zinc. In vitro synthesis of QueD in a cell-free transcription-translation system yielded catalytically active protein when Ni(2+) was present, and comparison of the circular dichroism spectra of in vitro produced proteins suggested that Ni(2+) ions support correct folding. Replacement of individual amino acids of the 3His/1Glu metal binding motif by alanine drastically reduced or abolished quercetinase activity and affected its structural integrity. Only substitution of the glutamate ligand (E76) by histidine resulted in Ni- and Co-QueD variants that retained the native fold and showed residual catalytic activity. CONCLUSIONS Heterologous formation of catalytically active, native QueD holoenzyme requires Ni(2+), Co(2+) or Mn(2+), i.e., metal ions that prefer an octahedral coordination geometry, and an intact 3His/1Glu motif or a 4His environment of the metal. The observed metal occupancies suggest that metal incorporation into QueD is governed by the relative stability of the resulting metal complexes, rather than by metal abundance. Ni(2+) most likely is the physiologically relevant cofactor of QueD of Streptomyces sp. FLA.
Collapse
Affiliation(s)
- Dimitrios Nianios
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, Corrensstrasse 3, Muenster, D-48149, Germany.
| | - Sven Thierbach
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, Corrensstrasse 3, Muenster, D-48149, Germany.
| | - Lenz Steimer
- Institute of Physical Chemistry, University of Muenster, Corrensstrasse 30, Muenster, D-48149, Germany.
| | - Pavel Lulchev
- Institute of Physical Chemistry, University of Muenster, Corrensstrasse 30, Muenster, D-48149, Germany.
| | - Dagmar Klostermeier
- Institute of Physical Chemistry, University of Muenster, Corrensstrasse 30, Muenster, D-48149, Germany.
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, Corrensstrasse 3, Muenster, D-48149, Germany.
| |
Collapse
|
14
|
Terada T, Yokoyama S. Escherichia coli Cell-Free Protein Synthesis and Isotope Labeling of Mammalian Proteins. Methods Enzymol 2015; 565:311-45. [DOI: 10.1016/bs.mie.2015.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
A cell-free expression screen to identify fusion tags for improved protein expression. Methods Mol Biol 2014; 1118:35-54. [PMID: 24395408 DOI: 10.1007/978-1-62703-782-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cell-free protein synthesis can now be routinely used for the rapid screening of protein expression at the microliter level using PCR-amplified templates. However, identification of the optimal expression construct for a target protein can still be a problem. A rapid cell-free procedure is described here for the systematic assessment of a range of diverse fusion tags on the expression and solubility of any given target protein. Overlap/extension PCR is used to fuse a library of T7 promoter (T7p)-tag fragments with a gene-T7terminator (T7ter) fragment to produce cell-free expression templates encoding different fusion proteins. These constructs are then expressed in a series of small-scale (50 μL) Escherichia coli cell-free reactions and SDS-PAGE analysis is used to identify the optimal fusion tag(s). This screen is particularly useful for the identification of expression constructs for proteins that are normally poorly expressed or are insoluble.
Collapse
|
16
|
Matsuda T, Watanabe S, Kigawa T. Cell-free synthesis system suitable for disulfide-containing proteins. Biochem Biophys Res Commun 2013; 431:296-301. [DOI: 10.1016/j.bbrc.2012.12.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
17
|
Arai R, Fukui S, Kobayashi N, Sekiguchi J. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. J Biol Chem 2012; 287:44736-48. [PMID: 23091053 DOI: 10.1074/jbc.m112.414763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Bacillus subtilis, LytE, LytF, CwlS, and CwlO are vegetative autolysins, DL-endopeptidases in the NlpC/P60 family, and play essential roles in cell growth and separation. IseA (YoeB) is a proteinaceous inhibitor against the DL-endopeptidases, peptidoglycan hydrolases. Overexpression of IseA caused significantly long chained cell morphology, because IseA inhibits the cell separation DL-endopeptidases post-translationally. Here, we report the first three-dimensional structure of IseA, determined by NMR spectroscopy. The structure includes a single domain consisting of three α-helices, one 3(10)-helix, and eight β-strands, which is a novel fold like a "hacksaw." Noteworthy is a dynamic loop between β4 and the 3(10)-helix, which resembles a "blade." The electrostatic potential distribution shows that most of the surface is positively charged, but the region around the loop is negatively charged. In contrast, the LytF active-site cleft is expected to be positively charged. NMR chemical shift perturbation of IseA interacting with LytF indicated that potential interaction sites are located around the loop. Furthermore, the IseA mutants D100K/D102K and G99P/G101P at the loop showed dramatic loss of inhibition activity against LytF, compared with wild-type IseA, indicating that the β4-3(10) loop plays an important role in inhibition. Moreover, we built a complex structure model of IseA-LytF by docking simulation, suggesting that the β4-3(10) loop of IseA gets stuck deep in the cleft of LytF, and the active site is occluded. These results suggest a novel inhibition mechanism of the hacksaw-like structure, which is different from known inhibitor proteins, through interactions around the characteristic loop regions with the active-site cleft of enzymes.
Collapse
Affiliation(s)
- Ryoichi Arai
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | | | | | | |
Collapse
|
18
|
Kawahara-Kobayashi A, Masuda A, Araiso Y, Sakai Y, Kohda A, Uchiyama M, Asami S, Matsuda T, Ishitani R, Dohmae N, Yokoyama S, Kigawa T, Nureki O, Kiga D. Simplification of the genetic code: restricted diversity of genetically encoded amino acids. Nucleic Acids Res 2012; 40:10576-84. [PMID: 22909996 PMCID: PMC3488234 DOI: 10.1093/nar/gks786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet. In one of the codes, a tRNAAla variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, green fluorescent protein fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme. This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution and for the improvement of pharmaceuticals.
Collapse
Affiliation(s)
- Akio Kawahara-Kobayashi
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, Shi J, Watanabe S, Kigawa T, Yokoyama S, Aiken C, Diaz-Griffero F. RING domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 2012; 86:1717-27. [PMID: 22114335 PMCID: PMC3264337 DOI: 10.1128/jvi.05811-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 11/08/2011] [Indexed: 11/20/2022] Open
Abstract
Rhesus TRIM5α (TRIM5α(rh)) is a cytosolic protein that potently restricts HIV-1 at an early postentry stage, prior to reverse transcription. The ability of TRIM5α(rh) to block HIV-1 infection has been correlated with a decrease of pelletable HIV-1 capsid during infection. To genetically dissect the ability of TRIM5α to block reverse transcription, we studied a set of TRIM5α(rh) RING domain mutants that potently restrict HIV-1 but allow the occurrence of reverse transcription. These TRIM5α(rh) RING variants blocked HIV-1 infection after reverse transcription but prior to integration, as suggested by the routing of nuclear viral DNA to circularization in the form of 2-long terminal repeat (2-LTR) circles. The folding of RING domain variants was similar to that of the wild type, as evaluated by nuclear magnetic resonance. RING domain changes that allowed the occurrence of reverse transcription were impaired in their ability to decrease the amount of pelletable capsid compared with wild-type TRIM5α. Similar effects of this particular group of mutations were observed with human TRIM5α inhibition of N-tropic murine leukemia virus (N-MLV). Interestingly, TRIM5α(rh) RING domain variants also prevented the degradation of TRIM5α(rh) that occurs following cell entry of HIV-1. These data correlated the block of reverse transcription with the ability of TRIM5α to accelerate uncoating. Collectively, these results suggest that TRIM5α(rh) blocks HIV-1 reverse transcription by inducing premature viral uncoating in target cells.
Collapse
Affiliation(s)
- Amanda Roa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York, USA
| | - Fumiaki Hayashi
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan
| | - Yang Yang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York, USA
| | - Maritza Lienlaf
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York, USA
| | - Jing Zhou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Satoru Watanabe
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan
| | - Takanori Kigawa
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Shigeyuki Yokoyama
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan
- UT-RIKEN Cooperation Laboratory of Structural Biology, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York, USA
| |
Collapse
|
20
|
Yamasaki K, Kigawa T, Watanabe S, Inoue M, Yamasaki T, Seki M, Shinozaki K, Yokoyama S. Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J Biol Chem 2012; 287:7683-91. [PMID: 22219184 DOI: 10.1074/jbc.m111.279844] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The WRKY family transcription factors regulate plant-specific reactions that are mostly related to biotic and abiotic stresses. They share the WRKY domain, which recognizes a DNA element (TTGAC(C/T)) termed the W-box, in target genes. Here, we determined the solution structure of the C-terminal WRKY domain of Arabidopsis WRKY4 in complex with the W-box DNA by NMR. A four-stranded β-sheet enters the major groove of DNA in an atypical mode termed the β-wedge, where the sheet is nearly perpendicular to the DNA helical axis. Residues in the conserved WRKYGQK motif contact DNA bases mainly through extensive apolar contacts with thymine methyl groups. The importance of these contacts was verified by substituting the relevant T bases with U and by surface plasmon resonance analyses of DNA binding.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
He F, Inoue M, Kigawa T, Takahashi M, Kuwasako K, Tsuda K, Kobayashi N, Terada T, Shirouzu M, Güntert P, Yokoyama S, Muto Y. Solution structure of the splicing factor motif of the human Prp18 protein. Proteins 2011; 80:968-74. [PMID: 22213562 DOI: 10.1002/prot.24003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/25/2011] [Accepted: 11/09/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Fahu He
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kralicek AV, Radjainia M, Mohamad Ali NA, Carraher C, Newcomb RD, Mitra AK. A PCR-directed cell-free approach to optimize protein expression using diverse fusion tags. Protein Expr Purif 2011; 80:117-24. [DOI: 10.1016/j.pep.2011.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/02/2011] [Accepted: 06/10/2011] [Indexed: 12/15/2022]
|
23
|
He F, Umehara T, Saito K, Harada T, Watanabe S, Yabuki T, Kigawa T, Takahashi M, Kuwasako K, Tsuda K, Matsuda T, Aoki M, Seki E, Kobayashi N, Güntert P, Yokoyama S, Muto Y. Structural insight into the zinc finger CW domain as a histone modification reader. Structure 2011; 18:1127-39. [PMID: 20826339 DOI: 10.1016/j.str.2010.06.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/02/2010] [Accepted: 06/08/2010] [Indexed: 11/25/2022]
Abstract
The zinc finger CW (zf-CW) domain is a motif of about 60 residues that is frequently found in proteins involved in epigenetic regulation. Here, we determined the NMR solution structure of the zf-CW domain of the human zf-CW and PWWP domain containing protein 1 (ZCWPW1). The zf-CW domain adopts a new fold in which a zinc ion is coordinated tetrahedrally by four conserved Cys ligand residues. The tertiary structure of the zf-CW domain partially resembles that adopted by the plant homeo domain (PHD) finger bound to the histone tail, suggesting that the zf-CW domain and the PHD finger have similar functions. The solution structure of the complex of the zf-CW domain with the histone H3 tail peptide (1-10) with trimethylated K4 clarified its binding mode. Our structural and biochemical studies have identified the zf-CW domain as a member of the histone modification reader modules for epigenetic regulation.
Collapse
Affiliation(s)
- Fahu He
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kigawa T. Analysis of protein functions through a bacterial cell-free protein expression system. Methods Mol Biol 2010; 607:53-62. [PMID: 20204848 DOI: 10.1007/978-1-60327-331-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell-free protein synthesis is a suitable protein expression method for the high-throughput use because a PCR-amplified linear DNA fragment is utilized as a template for protein synthesis without any cloning procedures. We have developed a two-step PCR method for high-throughput and robust production of linear templates ready for cell-free protein synthesis. A high-throughput protein expression method has been established by combining the batch-mode cell-free protein synthesis with the two-step PCR, which is performed on multiwell plates, and is thus adapted for robotics. In this chapter, our two-step PCR method and the batch-mode cell-free protein synthesis are described.
Collapse
Affiliation(s)
- Takanori Kigawa
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
| |
Collapse
|
25
|
Seki E, Matsuda N, Kigawa T. Multiple inhibitory factor removal from an Escherichia coli cell extract improves cell-free protein synthesis. J Biosci Bioeng 2009; 108:30-5. [PMID: 19577188 DOI: 10.1016/j.jbiosc.2009.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 10/20/2022]
Abstract
Cell-free protein synthesis systems are generally influenced by the nature of the cell extract, which contains various factors on the chromosomal DNA. Some of the Escherichia coli cell extract factors are essential, despite their negative effects on protein synthesis, because they are required during the cell growth and/or extract preparation stage. In this study, modified E. coli strains were generated by inserting a streptavidin binding peptide (SBP) tag sequence at the 3' termini of the genes encoding polynucleotide phosphorylase (PNPase) and/or Exodeoxyribonuclease V alpha chain (RecD) on the chromosomal DNA. The SBP-tagged target gene products were specifically removed from the cell extract prepared from modified E. coli cells using SBP affinity resin. The linear DNA-directed cell-free protein synthesis using the treated extract achieved higher productivity, especially when removing both the PNPase and RecD factors. Using this strategy to remove multiple inhibitory factors in a cell extract will be widely applicable to improve cell-free protein synthesis.
Collapse
Affiliation(s)
- Eiko Seki
- NMR Pipeline Methodology Research Team, RIKEN Systems and Structural Biology Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
26
|
Aoki M, Matsuda T, Tomo Y, Miyata Y, Inoue M, Kigawa T, Yokoyama S. Automated system for high-throughput protein production using the dialysis cell-free method. Protein Expr Purif 2009; 68:128-36. [PMID: 19664715 DOI: 10.1016/j.pep.2009.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/10/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022]
Abstract
High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14h, including 8h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the RIKEN Structural Genomics/Proteomics Initiative (RSGI).
Collapse
Affiliation(s)
- Masaaki Aoki
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Cell-free protein synthesis system from Escherichia coli cells cultured at decreased temperatures improves productivity by decreasing DNA template degradation. Anal Biochem 2008; 377:156-61. [DOI: 10.1016/j.ab.2008.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/28/2008] [Accepted: 03/03/2008] [Indexed: 11/24/2022]
|
28
|
Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schütz A, Heinemann U, Yokoyama S, Büssow K, Gunsalus KC. Protein production and purification. Nat Methods 2008; 5:135-46. [PMID: 18235434 PMCID: PMC3178102 DOI: 10.1038/nmeth.f.202] [Citation(s) in RCA: 626] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus 'what to try first' strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators.
Collapse
|
29
|
Yabuki T, Motoda Y, Hanada K, Nunokawa E, Saito M, Seki E, Inoue M, Kigawa T, Yokoyama S. A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis. ACTA ACUST UNITED AC 2008; 8:173-91. [PMID: 18167031 DOI: 10.1007/s10969-007-9038-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 10/29/2007] [Indexed: 12/01/2022]
Abstract
A two-step PCR method has been developed for the robust, high-throughput production of linear templates ready for cell-free protein synthesis. The construct made from the cDNA expresses a target protein region with N- and/or C-terminal tags. The procedure consists only of mixing, dilution, and PCR steps, and is free from cloning and purification steps. In the first step of the two-step PCR, a target region within the coding sequence is amplified using two gene-specific forward and reverse primers, which contain the linker sequences and the terminal sequences of the target region. The second PCR concatenates the first PCR product with the N- and C-terminal double-stranded fragments, which contain the linker sequences as well as the sequences for the tag(s) and the initiation and termination, respectively, for T7 transcription and ribosomal translation, and amplifies it with the universal primer. Proteins can be fused with a variety of tags, such as natural poly-histidine, glutathione-S-transferase, maltose-binding protein, and/or streptavidin-binding peptide. The two-step PCR method was successfully applied to 42 human target protein regions with various GC contents (38-77%). The robustness of the two-step PCR method against possible fluctuations of experimental conditions in practical use was explored. The second PCR product was obtained at 60-120 microg/ml, and was used without purification as a template at a concentration of 2-4 microg/ml in an Escherichia coli coupled transcription-translation system. This combination of two-step PCR with cell-free protein synthesis is suitable for the rapid production of proteins in milligram quantities for genome-scale studies.
Collapse
Affiliation(s)
- Takashi Yabuki
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsuda T, Koshiba S, Tochio N, Seki E, Iwasaki N, Yabuki T, Inoue M, Yokoyama S, Kigawa T. Improving cell-free protein synthesis for stable-isotope labeling. JOURNAL OF BIOMOLECULAR NMR 2007; 37:225-9. [PMID: 17237976 DOI: 10.1007/s10858-006-9127-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/28/2006] [Accepted: 11/28/2006] [Indexed: 05/13/2023]
Abstract
Cell-free protein synthesis is suitable for stable-isotope labeling of proteins for NMR analysis. The Escherichia coli cell-free system containing potassium acetate for efficient translation (KOAc system) is usually used for stable-isotope labeling, although it is less productive than other systems. A system containing a high concentration of potassium L-glutamate (L-Glu system), instead of potassium acetate, is highly productive, but cannot be used for stable-isotope labeling of Glu residues. In this study, we have developed a new cell-free system that uses potassium D-glutamate (D-Glu system). The productivity of the D-Glu system is approximately twice that of the KOAc system. The cross peak intensities in the 1H-15N HSQC spectrum of the uniformly stable-isotope labeled Ras protein, prepared with the D-Glu system, were similar to those obtained with the KOAc system, except that the Asp intensities were much higher for the protein produced with the D-Glu system. These results indicate that the D-Glu system is a highly productive cell-free system that is especially useful for stable-isotope labeling of proteins.
Collapse
Affiliation(s)
- Takayoshi Matsuda
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|