1
|
Developments in the Use of Lipase Transesterification for Biodiesel Production from Animal Fat Waste. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155085] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biodiesel constitutes an attractive source of energy because it is renewable, biodegradable, and non-polluting. Up to 20% biodiesel can be blended with fossil diesel and is being produced and used in many countries. Animal fat waste represents nearly 6% of total feedstock used to produce biodiesel through alkaline catalysis transesterification after its pretreatment. Lipase transesterification has some advantages such as the need of mild conditions, absence of pretreatment, no soap formation, simple downstream purification process and generation of high quality biodiesel. A few companies are using liquid lipase formulations and, in some cases, immobilized lipases for industrial biodiesel production, but the efficiency of the process can be further improved. Recent developments on immobilization support materials such as nanoparticles and magnetic nanomaterials have demonstrated high efficiency and potential for industrial applications. This manuscript reviews the latest advances on lipase transesterification and key operational variables for an efficient biodiesel production from animal fat waste.
Collapse
|
2
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
3
|
Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase. Sci Rep 2018; 8:1719. [PMID: 29379013 PMCID: PMC5789057 DOI: 10.1038/s41598-017-19135-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
An understanding of how conformational dynamics modulates function and catalysis of human monoacylglycerol lipase (hMGL), an important pharmaceutical target, can facilitate the development of novel ligands with potential therapeutic value. Here, we report the discovery and characterization of an allosteric, regulatory hMGL site comprised of residues Trp-289 and Leu-232 that reside over 18 Å away from the catalytic triad. These residues were identified as critical mediators of long-range communication and as important contributors to the integrity of the hMGL structure. Nonconservative replacements of Trp-289 or Leu-232 triggered concerted motions of structurally distinct regions with a significant conformational shift toward inactive states and dramatic loss in catalytic efficiency of the enzyme. Using a multimethod approach, we show that the dynamically relevant Trp-289 and Leu-232 residues serve as communication hubs within an allosteric protein network that controls signal propagation to the active site, and thus, regulates active-inactive interconversion of hMGL. Our findings provide new insights into the mechanism of allosteric regulation of lipase activity, in general, and may provide alternative drug design possibilities.
Collapse
|
4
|
Riccardi L, Arencibia JM, Bono L, Armirotti A, Girotto S, De Vivo M. Lid domain plasticity and lipid flexibility modulate enzyme specificity in human monoacylglycerol lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:441-451. [PMID: 28088576 DOI: 10.1016/j.bbalip.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
Human monoacylglycerol lipase (MAGL) is a membrane-interacting enzyme that generates pro-inflammatory signaling molecules. For this reason, MAGL inhibition is a promising strategy to treat pain, cancer, and neuroinflammatory diseases. MAGL can hydrolyze monoacylglycerols bearing an acyl chain of different lengths and degrees of unsaturation, cleaving primarily the endocannabinoid 2-arachidonoylglycerol. Importantly, the enzymatic binding site of MAGL is confined by a 75-amino-acid-long, flexible cap domain, named 'lid domain', which is structurally similar to that found in several other lipases. However, it is unclear how lid domain plasticity affects catalysis in MAGL. By integrating extensive molecular dynamics simulations and free-energy calculations with mutagenesis and kinetic experiments, we here define a lid-domain-mediated mechanism for substrate selection and binding in MAGL catalysis. In particular, we clarify the key role of Phe159 and Ile179, two conserved residues within the lid domain, in regulating substrate specificity in MAGL. We conclude by proposing that other structurally related lipases may share this lid-domain-mediated mechanism for substrate specificity.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Jose M Arencibia
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Bono
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Andrea Armirotti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Stefania Girotto
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; IAS-5/INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| |
Collapse
|
5
|
Aschauer P, Rengachari S, Lichtenegger J, Schittmayer M, Das KMP, Mayer N, Breinbauer R, Birner-Gruenberger R, Gruber CC, Zimmermann R, Gruber K, Oberer M. Crystal structure of the Saccharomyces cerevisiae monoglyceride lipase Yju3p. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:462-70. [PMID: 26869448 DOI: 10.1016/j.bbalip.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/25/2016] [Accepted: 02/06/2016] [Indexed: 10/22/2022]
Abstract
Monoglyceride lipases (MGLs) are a group of α/β-hydrolases that catalyze the hydrolysis of monoglycerides (MGs) into free fatty acids and glycerol. This reaction serves different physiological functions, namely in the last step of phospholipid and triglyceride degradation, in mammalian endocannabinoid and arachidonic acid metabolism, and in detoxification processes in microbes. Previous crystal structures of MGLs from humans and bacteria revealed conformational plasticity in the cap region of this protein and gave insight into substrate binding. In this study, we present the structure of a MGL from Saccharomyces cerevisiae called Yju3p in its free form and in complex with a covalently bound substrate analog mimicking the tetrahedral intermediate of MG hydrolysis. These structures reveal a high conservation of the overall shape of the MGL cap region and also provide evidence for conformational changes in the cap of Yju3p. The complex structure reveals that, despite the high structural similarity, Yju3p seems to have an additional opening to the substrate binding pocket at a different position compared to human and bacterial MGL. Substrate specificities towards MGs with saturated and unsaturated alkyl chains of different lengths were tested and revealed highest activity towards MG containing a C18:1 fatty acid.
Collapse
Affiliation(s)
- Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Srinivasan Rengachari
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Joerg Lichtenegger
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Matthias Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | | | - Nicole Mayer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Christian C Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria; ACIB - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria.
| |
Collapse
|