1
|
Mamsa H, Stark RL, Shin KM, Beedle AM, Crosbie RH. Sarcospan increases laminin-binding capacity of α-dystroglycan to ameliorate DMD independent of Galgt2. Hum Mol Genet 2022; 31:718-732. [PMID: 34581784 PMCID: PMC8895749 DOI: 10.1093/hmg/ddab276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), mutations in dystrophin result in a loss of the dystrophin-glycoprotein complex (DGC) at the myofiber membrane, which functions to connect the extracellular matrix with the intracellular actin cytoskeleton. The dystroglycan subcomplex interacts with dystrophin and spans the sarcolemma where its extensive carbohydrates (matriglycan and CT2 glycan) directly interact with the extracellular matrix. In the current manuscript, we show that sarcospan overexpression enhances the laminin-binding capacity of dystroglycan in DMD muscle by increasing matriglycan glycosylation of α-dystroglycan. Furthermore, we find that this modification is not affected by loss of Galgt2, a glycotransferase, which catalyzes the CT2 glycan. Our findings reveal that the matriglycan carbohydrates, and not the CT2 glycan, are necessary for sarcospan-mediated amelioration of DMD. Overexpression of Galgt2 in the DMD mdx murine model prevents muscle pathology by increasing CT2 modified α-dystroglycan. Galgt2 also increases expression of utrophin, which compensates for the loss of dystrophin in DMD muscle. We found that combined loss of Galgt2 and dystrophin reduced utrophin expression; however, it did not interfere with sarcospan rescue of disease. These data reveal a partial dependence of sarcospan on Galgt2 for utrophin upregulation. In addition, sarcospan alters the cross-talk between the adhesion complexes by decreasing the association of integrin β1D with dystroglycan complexes. In conclusion, sarcospan functions to re-wire the cell to matrix connections by strengthening the cellular adhesion and signaling, which, in turn, increases the resilience of the myofiber membrane.
Collapse
Affiliation(s)
- Hafsa Mamsa
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Rachelle L Stark
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Kara M Shin
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, Binghamton University State University of New York, New York 13902, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
- Broad Stem Cell Institute, University of California, Los Angeles 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
- Molecular Biology Institute, University of California, Los Angeles 90095, USA
| |
Collapse
|
2
|
Soblechero-Martín P, López-Martínez A, de la Puente-Ovejero L, Vallejo-Illarramendi A, Arechavala-Gomeza V. Utrophin modulator drugs as potential therapies for Duchenne and Becker muscular dystrophies. Neuropathol Appl Neurobiol 2021; 47:711-723. [PMID: 33999469 PMCID: PMC8518368 DOI: 10.1111/nan.12735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Utrophin is an autosomal paralogue of dystrophin, a protein whose deficit causes Duchenne and Becker muscular dystrophies (DMD/BMD). Utrophin is naturally overexpressed at the sarcolemma of mature dystrophin‐deficient fibres in DMD and BMD patients as well as in the mdx Duchenne mouse model. Dystrophin and utrophin can co‐localise in human foetal muscle, in the dystrophin‐competent fibres from DMD/BMD carriers, and revertant fibre clusters in biopsies from DMD patients. These findings suggest that utrophin overexpression could act as a surrogate, compensating for the lack of dystrophin, and, as such, it could be used in combination with dystrophin restoration therapies. Different strategies to overexpress utrophin are currently under investigation. In recent years, many compounds have been reported to modulate utrophin expression efficiently in preclinical studies and ameliorate the dystrophic phenotype in animal models of the disease. In this manuscript, we discuss the current knowledge on utrophin protein and the different mechanisms that modulate its expression in skeletal muscle. We also include a comprehensive review of compounds proposed as utrophin regulators and, as such, potential therapeutic candidates for these muscular dystrophies.
Collapse
Affiliation(s)
- Patricia Soblechero-Martín
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Laboratory Service, Osakidetza Basque Health Service, Bilbao-Basurto Integrated Health Organisation, Basurto University Hospital, Bilbao, Spain
| | - Andrea López-Martínez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, Bayat H, Yousefi M, Azhdari S, Talebi S, Mojarrad M. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci 2020; 131:370-389. [DOI: 10.1080/00207454.2020.1740218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Salmaninejad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abarghan
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bayat
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Yousefi
- Department of Medical Genetics Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Samaneh Talebi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Liu X, Qu H, Zheng Y, Liao Q, Zhang L, Liao X, Xiong X, Wang Y, Zhang R, Wang H, Tong Q, Liu Z, Dong H, Yang G, Zhu Z, Xu J, Zheng H. Mitochondrial glycerol 3-phosphate dehydrogenase promotes skeletal muscle regeneration. EMBO Mol Med 2019; 10:emmm.201809390. [PMID: 30389681 PMCID: PMC6284384 DOI: 10.15252/emmm.201809390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
While adult mammalian skeletal muscle is stable due to its post‐mitotic nature, muscle regeneration is still essential throughout life for maintaining functional fitness. During certain diseases, such as the modern pandemics of obesity and diabetes, the regeneration process becomes impaired, which leads to the loss of muscle function and contributes to the global burden of these diseases. However, the underlying mechanisms of the impairment are not well defined. Here, we identify mGPDH as a critical regulator of skeletal muscle regeneration. Specifically, it regulates myogenic markers and myoblast differentiation by controlling mitochondrial biogenesis via CaMKKβ/AMPK. mGPDH−/− attenuated skeletal muscle regeneration in vitro and in vivo, while mGPDH overexpression ameliorated dystrophic pathology in mdx mice. Moreover, in patients and animal models of obesity and diabetes, mGPDH expression in skeletal muscle was reduced, further suggesting a direct correlation between its abundance and muscular regeneration capability. Rescuing mGPDH expression in obese and diabetic mice led to a significant improvement in their muscle regeneration. Our study provides a potential therapeutic target for skeletal muscle regeneration impairment during obesity and diabetes.
Collapse
Affiliation(s)
- Xiufei Liu
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Qu
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Zheng
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liao
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Linlin Zhang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyu Liao
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Xiong
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuren Wang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rui Zhang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Wang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Tong
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Xu
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongting Zheng
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Guiraud S, Roblin D, Kay DE. The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1438261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Guiraud
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Davies. E. Kay
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 2017; 34:36-48. [DOI: 10.1016/j.coph.2017.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
7
|
Dall'Olio F, Malagolini N, Chiricolo M, Trinchera M, Harduin-Lepers A. The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim Biophys Acta Gen Subj 2013; 1840:443-53. [PMID: 24112972 DOI: 10.1016/j.bbagen.2013.09.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The histo-blood group antigens are carbohydrate structures present in tissues and body fluids, which contribute to the definition of the individual immunophenotype. One of these, the Sd(a) antigen, is expressed on the surface of erythrocytes and in secretions of the vast majority of the Caucasians and other ethnic groups. SCOPE OF REVIEW We describe the multiple and unsuspected aspects of the biology of the Sd(a) antigen and its biosynthetic enzyme β1,4-N-acetylgalactosaminyltransferase 2 (B4GALNT2) in various physiological and pathological settings. MAJOR CONCLUSIONS The immunodominant sugar of the Sd(a) antigen is a β1,4-linked N-acetylgalactosamine (GalNAc). Its cognate glycosyltransferase B4GALNT2 displays a restricted pattern of tissue expression, is regulated by unknown mechanisms - including promoter methylation, and encodes at least two different proteins, one of which with an unconventionally long cytoplasmic portion. In different settings, the Sd(a) antigen plays multiple and unsuspected roles. 1) In colon cancer, its dramatic down-regulation plays a potential role in the overexpression of sialyl Lewis antigens, increasing metastasis formation. 2) It is involved in the lytic function of murine cytotoxic T lymphocytes. 3) It prevents the development of muscular dystrophy in various dystrophic murine models, when overexpressed in muscular fibers. 4) It regulates the circulating half-life of the von Willebrand factor (vWf), determining the onset of a bleeding disorder in a murine model. GENERAL SIGNIFICANCE The expression of the Sd(a) antigen has a wide impact on the physiology and the pathology of different biological systems.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
8
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
9
|
Amirouche A, Tadesse H, Lunde JA, Bélanger G, Côté J, Jasmin BJ. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics. Hum Mol Genet 2013; 22:3093-111. [PMID: 23575223 DOI: 10.1093/hmg/ddt165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several therapeutic approaches are currently being developed for Duchenne muscular dystrophy (DMD) including upregulating the levels of endogenous utrophin A in dystrophic fibers. Here, we examined the role of post-transcriptional mechanisms in controlling utrophin A expression in skeletal muscle. We show that activation of p38 leads to an increase in utrophin A independently of a transcriptional induction. Rather, p38 controls the levels of utrophin A mRNA by extending the half-life of transcripts via AU-rich elements (AREs). This mechanism critically depends on a decrease in the functional availability of KSRP, an RNA-binding protein known to promote decay of ARE-containing transcripts. In vitro and in vivo binding studies revealed that KSRP interacts with specific AREs located within the utrophin A 3' UTR. Electroporation experiments to knockdown KSRP led to an increase in utrophin A in wild-type and mdx mouse muscles. In pre-clinical studies, treatment of mdx mice with heparin, an activator of p38, causes a pronounced increase in utrophin A in diaphragm muscle fibers. Together, these studies identify a pathway that culminates in the post-transcriptional regulation of utrophin A through increases in mRNA stability. Furthermore, our results constitute proof-of-principle showing that pharmacological activation of p38 may prove beneficial as a novel therapeutic approach for DMD.
Collapse
Affiliation(s)
- Adel Amirouche
- Faculty of Medicine, Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
10
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
11
|
Marshall JL, Holmberg J, Chou E, Ocampo AC, Oh J, Lee J, Peter AK, Martin PT, Crosbie-Watson RH. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. ACTA ACUST UNITED AC 2012; 197:1009-27. [PMID: 22734004 PMCID: PMC3384411 DOI: 10.1083/jcb.201110032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Utrophin is normally confined to the neuromuscular junction (NMJ) in adult muscle and partially compensates for the loss of dystrophin in mdx mice. We show that Akt signaling and utrophin levels were diminished in sarcospan (SSPN)-deficient muscle. By creating several transgenic and knockout mice, we demonstrate that SSPN regulates Akt signaling to control utrophin expression. SSPN determined α-dystroglycan (α-DG) glycosylation by affecting levels of the NMJ-specific glycosyltransferase Galgt2. After cardiotoxin (CTX) injury, regenerating myofibers express utrophin and Galgt2-modified α-DG around the sarcolemma. SSPN-null mice displayed delayed differentiation after CTX injury caused by loss of utrophin and Akt signaling. Treatment of SSPN-null mice with viral Akt increased utrophin and restored muscle repair after injury, revealing an important role for the SSPN-Akt-utrophin signaling axis in regeneration. SSPN improved cell surface expression of utrophin by increasing transportation of utrophin and DG from endoplasmic reticulum/Golgi membranes. Our experiments reveal functions of utrophin in regeneration and new pathways that regulate utrophin expression at the cell surface.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology and 2 Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Duchenne muscular dystrophy is a devastating muscular dystrophy of childhood. Mutations in the dystrophin gene destroy the link between the internal muscle filaments and the extracellular matrix, resulting in severe muscle weakness and progressive muscle wasting. There is currently no cure and, whilst palliative treatment has improved, affected boys are normally confined to a wheelchair by 12 years of age and die from respiratory or cardiac complications in their twenties or thirties. Therapies currently being developed include mutation-specific treatments, DNA- and cell-based therapies, and drugs which aim to modulate cellular pathways or gene expression. This review aims to provide an overview of the different therapeutic approaches aimed at reconstructing the dystrophin-associated protein complex, including restoration of dystrophin expression and upregulation of the functional homologue, utrophin.
Collapse
Affiliation(s)
- Rebecca J Fairclough
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford UK
| | | | | |
Collapse
|