1
|
Draper I, Huang W, Pande S, Zou A, Calamaras TD, Choe RH, Correia-Branco A, Mei AL, Chen HH, Littel HR, Gunasekaran M, Wells NM, Bruels CC, Daugherty AL, Wolf MJ, Kang PB, Yang VK, Slonim DK, Wallingford MC, Blanton RM. The splicing factor hnRNPL demonstrates conserved myocardial regulation across species and is altered in heart failure. FEBS Lett 2024. [PMID: 39300280 DOI: 10.1002/1873-3468.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Heart failure (HF) is highly prevalent. Mechanisms underlying HF remain incompletely understood. Splicing factors (SF), which control pre-mRNA alternative splicing, regulate cardiac structure and function. This study investigated regulation of the splicing factor heterogeneous nuclear ribonucleoprotein-L (hnRNPL) in the failing heart. hnRNPL protein increased in left ventricular tissue from mice with transaortic constriction-induced HF and from HF patients. In left ventricular tissue, hnRNPL was detected predominantly in nuclei. Knockdown of the hnRNPL homolog Smooth in Drosophila induced cardiomyopathy. Computational analysis of predicted mouse and human hnRNPL binding sites suggested hnRNPL-mediated alternative splicing of tropomyosin, which was confirmed in C2C12 myoblasts. These findings identify hnRNPL as a sensor of cardiac dysfunction and suggest that disturbances of hnRNPL affect alternative splicing in HF.
Collapse
Affiliation(s)
- Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Wanting Huang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Suchita Pande
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Aaron Zou
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Timothy D Calamaras
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Richard H Choe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | - Ariel L Mei
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Hannah R Littel
- Greg Marzolf Jr. Muscular Dystrophy Center, Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Mekala Gunasekaran
- Greg Marzolf Jr. Muscular Dystrophy Center, Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Natalya M Wells
- Greg Marzolf Jr. Muscular Dystrophy Center, Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Christine C Bruels
- Greg Marzolf Jr. Muscular Dystrophy Center, Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Audrey L Daugherty
- Greg Marzolf Jr. Muscular Dystrophy Center, Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Wolf
- Division of Cardiology, University of Virginia, Charlottesville, VA, USA
| | - Peter B Kang
- Greg Marzolf Jr. Muscular Dystrophy Center, Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Vicky K Yang
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | | | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Kopylova GV, Kochurova AM, Yampolskaya DS, Nefedova VV, Tsaturyan AK, Koubassova NA, Kleymenov SY, Levitsky DI, Bershitsky SY, Matyushenko AM, Shchepkin DV. Structural and Functional Properties of Kappa Tropomyosin. Int J Mol Sci 2023; 24:ijms24098340. [PMID: 37176047 PMCID: PMC10179609 DOI: 10.3390/ijms24098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.
Collapse
Affiliation(s)
- Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Daria S Yampolskaya
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Victoria V Nefedova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | - Sergey Y Kleymenov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitrii I Levitsky
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | | | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| |
Collapse
|
4
|
Barrick SK, Garg A, Greenberg L, Zhang S, Lin CY, Stitziel NO, Greenberg MJ. Functional assays reveal the pathogenic mechanism of a de novo tropomyosin variant identified in patient with dilated cardiomyopathy. J Mol Cell Cardiol 2023; 176:58-67. [PMID: 36739943 PMCID: PMC11285302 DOI: 10.1016/j.yjmcc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and a major indicator for heart transplant. Human genetic studies have identified over a thousand causal mutations for DCM in genes involved in a variety of cellular processes, including sarcomeric contraction. A substantial clinical challenge is determining the pathogenicity of novel variants in disease-associated genes. This challenge of connecting genotype and phenotype has frustrated attempts to develop effective, mechanism-based treatments for patients. Here, we identified a de novo mutation (T237S) in TPM1, the gene that encodes the thin filament protein tropomyosin, in a patient with DCM and conducted in vitro experiments to characterize the pathogenicity of this novel variant. We expressed recombinant mutant protein, reconstituted it into thin filaments, and examined the effects of the mutation on thin filament function. We show that the mutation reduces the calcium sensitivity of thin filament activation, as previously seen for known pathogenic mutations. Mechanistically, this shift is due to mutation-induced changes in tropomyosin positioning along the thin filament. We demonstrate that the thin filament activator omecamtiv mecarbil restores the calcium sensitivity of thin filaments regulated by the mutant tropomyosin, which lays the foundation for additional experiments to explore the therapeutic potential of this drug for patients harboring the T237S mutation. Taken together, our results suggest that the TPM1 T237S mutation is likely pathogenic and demonstrate how functional in vitro characterization of pathogenic protein variants in the lab might guide precision medicine in the clinic.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Ma X, Liao Z, Li R, Xia W, Guo H, Luo J, Sheng H, Tian M, Cao Z. Myocardial Injury Caused by Chronic Alcohol Exposure—A Pilot Study Based on Proteomics. Molecules 2022; 27:molecules27134284. [PMID: 35807529 PMCID: PMC9268295 DOI: 10.3390/molecules27134284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic alcohol exposure can cause myocardial degenerative diseases, manifested as cardiac insufficiency, arrhythmia, etc. These are defined as alcoholic cardiomyopathy (ACM). Alcohol-mediated myocardial injury has previously been studied through metabolomics, and it has been proved to be involved in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway concerning unsaturated fatty acids biosynthesis and oxidative phosphorylation, which tentatively explored the mechanism of ACM induced by chronic drinking. To further study alcohol-induced myocardial injury, myocardial specimens from a previously successfully established mouse model of ACM were subjected to histological, echocardiographic, and proteomic analyses, and validated by real-time quantitative polymerase chain reaction (qPCR). Results of histopathology and echocardiography showed the hypertrophy of cardiomyocytes, the dilation of ventricles, and decreased cardiac function. Proteomic results, available via ProteomeXchange with identifier PXD032949, revealed 56 differentially expressed proteins (DEPs) were identified, which have the potential to be involved in the KEGG pathway related to fatty acid biosynthesis disorders, lipid metabolism disorders, oxidative stress, and, ultimately, in the development of dilated cardiomyopathy (DCM). The present study further elucidates the underlying effects of myocardial injury due to chronic alcohol intake, laying a foundation for further studies to clarify the potential mechanisms of ACM.
Collapse
Affiliation(s)
- Xiaonan Ma
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- The Third Clinical Department, China Medical University, Shenyang 110122, China
| | - Zihan Liao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
| | - Rongxuan Li
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- The Third Clinical Department, China Medical University, Shenyang 110122, China
| | - Wei Xia
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (W.X.); (H.G.)
| | - Honghui Guo
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (W.X.); (H.G.)
| | - Jiawei Luo
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Meihui Tian
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Correspondence: (M.T.); (Z.C.)
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
- Correspondence: (M.T.); (Z.C.)
| |
Collapse
|
6
|
Cao J, Routh AL, Kuyumcu-Martinez MN. Nanopore sequencing reveals full-length Tropomyosin 1 isoforms and their regulation by RNA-binding proteins during rat heart development. J Cell Mol Med 2021; 25:8352-8362. [PMID: 34302435 PMCID: PMC8419188 DOI: 10.1111/jcmm.16795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) contributes to the diversity of the proteome by producing multiple isoforms from a single gene. Although short‐read RNA‐sequencing methods have been the gold standard for determining AS patterns of genes, they have a difficulty in defining full‐length mRNA isoforms assembled using different exon combinations. Tropomyosin 1 (TPM1) is an actin‐binding protein required for cytoskeletal functions in non‐muscle cells and for contraction in muscle cells. Tpm1 undergoes AS regulation to generate muscle versus non‐muscle TPM1 protein isoforms with distinct physiological functions. It is unclear which full‐length Tpm1 isoforms are produced via AS and how they are regulated during heart development. To address these, we utilized nanopore long‐read cDNA sequencing without gene‐specific PCR amplification. In rat hearts, we identified full‐length Tpm1 isoforms composed of distinct exons with specific exon linkages. We showed that Tpm1 undergoes AS transitions during embryonic heart development such that muscle‐specific exons are connected generating predominantly muscle‐specific Tpm1 isoforms in adult hearts. We found that the RNA‐binding protein RBFOX2 controls AS of rat Tpm1 exon 6a, which is important for cooperative actin binding. Furthermore, RBFOX2 regulates Tpm1 AS of exon 6a antagonistically to the RNA‐binding protein PTBP1. In sum, we defined full‐length Tpm1 isoforms with different exon combinations that are tightly regulated during cardiac development and provided insights into the regulation of Tpm1 AS by RNA‐binding proteins. Our results demonstrate that nanopore sequencing is an excellent tool to determine full‐length AS variants of muscle‐enriched genes.
Collapse
Affiliation(s)
- Jun Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
7
|
Cheng N, Mo Q, Donelson J, Wang L, Breton G, Rodney GG, Wang J, Hirschi KD, Wehrens XHT, Nakata PA. Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. Int J Biol Sci 2021; 17:2871-2883. [PMID: 34345213 PMCID: PMC8326124 DOI: 10.7150/ijbs.60263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jimmonique Donelson
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Biomolecules 2020; 10:biom10030442. [PMID: 32178433 PMCID: PMC7175236 DOI: 10.3390/biom10030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
: Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.
Collapse
|
10
|
Watabe E, Ono S, Kuroyanagi H. Alternative splicing of the Caenorhabditis elegans lev-11 tropomyosin gene is regulated in a tissue-specific manner. Cytoskeleton (Hoboken) 2018; 75:427-436. [PMID: 30155988 DOI: 10.1002/cm.21489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 01/14/2023]
Abstract
Tropomyosin isoforms contribute to generation of functionally divergent actin filaments. In the nematode Caenorhabditis elegans, multiple isoforms are produced from lev-11, the single tropomyosin gene, by combination of two separate promoters and alternative pre-mRNA splicing. In this study, we report that alternative splicing of lev-11 is regulated in a tissue-specific manner so that a particular tropomyosin isoform is expressed in each tissue. Reverse-transcription polymerase chain reaction analysis of lev-11 mRNAs confirms five previously reported isoforms (LEV-11A, LEV-11C, LEV-11D, LEV-11E and LEV-11O) and identifies a new sixth isoform LEV-11T. Using transgenic alternative-splicing reporter minigenes, we find distinct patterns of preferential exon selections in the pharynx, body wall muscles, intestine and neurons. The body wall muscles preferentially process splicing to produce high-molecular-weight isoforms, LEV-11A, LEV-11D and LEV-11O. The pharynx specifically processes splicing to express a low-molecular-weight isoform LEV-11E, whereas the intestine and neurons process splicing to express another low-molecular-weight isoform LEV-11C. The splicing pattern of LEV-11T was not predominant in any of these tissues, suggesting that this is a minor isoform. Our results suggest that regulation of alternative splicing is an important mechanism to express proper tropomyosin isoforms in particular tissue and/or cell types in C. elegans.
Collapse
Affiliation(s)
- Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoichiro Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Dvornikov AV, de Tombe PP, Xu X. Phenotyping cardiomyopathy in adult zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:116-125. [PMID: 29884423 PMCID: PMC6269218 DOI: 10.1016/j.pbiomolbio.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is usually manifested by increased myofilament Ca2+ sensitivity, excessive contractility, and impaired relaxation. In contrast, dilated cardiomyopathy (DCM) originates from insufficient sarcomere contractility and reduced cardiac pump function, subsequently resulting in heart failure. The zebrafish has emerged as a new model of human cardiomyopathy with high-throughput screening, which will facilitate the discovery of novel genetic factors and the development of new therapies. Given the small hearts of zebrafish, better phenotyping tools are needed to discern different types of cardiomyopathy, such as HCM and DCM. This article reviews the existing models of cardiomyopathy, available morphologic and functional methods, and current understanding of the different types of cardiomyopathy in adult zebrafish.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Pieter P de Tombe
- University of Illinois at Chicago, Department of Physiology and Biophysics, Chicago, IL, USA; Magdi Yacoub Institute, Cardiac Biophysics Division, Harefield, UK; Imperial College, Heart and Lung Institute, London, UK; Freiburg University, Institute for Experimental Cardiovascular Medicine, Germany
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Zhu C, Chen Z, Guo W. Pre-mRNA mis-splicing of sarcomeric genes in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2056-2063. [PMID: 27825848 DOI: 10.1016/j.bbadis.2016.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 12/01/2022]
Abstract
Pre-mRNA splicing is an important biological process that allows production of multiple proteins from a single gene in the genome, and mainly contributes to protein diversity in eukaryotic organisms. Alternative splicing is commonly governed by RNA binding proteins to meet the ever-changing demands of the cell. However, the mis-splicing may lead to human diseases. In the heart of human, mis-regulation of alternative splicing has been associated with heart failure. In this short review, we focus on alternative splicing of sarcomeric genes and review mis-splicing related heart failure with relatively well studied Sarcomeric genes and splicing mechanisms with identified regulatory factors. The perspective of alternative splicing based therapeutic strategies in heart failure has also been discussed.
Collapse
Affiliation(s)
- Chaoqun Zhu
- Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Zhilong Chen
- Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Guo
- Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
13
|
Nikitina LV, Kopylova GV, Shchepkin DV, Nabiev SR, Bershitsky SY. Investigations of Molecular Mechanisms of Actin-Myosin Interactions in Cardiac Muscle. BIOCHEMISTRY (MOSCOW) 2016; 80:1748-63. [PMID: 26878579 DOI: 10.1134/s0006297915130106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed - two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin-myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin-myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.
Collapse
Affiliation(s)
- L V Nikitina
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, 620041, Russia.
| | | | | | | | | |
Collapse
|
14
|
Warren CM, Karam CN, Wolska BM, Kobayashi T, de Tombe PP, Arteaga GM, Bos JM, Ackerman MJ, Solaro RJ. Green Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy-Associated Mutation in Human Cardiac Troponin I (K206I). ACTA ACUST UNITED AC 2015; 8:765-73. [PMID: 26553696 DOI: 10.1161/circgenetics.115.001234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease characterized by thickening of ventricular walls and decreased left ventricular chamber volume. The majority of HCM-associated mutations are found in genes encoding sarcomere proteins. Herein, we set out to functionally characterize a novel HCM-associated mutation (K206I-TNNI3) and elucidate the mechanism of dysfunction at the level of myofilament proteins. METHODS AND RESULTS The male index case was diagnosed with HCM after an out-of-hospital cardiac arrest, which was followed by comprehensive clinical evaluation, transthoracic echocardiography, and clinical genetic testing. To determine molecular mechanism(s) of the mutant human cardiac troponin I (K206I), we tested the Ca(2+) dependence of thin filament-activated myosin-S1-ATPase activity in a reconstituted, regulated, actomyosin system comparing wild-type human troponin complex, 50% mix of K206I/wildtype, or 100% K206I. We also exchanged native troponin detergent extracted fibers with reconstituted troponin containing either wildtype or a 65% mix of K206I/wildtype and measured force generation. The Ca(2+) sensitivity of the myofilaments containing the K206I variant was significantly increased, and when treated with 20 µmol/L (-)-epigallocatechin gallate (green tea) was restored back to wild-type levels in ATPase and force measurements. The K206I mutation impairs the ability of the troponin I to inhibit ATPase activity in the absence of calcium-bound human cardiac troponin C. The ability of calcium-bound human cardiac troponin C to neutralize the inhibition of K206I was greater than with wild-type TnI. CONCLUSIONS Compromised interactions of K206I with actin and hcTnC may lead to impaired relaxation and HCM.
Collapse
Affiliation(s)
- Chad M Warren
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Chehade N Karam
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Beata M Wolska
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Tomoyoshi Kobayashi
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Pieter P de Tombe
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Grace M Arteaga
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - J Martijn Bos
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| | - R John Solaro
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.M.B., M.J.A.), Division of Pediatric Cardiology, Department of Pediatrics (J.M.B., M.J.A.), and Division of Cardiovascular Diseases, Department of Medicine (M.J.A.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
15
|
Expression of Tropomyosin 1 Gene Isoforms in Human Breast Cancer Cell Lines. Int J Breast Cancer 2015; 2015:859427. [PMID: 26171250 PMCID: PMC4480939 DOI: 10.1155/2015/859427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 01/14/2023] Open
Abstract
Nine malignant breast epithelial cell lines and 3 normal breast cell lines were examined for stress fiber formation and expression of TPM1 isoform-specific RNAs and proteins. Stress fiber formation was strong (++++) in the normal cell lines and varied among the malignant cell lines (negative to +++). Although TPM1γ and TPM1δ were the dominant transcripts of TPM1, there was no clear evidence for TPM1δ protein expression. Four novel human TPM1 gene RNA isoforms were discovered (λ, μ, ν, and ξ), which were not identified in adult and fetal human cardiac tissues. TPM1λ was the most frequent isoform expressed in the malignant breast cell lines, and it was absent in normal breast epithelial cell lines. By western blotting, we were unable to distinguish between TPM1γ, λ, and ν protein expression, which were the only TPM1 gene protein isoforms potentially expressed. Some malignant cell lines demonstrated increased or decreased expression of these isoforms relative to the normal breast cell lines. Stress fiber formation did not correlate with TPM1γ RNA expression but significantly and inversely correlated with TPM1δ and TPM1λ expression, respectively. The exact differences in expression of these novel isoforms and their functional properties in breast epithelial cells will require further study.
Collapse
|
16
|
Dube DK, McLean MD, Dube S, Poiesz BJ. Translational control of tropomyosin expression in vertebrate hearts. Anat Rec (Hoboken) 2015; 297:1585-95. [PMID: 25125172 DOI: 10.1002/ar.22978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 01/23/2023]
Abstract
The tropomyosin (TM) gene family produces a set of related TM proteins with important functions in striated and smooth muscle, and nonmuscle cells. In vertebrate striated muscle, the thin filament consists largely of actin, TM, the troponin (Tn) complex (Tn-I, Tn-C and Tn-T), and tropomodulin (Tmod) and is responsible for mediating Ca(2+) control of muscle contraction and relaxation. There are four known genes (designated as TPM1, TPM2, TPM3, and TPM4) for TM in vertebrates. The four TM genes generate a multitude of tissue- and developmental-specific isoforms through the use of different promoters, alternative mRNA splicing, different 3'-end mRNA processing and tissue-specific translational control. In this review, we have focused mainly on the regulation of TM expression in striated muscles, primarily in vertebrate hearts with special emphasis on translational control using mouse and Mexican axolotl animal models.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | | | | | | |
Collapse
|
17
|
Yin Z, Ren J, Guo W. Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta Mol Basis Dis 2014; 1852:47-52. [PMID: 25446994 DOI: 10.1016/j.bbadis.2014.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2023]
Abstract
Sarcomeric protein isoforms are mainly governed by alternative promoter-driven expression, distinct gene expression, gene mutation and alternative mRNA splicing. The transitions of sarcomeric proteins have been implicated to play a role in the onset and development of human heart failure. In this mini-review, we summarized isoform transitions of several most widely examined sarcomeric proteins including myosin, actin, troponin, tropomyosin, titin and myosin binding protein-C, and the consequence of these abnormal isoform transitions. Even though the isoform transitions of sarcomeric proteins have been described in individual sarcomeric protein reviews, no concise summary of these results has been presented previously. This review is intended to fill this gap and discuss possible future perspectives.
Collapse
Affiliation(s)
- Zhiyong Yin
- Animal Science, College of Agriculture and Natural Resources, University of WY, Laramie WY82071, USA; Department of Cardiology, Xi Jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, College of Health Science, University of WY, Laramie WY82071, USA
| | - Wei Guo
- Animal Science, College of Agriculture and Natural Resources, University of WY, Laramie WY82071, USA; Center for Cardiovascular Research and Alternative Medicine, College of Health Science, University of WY, Laramie WY82071, USA.
| |
Collapse
|
18
|
Expression of TPM1κ, a Novel Sarcomeric Isoform of the TPM1 Gene, in Mouse Heart and Skeletal Muscle. Mol Biol Int 2014; 2014:896068. [PMID: 24876965 PMCID: PMC4020292 DOI: 10.1155/2014/896068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/29/2022] Open
Abstract
We have investigated the expression of TPM1α and TPM1κ in mouse striated muscles. TPM1α and TMP1κ were amplified from the cDNA of mouse heart by using conventional RT-PCR. We have cloned the PCR amplified DNA and determined the nucleotide sequences. Deduced amino acid sequences show that there are three amino acid changes in mouse exon 2a when compared with the human TPM1κ. However, the deduced amino acid sequences of human TPM1α and mouse TPM1α are identical. Conventional RT-PCR data as well as qRT-PCR data, calculating both absolute copy number and relative expression, revealed that the expression of TPM1κ is significantly lower compared to TPM1α in both mouse heart and skeletal muscle. It was also found that the expression level of TPM1κ transcripts in mouse heart is higher than it is in skeletal muscle. To the best of our knowledge, this is the first report of the expression of TPM1κ in mammalian skeletal muscle.
Collapse
|
19
|
A study of tropomyosin's role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 2013; 34:295-310. [PMID: 23700264 DOI: 10.1007/s10974-013-9343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Tropomyosin (Tm) is the key regulatory component of the thin-filament and plays a central role in the cardiac muscle's cooperative activation mechanism. Many mutations of cardiac Tm are related to hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular noncompaction (LVNC). Using the thin-filament extraction/reconstitution technique, we are able to incorporate various Tm mutants and protein isoforms into a muscle fiber environment to study their roles in Ca(2+) regulation, cross-bridge kinetics, and force generation. The thin-filament reconstitution technique poses several advantages compared to other in vitro and in vivo methods: (1) Tm mutants and isoforms are placed into the real muscle fiber environment to exhibit their effect on a level much higher than simple protein complexes; (2) only the primary and immediate effects of Tm mutants are studied in the thin-filament reconstituted myocardium; (3) lethal mutants of Tm can be studied without causing a problem; and (4) inexpensive. In transgenic models, various secondary effects (myocyte disarray, ECM fibrosis, altered protein phosphorylation levels, etc.) also affect the performance of the myocardium, making it very difficult to isolate the primary effect of the mutation. Our studies on Tm have demonstrated that: (1) Tm positively enhances the hydrophobic interaction between actin and myosin in the "closed state", which in turn enhances the isometric tension; (2) Tm's seven periodical repeats carry distinct functions, with the 3rd period being essential for the tension enhancement; (3) Tm mutants lead to HCM by impairing the relaxation on one hand, and lead to DCM by over inhibition of the AM interaction on the other hand. Ca(2+) sensitivity is affected by inorganic phosphate, ionic strength, and phosphorylation of constituent proteins; hence it may not be the primary cause of the pathogenesis. Here, we review our current knowledge regarding Tm's effect on the actomyosin interaction and the early molecular pathogenesis of Tm mutation related to HCM, DCM, and LVNC.
Collapse
|
20
|
Simoneau B, Houle F, Huot J. Regulation of endothelial permeability and transendothelial migration of cancer cells by tropomyosin-1 phosphorylation. Vasc Cell 2012; 4:18. [PMID: 23157718 PMCID: PMC3552968 DOI: 10.1186/2045-824x-4-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/11/2012] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED BACKGROUND Loss of endothelial cell integrity and selective permeability barrier is an early event in the sequence of oxidant-mediated injury and may result in atherosclerosis, hypertension and facilitation of transendothelial migration of cancer cells during metastasis. We already reported that endothelial cell integrity is tightly regulated by the balanced co-activation of p38 and ERK pathways. In particular, we showed that phosphorylation of tropomyosin-1 (tropomyosin alpha-1 chain = Tm1) at Ser283 by DAP kinase, downstream of the ERK pathway might be a key event required to maintain the integrity and normal functions of the endothelium in response to oxidative stress. METHODS Endothelial permeability was assayed by monitoring the passage of Dextran-FITC through a tight monolayer of HUVECs grown to confluence in Boyden chambers. Actin and Tm1 dynamics and distribution were evaluated by immunofluorescence. We modulated the expression of Tm1 by siRNA and lentiviral-mediated expression of wild type and mutated forms of Tm1 insensitive to the siRNA. Transendothelial migration of HT-29 colon cancer cells was monitored in Boyden chambers similarly as for permeability. RESULTS We provide evidence indicating that Tm1 phosphorylation at Ser283 is essential to regulate endothelial permeability under oxidative stress by modulating actin dynamics. Moreover, the transendothelial migration of colon cancer cells is also regulated by the phosphorylation of Tm1 at Ser283. CONCLUSION Our finding strongly support the role for the phosphorylation of endothelial Tm1 at Ser283 to prevent endothelial barrier dysfunction associated with oxidative stress injury.
Collapse
Affiliation(s)
- Bryan Simoneau
- Centre de recherche du CHU de Québec, l'Hôtel-Dieu de Québec et Le Centre de recherche en cancérologie de l'Université Laval, 9 rue McMahon, Québec, G1R 2J6, Canada.
| | | | | |
Collapse
|
21
|
Margaret Sunitha S, Mercer JA, Spudich JA, Sowdhamini R. Integrative structural modelling of the cardiac thin filament: energetics at the interface and conservation patterns reveal a spotlight on period 2 of tropomyosin. Bioinform Biol Insights 2012; 6:203-23. [PMID: 23071391 PMCID: PMC3468436 DOI: 10.4137/bbi.s9798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiomyopathies are a major health problem, with inherited cardiomyopathies, many of which are caused by mutations in genes encoding sarcomeric proteins, constituting an ever-increasing fraction of cases. To begin to study the mechanisms by which these mutations cause disease, we have employed an integrative modelling approach to study the interactions between tropomyosin and actin. Starting from the existing blocked state model, we identified a specific zone on the actin surface which is highly favourable to support tropomyosin sliding from the blocked/closed states to the open state. We then analysed the predicted actin-tropomyosin interface regions for the three states. Each quasi-repeat of tropomyosin was studied for its interaction strength and evolutionary conservation to focus on smaller surface zones. Finally, we show that the distribution of the known cardiomyopathy mutations of α-tropomyosin is consistent with our model. This analysis provides structural insights into the possible mode of interactions between tropomyosin and actin in the open state for the first time.
Collapse
Affiliation(s)
- S Margaret Sunitha
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | | | | | | |
Collapse
|
22
|
Mateja RD, Greaser ML, de Tombe PP. Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:804-11. [PMID: 22951219 DOI: 10.1016/j.bbamcr.2012.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 01/19/2023]
Abstract
The magnitude of length dependent activation in striated muscle has been shown to vary with titin isoform. Recently, a rat that harbors a homozygous autosomal mutation (HM) causing preferential expression of a longer, giant titin isoform was discovered (Greaser et al. 2005). Here, we investigated the impact of titin isoform on myofilament force development and cross-bridge cycling kinetics as function of sarcomere length (SL) in tibialis anterior skeletal muscle isolated from wild type (WT) and HM. Skeletal muscle bundles from HM rats exhibited reductions in passive tension, maximal force development, myofilament calcium sensitivity, maximal ATP consumption, and tension cost at both short and long sarcomere length (SL=2.8μm and SL=3.2μm, respectively). Moreover, the SL-dependent changes in these parameters were attenuated in HM muscles. Additionally, myofilament Ca(2+) activation-relaxation properties were assessed in single isolated myofibrils. Both the rate of tension generation upon Ca(2+) activation (kACT) as well as the rate of tension redevelopment following a length perturbation (kTR) were reduced in HM myofibrils compared to WT, while relaxation kinetics were not affected. We conclude that presence of a long isoform of titin in the striated muscle sarcomere is associated with reduced myofilament force development and cross-bridge cycling kinetics, and a blunting of myofilament length dependent activation. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Ryan D Mateja
- Department of Cell and Molecular Physiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|