1
|
Ryabov NA, Volova LT, Alekseev DG, Kovaleva SA, Medvedeva TN, Vlasov MY. Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material. Polymers (Basel) 2024; 16:1895. [PMID: 39000751 PMCID: PMC11244277 DOI: 10.3390/polym16131895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
The current paper highlights the active development of tissue engineering in the field of the biofabrication of living tissue analogues through 3D-bioprinting technology. The implementation of the latter is impossible without important products such as bioinks and their basic components, namely, hydrogels. In this regard, tissue engineers are searching for biomaterials to produce hydrogels with specified properties both in terms of their physical, mechanical and chemical properties and in terms of local biological effects following implantation into an organism. One of such effects is the provision of the optimal conditions for physiological reparative regeneration by the structural components that form the basis of the biomaterial. Therefore, qualitative assessment of the composition of the protein component of a biomaterial is a significant task in tissue engineering and bioprinting. It is important for predicting the behaviour of printed constructs in terms of their gradual resorption followed by tissue regeneration due to the formation of a new extracellular matrix. One of the most promising natural biomaterials with significant potential in the production of hydrogels and the bioinks based on them is the polymer collagen of allogeneic origin, which plays an important role in maintaining the structural and biological integrity of the extracellular matrix, as well as in the morphogenesis and cellular metabolism of tissues, giving them the required mechanical and biochemical properties. In tissue engineering, collagen is widely used as a basic biomaterial because of its availability, biocompatibility and facile combination with other materials. This manuscript presents the main results of a mass spectrometry analysis (proteomic assay) of the lyophilized hydrogel produced from the registered Lyoplast® bioimplant (allogeneic human bone tissue), which is promising in the field of biotechnology. Proteomic assays of the investigated lyophilized hydrogel sample showed the presence of structural proteins (six major collagen fibers of types I, II, IV, IX, XXVII, XXVIII were identified), extracellular matrix proteins, and mRNA-stabilizing proteins, which participate in the regulation of transcription, as well as inducer proteins that mediate the activation of regeneration, including the level of circadian rhythm. The research results offer a new perspective and indicate the significant potential of the lyophilized hydrogels as an effective alternative to synthetic and xenogeneic materials in regenerative medicine, particularly in the field of biotechnology, acting as a matrix and cell-containing component of bioinks for 3D bioprinting.
Collapse
Affiliation(s)
- Nikolay A. Ryabov
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Larisa T. Volova
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Denis G. Alekseev
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Svetlana A. Kovaleva
- Core Shared Research Facility “Industrial Biotechnologies”, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Tatyana N. Medvedeva
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Mikhail Yu. Vlasov
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| |
Collapse
|
2
|
He Y, Fang Y, Zhai B, Liu X, Zhu G, Zhou S, Xu Y, Wang X, Su W, Wang R. Gm40600 promotes CD4 + T-cell responses by interacting with Ahnak. Immunology 2021; 164:190-206. [PMID: 33987830 PMCID: PMC8358717 DOI: 10.1111/imm.13365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/11/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
It is important to characterize novel proteins involved in T- and B-cell responses. Our previous study demonstrated that a novel protein, Mus musculus Gm40600, reduced the proliferation of Mus musculus plasmablast (PB)-like SP 2/0 cells and B-cell responses induced in vitro by LPS. In the present study, we revealed that Gm40600 directly promoted CD4+ T-cell responses to indirectly up-regulate B-cell responses. Importantly, we found that CD4+ T-cell responses, including T-cell activation and differentiation and cytokine production, were increased in Gm40600 transgenic (Tg) mice and were reduced in Gm40600 knockout (KO) mice. Finally, we demonstrated that Gm40600 promoted the Ahnak-mediated calcium signalling pathway by interacting with Ahnak to maintain a cytoplasmic lateral location of Ahnak in CD4+ T cells. Collectively, our data suggest that Gm40600 promotes CD4+ T-cell activation to up-regulate the B-cell response via interacting with Ahnak to promote the calcium signalling pathway. The results suggest that targeting Gm40600 may be a means to control CD4+ T-cell-related diseases.
Collapse
Affiliation(s)
- Youdi He
- Beijing Institute of Brain DisordersLaboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Fang
- Department of RheumatologyFirst Hospital of Jilin UniversityChangchunChina
| | - Bing Zhai
- Department of Geriatric HematologyChinese PLA General HospitalBeijingChina
| | - Xiaoling Liu
- Department of DermatologyFirst Medical Centre of ChinesePLA General HospitalBeijingChina
| | - Gaizhi Zhu
- Beijing Institute of Brain DisordersLaboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Shan Zhou
- Beijing Institute of Brain DisordersLaboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yaqi Xu
- Beijing Institute of Brain DisordersLaboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co. LtdBeijingChina
| | - Wenting Su
- Beijing Institute of Brain DisordersLaboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Renxi Wang
- Beijing Institute of Brain DisordersLaboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Sundararaj S, Ravindran A, Casarotto MG. AHNAK: The quiet giant in calcium homeostasis. Cell Calcium 2021; 96:102403. [PMID: 33813182 DOI: 10.1016/j.ceca.2021.102403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The phosphoprotein AHNAK is a large, ubiquitously expressed scaffolding protein involved in mediating a host of protein-protein interactions. This enables AHNAK to participate in various multi-protein complexes thereby orchestrating a range of diverse biological processes, including tumour suppression, immune regulation and cell architecture maintenance. A less studied but nonetheless equally important function occurs in calcium homeostasis. It does so by largely interacting with the L-type voltage-gated calcium channel (LVGCC) present in the plasma membrane of excitable cells such as muscles and neurons. Several studies have characterized the underlying basis of AHNAK's functional role in calcium channel modulation, which has led to a greater understanding of this cellular process and its associated pathologies. In this article we review and examine recent advances relating to the physiological aspects of AHNAK in calcium regulation. Specifically, we will provide a broad overview of AHNAK including its structural makeup and its interaction with several isoforms of LVGCC, and how these molecular interactions regulate calcium modulation across various tissues and their implication in muscle and neuronal function.
Collapse
Affiliation(s)
- Srinivasan Sundararaj
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | - Agin Ravindran
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Marco G Casarotto
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
4
|
Liu G, Guo Z, Zhang Q, Liu Z, Zhu D. AHNAK2 Promotes Migration, Invasion, and Epithelial-Mesenchymal Transition in Lung Adenocarcinoma Cells via the TGF-β/Smad3 Pathway. Onco Targets Ther 2020; 13:12893-12903. [PMID: 33363388 PMCID: PMC7754667 DOI: 10.2147/ott.s281517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Lung adenocarcinoma is one of the common causes of cancer-related deaths worldwide. AHNAKs are giant proteins, which are correlated with cell structure and migration, cardiac calcium channel signaling, and other processes. Current studies identified AHNAK2 as a novel oncogene in some cancers; however, studies on its function in lung cancers are limited. Materials and Methods The expression of AHNAK2 was analyzed in normal lung tissues, lung adenocarcinoma tissues, and paracancerous tissues using the Oncomine database. It was further verified in relative cell lines by real-time quantitative polymerase chain reaction and Western blotting (WB). Adenocarcinoma cell lines were transfected with si-NC and si-AHNAK2 by lipofectamine 3000 and treated with or without TGF-β1, and cell migration and invasion were detected by wound-healing and transwell assays. The expression of epithelial-mesenchymal transition (EMT) markers was detected by WB, as well as that of phosphorylated-Smad3 (p-Smad3) and Smad3 levels. After Smad3 phosphorylation inhibitor was added to the adenocarcinoma cell lines, migration and invasion were detected by wound-healing and transwell assays, and the expression of EMT markers was detected by WB when the cells were transfected with si-NC and si-AHNAK2 and treated with or without TGF-β1. Results We found higher expression of AHNAK2 in lung adenocarcinoma tissues through the Oncomine database and further verified its high expression in relative cell lines. When the cells were stimulated with TGF-β1, knockdown of AHNAK2 suppressed cell migration, invasion, and EMT, and inhibited TGF-β-induced Smad3 signaling. When p-Smad3 was inhibited, knockdown of AHNAK2 had no effect on the two cell lines investigated when treated with or without TGF-β1. Conclusion AHNAK2 acts as an oncogenic protein and promotes migration, invasion, and EMT in lung adenocarcinoma cells via the TGF-β/Smad3 pathway. Thus, it may be a novel target for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Gang Liu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Qian Zhang
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Zhongmin Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Dongyi Zhu
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
5
|
Bogenschutz EL, Fox ZD, Farrell A, Wynn J, Moore B, Yu L, Aspelund G, Marth G, Yandell M, Shen Y, Chung WK, Kardon G. Deep whole-genome sequencing of multiple proband tissues and parental blood reveals the complex genetic etiology of congenital diaphragmatic hernias. HGG ADVANCES 2020; 1:100008. [PMID: 33263113 PMCID: PMC7703690 DOI: 10.1016/j.xhgg.2020.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
The diaphragm is critical for respiration and separation of the thoracic and abdominal cavities, and defects in diaphragm development are the cause of congenital diaphragmatic hernias (CDH), a common and often lethal birth defect. The genetic etiology of CDH is complex. Single-nucleotide variants (SNVs), insertions/deletions (indels), and structural variants (SVs) in more than 150 genes have been associated with CDH, although few genes are recurrently mutated in multiple individuals and mutated genes are incompletely penetrant. This suggests that multiple genetic variants in combination, other not-yet-investigated classes of variants, and/or nongenetic factors contribute to CDH etiology. However, no studies have comprehensively investigated in affected individuals the contribution of all possible classes of variants throughout the genome to CDH etiology. In our study, we used a unique cohort of four individuals with isolated CDH with samples from blood, skin, and diaphragm connective tissue and parental blood and deep whole-genome sequencing to assess germline and somatic de novo and inherited SNVs, indels, and SVs. In each individual we found a different mutational landscape that included germline de novo and inherited SNVs and indels in multiple genes. We also found in two individuals a 343 bp deletion interrupting an annotated enhancer of the CDH-associated gene GATA4, and we hypothesize that this common SV (found in 1%-2% of the population) acts as a sensitizing allele for CDH. Overall, our comprehensive reconstruction of the genetic architecture of four CDH individuals demonstrates that the etiology of CDH is heterogeneous and multifactorial.
Collapse
Affiliation(s)
- Eric L. Bogenschutz
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zac D. Fox
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andrew Farrell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Barry Moore
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lan Yu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gudrun Aspelund
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gabor Marth
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
The S100B Protein and Partners in Adipocyte Response to Cold Stress and Adaptive Thermogenesis: Facts, Hypotheses, and Perspectives. Biomolecules 2020; 10:biom10060843. [PMID: 32486507 PMCID: PMC7356379 DOI: 10.3390/biom10060843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
In mammals, adipose tissue is an active secretory tissue that responds to mild hypothermia and as such is a genuine model to study molecular and cellular adaptive responses to cold-stress. A recent study identified a mammal-specific protein of the endoplasmic reticulum that is strongly induced in the inguinal subcutaneous white adipocyte upon exposure to cold, calsyntenin 3β (CLSTN3β). CLSTN3β regulates sympathetic innervation of thermogenic adipocytes and contributes to adaptive non-shivering thermogenesis. The calcium- and zinc-binding S100B is a downstream effector in the CLSTN3β pathways. We review, here, the literature on the transcriptional regulation of the S100b gene in adipocyte cells. We also rationalize the interactions of the S100B protein with its recognized or hypothesized intracellular (p53, ATAD3A, CYP2E1, AHNAK) and extracellular (Receptor for Advanced Glycation End products (RAGE), RPTPσ) target proteins in the context of adipocyte differentiation and adaptive thermogenesis. We highlight a chaperon-associated function for the intracellular S100B and point to functional synergies between the different intracellular S100B target proteins. A model of non-classical S100B secretion involving AHNAK/S100A10/annexin2-dependent exocytosis by the mean of exosomes is also proposed. Implications for related areas of research are noted and suggestions for future research are offered.
Collapse
|
7
|
Baudier J, Deloulme JC, Shaw GS. The Zn 2+ and Ca 2+ -binding S100B and S100A1 proteins: beyond the myths. Biol Rev Camb Philos Soc 2020; 95:738-758. [PMID: 32027773 DOI: 10.1111/brv.12585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
The S100 genes encode a conserved group of 21 vertebrate-specific EF-hand calcium-binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium- and zinc-binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+ . The Ca2+ and Zn2+ -dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate-specific proteins and propose a new model for stable interactions of S100B dimers with full-length target proteins. A chaperone-associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.
Collapse
Affiliation(s)
- Jacques Baudier
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Aix Marseille Université, 13288, Marseille Cedex 9, France
| | - Jean Christophe Deloulme
- Grenoble Institut des Neurosciences, INSERM U1216, Université Grenoble Alpes, 38000, Grenoble, France
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| |
Collapse
|
8
|
Li M, Liu Y, Meng Y, Zhu Y. AHNAK Nucleoprotein 2 Performs a Promoting Role in the Proliferation and Migration of Uveal Melanoma Cells. Cancer Biother Radiopharm 2019; 34:626-633. [PMID: 31621397 DOI: 10.1089/cbr.2019.2778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AHNAK nucleoprotein 2 (AHNAK2) is supposed to participate in calcium signaling and cytoarchitecture by directly interacting with some proteins. Recently, it was identified as a novel candidate oncogene in human tumors. The author's present study aimed to investigate the expression and biological function of AHNAK2 in uveal melanoma (UM). Based on microarray data of 63 UM patients that were downloaded from Gene Expression Omnibus database, the authors found that AHNAK2 expression is higher in UM primary tumor tissues from patients who developed metastases after enucleation than that in UM primary tumor tissues from patients without metastasis after enucleation. On the basis of the data obtained from The Cancer Genome Atlas database, they found that high AHNAK2 expression is closely associated with shorter overall survival time in UM patients. From quantitative reverse transcription polymerase chain reaction analyses, they revealed that the mRNA expression level of AHNAK2 was significantly upregulated in M17 and SP6.5 cell lines compared with that in D78. Functionally, knockdown of AHNAK2 using small interfering RNA in M17 and SP6.5 cells dramatically suppressed cell proliferation, migratory and invasive abilities, as well as inhibited the activation of phosphatidylinositol 3-kinase (PI3K) signaling pathway. Taken together, their results illustrated that AHNAK2 was upregulated in UM and plays a promoting role in the proliferation and migration of UM cells possibly via regulating PI3K signaling pathway.
Collapse
Affiliation(s)
- Mengyun Li
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, People's Republic of China
| | - Yanchen Liu
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, People's Republic of China
| | - Yanling Meng
- Department of Hepatobiliary and Vascular Surgery, Yidu Central Hospital of Weifang, Qingzhou, People's Republic of China
| | - Yan Zhu
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, People's Republic of China
| |
Collapse
|
9
|
Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019; 198:259-269. [PMID: 30180985 PMCID: PMC6395553 DOI: 10.1016/j.biomaterials.2018.08.058] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023]
Abstract
In vitro models of contractile human skeletal muscle hold promise for use in disease modeling and drug development, but exhibit immature properties compared to native adult muscle. To address this limitation, 3D tissue-engineered human muscles (myobundles) were electrically stimulated using intermittent stimulation regimes at 1 Hz and 10 Hz. Dystrophin in myotubes exhibited mature membrane localization suggesting a relatively advanced starting developmental maturation. One-week stimulation significantly increased myobundle size, sarcomeric protein abundance, calcium transient amplitude (∼2-fold), and tetanic force (∼3-fold) resulting in the highest specific force generation (19.3mN/mm2) reported for engineered human muscles to date. Compared to 1 Hz electrical stimulation, the 10 Hz stimulation protocol resulted in greater myotube hypertrophy and upregulated mTORC1 and ERK1/2 activity. Electrically stimulated myobundles also showed a decrease in fatigue resistance compared to control myobundles without changes in glycolytic or mitochondrial protein levels. Greater glucose consumption and decreased abundance of acetylcarnitine in stimulated myobundles indicated increased glycolytic and fatty acid metabolic flux. Moreover, electrical stimulation of myobundles resulted in a metabolic shift towards longer-chain fatty acid oxidation as evident from increased abundances of medium- and long-chain acylcarnitines. Taken together, our study provides an advanced in vitro model of human skeletal muscle with improved structure, function, maturation, and metabolic flux.
Collapse
Affiliation(s)
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Neel K Prabhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Silva TA, Smuczek B, Valadão IC, Dzik LM, Iglesia RP, Cruz MC, Zelanis A, de Siqueira AS, Serrano SMT, Goldberg GS, Jaeger RG, Freitas VM. AHNAK enables mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility. Oncotarget 2018; 7:49998-50016. [PMID: 27374178 PMCID: PMC5226564 DOI: 10.18632/oncotarget.10307] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/12/2016] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles play important roles in tumor development. Many components of these structures, including microvesicles and exosomes, have been defined. However, mechanisms by which extracellular vesicles affect tumor progression are not fully understood. Here, we investigated vesicular communication between mammary carcinoma cells and neighboring nontransformed mammary fibroblasts. Nonbiased proteomic analysis found that over 1% of the entire proteome is represented in these vesicles, with the neuroblast differentiation associated protein AHNAK and annexin A2 being the most abundant. In particular, AHNAK was found to be the most prominent component of these vesicles based on peptide number, and appeared necessary for their formation. In addition, we report here that carcinoma cells produce vesicles that promote the migration of recipient fibroblasts. These data suggest that AHNAK enables mammary carcinoma cells to produce and release extracellular vesicles that cause disruption of the stroma by surrounding fibroblasts. This paradigm reveals fundamental mechanisms by which vesicular communication between carcinoma cells and stromal cells can promote cancer progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Thaiomara A Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Basílio Smuczek
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Iuri C Valadão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana M Dzik
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Rebeca P Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Mário C Cruz
- Center of Facilities and Support Research, Institute of Biomedical Sciences (ICB), Sao Paulo, Brazil
| | - André Zelanis
- Department of Science and Technology, Institute of Science and Technology, Federal University of Sao Paulo (ICT-UNIFESP), Sao Jose dos Campos, Brazil.,Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Adriane S de Siqueira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Solange M T Serrano
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Gary S Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Haase N, Rüder C, Haase H, Kamann S, Kouno M, Morano I, Dechend R, Zohlnhöfer D, Haase T. Protective Function of Ahnak1 in Vascular Healing after Wire Injury. J Vasc Res 2017; 54:131-142. [PMID: 28468000 DOI: 10.1159/000464287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
AIM Vascular remodeling following injury substantially accounts for restenosis and adverse clinical outcomes. In this study, we investigated the role of the giant scaffold protein Ahnak1 in vascular healing after endothelial denudation of the murine femoral artery. METHODS The spatiotemporal expression pattern of Ahnak1 and Ahnak2 was examined using specific antibodies and real-time quantitative PCR. Following wire-mediated endothelial injury of Ahnak1-deficient mice and wild-type (WT) littermates, the processes of vascular healing were analyzed. RESULTS Ahnak1 and Ahnak2 showed a mutually exclusive vascular expression pattern, with Ahnak1 being expressed in the endothelium and Ahnak2 in the medial cells in naïve WT arteries. After injury, a marked increase of Ahnak1- and Ahnak2-positive cells at the lesion site became evident. Both proteins showed a strong upregulation in neointimal cells 14 days after injury. Ahnak1-deficient mice showed delayed vascular healing and dramatically impaired re-endothelialization that resulted in prolonged adverse vascular remodeling, when compared to the WT littermates. CONCLUSION The large scaffold and adaptor proteins Ahnak1 and Ahnak2 exhibit differential expression patterns and functions in naïve and injured arteries. Ahnak1 plays a nonredundant protective role in vascular healing.
Collapse
Affiliation(s)
- Nadine Haase
- Experimental and Clinical Research Center (a joint cooperation of the MDC and the Charité Medical Faculty), Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ryckebüsch L, Hernandez L, Wang C, Phan J, Yelon D. Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Development 2016; 143:2965-72. [PMID: 27471259 DOI: 10.1242/dev.139485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
Skeletal muscle morphogenesis depends upon interactions between developing muscle fibers and the extracellular matrix (ECM) that anchors fibers to the myotendinous junction (MTJ). The pathways that organize the ECM and regulate its engagement by cell-matrix adhesion complexes (CMACs) are therefore essential for muscle integrity. Here, we demonstrate the impact of transmembrane protein 2 (tmem2) on cell-matrix interactions during muscle morphogenesis in zebrafish. Maternal-zygotic tmem2 mutants (MZtmem2) exhibit muscle fiber detachment, in association with impaired laminin organization and ineffective fibronectin degradation at the MTJ. Similarly, disorganized laminin and fibronectin surround MZtmem2 cardiomyocytes, which could account for their hindered movement during cardiac morphogenesis. In addition to ECM defects, MZtmem2 mutants display hypoglycosylation of α-dystroglycan within the CMAC, which could contribute to the observed fiber detachment. Expression of the Tmem2 ectodomain can rescue aspects of the MZtmem2 phenotype, consistent with a possible extracellular function of Tmem2. Together, our results suggest that Tmem2 regulates cell-matrix interactions by affecting both ECM organization and CMAC activity. These findings evoke possible connections between the functions of Tmem2 and the etiologies of congenital muscular dystrophies, particularly dystroglycanopathies.
Collapse
Affiliation(s)
- Lucile Ryckebüsch
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lydia Hernandez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carole Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenny Phan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Lenhart KC, O'Neill TJ, Cheng Z, Dee R, Demonbreun AR, Li J, Xiao X, McNally EM, Mack CP, Taylor JM. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice. Skelet Muscle 2015; 5:27. [PMID: 26301073 PMCID: PMC4546166 DOI: 10.1186/s13395-015-0054-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin–amphiphysin–Rvs (BAR)–pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. Methods We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Results Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1 double deficiency phenocopied the severe muscle pathologies observed in dystrophin/dysferlin-double null mice. Consistent with a model that GRAF1 facilitates dysferlin-dependent membrane patching, we found that GRAF1 associates with and regulates plasma membrane deposition of dysferlin. Conclusions Overall, our work indicates that GRAF1 facilitates dysferlin-dependent membrane repair following acute muscle injury. These findings indicate that GRAF1 might play a role in the phenotypic variation and pathological progression of cardiac and skeletal muscle degeneration in muscular dystrophy patients. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0054-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaitlin C Lenhart
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Thomas J O'Neill
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Zhaokang Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Rachel Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jianbin Li
- Department of Gene Therapy Molecular Pharmaceutics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Xiao Xiao
- Department of Gene Therapy Molecular Pharmaceutics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
15
|
Davis TA, Loos B, Engelbrecht AM. AHNAK: the giant jack of all trades. Cell Signal 2014; 26:2683-93. [PMID: 25172424 DOI: 10.1016/j.cellsig.2014.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
The nucleoprotein AHNAK is an unusual and somewhat mysterious scaffolding protein characterised by its large size of approximately 700 kDa. Several aspects of this protein remain uncertain, including its exact molecular function and regulation on both the gene and protein levels. Various studies have attempted to annotate AHNAK and, notably, protein interaction and expression analyses have contributed greatly to our current understanding of the protein. The implicated biological processes are, however, very diverse, ranging from a role in the formation of the blood-brain barrier, cell architecture and migration, to the regulation of cardiac calcium channels and muscle membrane repair. In addition, recent evidence suggests that AHNAK might be yet another accomplice in the development of tumour metastasis. This review will discuss the different functional roles of AHNAK, highlighting recent advancements that have added foundation to the proposed roles while identifying ties between them. Implications for related fields of research are noted and suggestions for future research that will assist in unravelling the function of AHNAK are offered.
Collapse
Affiliation(s)
- T A Davis
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa.
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| | - A-M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| |
Collapse
|
16
|
Han H, Kursula P. Periaxin and AHNAK nucleoprotein 2 form intertwined homodimers through domain swapping. J Biol Chem 2014; 289:14121-31. [PMID: 24675079 PMCID: PMC4022880 DOI: 10.1074/jbc.m114.554816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Periaxin (PRX) is an abundant protein in the peripheral nervous system, with an important role in myelination. PRX participates in large molecular complexes, most likely through the interactions of its N-terminal PSD-95/Discs-large/ZO-1 (PDZ)-like domain. We present the crystal structures of the PDZ-like domains from PRX and its homologue AHNAK nucleoprotein 2 (AHNAK2). The unique intertwined, domain-swapped dimers provide a structural basis for the homodimerization of both proteins. The core of the homodimer is formed by a 6-stranded antiparallel β sheet, with every other strand from a different chain. The AHNAK2 PDZ domain structure contains a bound class III ligand peptide. The binding pocket is preformed, and the peptide-PDZ interactions have unique aspects, including two salt bridges and weak recognition of the peptide C terminus. Tight homodimerization may be central to the scaffolding functions of PRX and AHNAK2 in molecular complexes linking the extracellular matrix to the cytoskeletal network.
Collapse
Affiliation(s)
- Huijong Han
- From the Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland, the German Electron Synchrotron (DESY), 22607 Hamburg, Germany, and
| | - Petri Kursula
- From the Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland, the German Electron Synchrotron (DESY), 22607 Hamburg, Germany, and the Department of Chemistry, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
17
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Flix B, de la Torre C, Castillo J, Casal C, Illa I, Gallardo E. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle. Int J Biochem Cell Biol 2013; 45:1927-38. [PMID: 23792176 DOI: 10.1016/j.biocel.2013.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) analysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct interaction of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.
Collapse
Affiliation(s)
- Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Mariano A, Henning A, Han R. Dysferlin-deficient muscular dystrophy and innate immune activation. FEBS J 2013; 280:4165-76. [PMID: 23527661 DOI: 10.1111/febs.12261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Cells encounter many physical, chemical and biological stresses that perturb plasma membrane integrity, warranting an immediate membrane repair response to regain cell homeostasis. Failure to respond properly to such perturbation leads to individual cell death, which may also produce systemic influence by triggering sterile immunological responses. In this review, we discuss recent progress on understanding the mechanisms underlying muscle cell membrane repair and the potential mediators of innate immune activation when the membrane repair system is defective, specifically focusing on pathology associated with dysferlin deficiency.
Collapse
Affiliation(s)
- Andrew Mariano
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, IL 60153, USA
| | | | | |
Collapse
|
20
|
Ross J, Benn A, Jonuschies J, Boldrin L, Muntoni F, Hewitt JE, Brown SC, Morgan JE. Defects in glycosylation impair satellite stem cell function and niche composition in the muscles of the dystrophic Large(myd) mouse. Stem Cells 2012; 30:2330-41. [PMID: 22887880 PMCID: PMC3532609 DOI: 10.1002/stem.1197] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/08/2012] [Accepted: 06/22/2012] [Indexed: 12/20/2022]
Abstract
The dystrophin-associated glycoprotein complex (DGC) is found at the muscle fiber sarcolemma and forms an essential structural link between the basal lamina and internal cytoskeleton. In a set of muscular dystrophies known as the dystroglycanopathies, hypoglycosylation of the DGC component α-dystroglycan results in reduced binding to basal lamina components, a loss in structural stability, and repeated cycles of muscle fiber degeneration and regeneration. The satellite cells are the key stem cells responsible for muscle repair and reside between the basal lamina and sarcolemma. In this study, we aimed to determine whether pathological changes associated with the dystroglycanopathies affect satellite cell function. In the Large(myd) mouse dystroglycanopathy model, satellite cells are present in significantly greater numbers but display reduced proliferation on their native muscle fibers in vitro, compared with wild type. However, when removed from their fiber, proliferation in culture is restored to that of wild type. Immunohistochemical analysis of Large(myd) muscle reveals alterations to the basal lamina and interstitium, including marked disorganization of laminin, upregulation of fibronectin and collagens. Proliferation and differentiation of wild-type satellite cells is impaired when cultured on substrates such as collagen and fibronectin, compared with laminins. When engrafted into irradiated tibialis anterior muscles of mdx-nude mice, wild-type satellite cells expanded on laminin contribute significantly more to muscle regeneration than those expanded on fibronectin. These results suggest that defects in α-dystroglycan glycosylation are associated with an alteration in the satellite cell niche, and that regenerative potential in the dystroglycanopathies may be perturbed.
Collapse
Affiliation(s)
- Jacob Ross
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dempsey BR, Rezvanpour A, Lee TW, Barber KR, Junop MS, Shaw GS. Structure of an asymmetric ternary protein complex provides insight for membrane interaction. Structure 2012; 20:1737-45. [PMID: 22940583 DOI: 10.1016/j.str.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
Abstract
Plasma membrane repair involves the coordinated effort of proteins and the inner phospholipid surface to mend the rupture and return the cell back to homeostasis. Here, we present the three-dimensional structure of a multiprotein complex that includes S100A10, annexin A2, and AHNAK, which along with dysferlin, functions in muscle and cardiac tissue repair. The 3.5 Å resolution X-ray structure shows that a single region from the AHNAK C terminus is recruited by an S100A10-annexin A2 heterotetramer, forming an asymmetric ternary complex. The AHNAK peptide adopts a coil conformation that arches across the heterotetramer contacting both annexin A2 and S100A10 protomers with tight affinity (∼30 nM) and establishing a structural rationale whereby both S100A10 and annexin proteins are needed in AHNAK recruitment. The structure evokes a model whereby AHNAK is targeted to the membrane surface through sandwiching of the binding region between the S100A10/annexin A2 complex and the phospholipid membrane.
Collapse
Affiliation(s)
- Brian R Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Pankonien I, Otto A, Dascal N, Morano I, Haase H. Ahnak1 interaction is affected by phosphorylation of Ser-296 on Cavβ₂. Biochem Biophys Res Commun 2012; 421:184-9. [PMID: 22497893 DOI: 10.1016/j.bbrc.2012.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Ahnak1 has been implicated in protein kinase A (PKA)-mediated control of cardiac L-type Ca(2+) channels (Cav1.2) through its interaction with the Cavβ(2) regulatory channel subunit. Here we corroborate this functional linkage by immunocytochemistry on isolated cardiomyocytes showing co-localization of ahnak1 and Cavβ(2) in the T-tubule system. In previous studies Cavβ(2) attachment sites which impacted the channel's PKA regulation have been located to ahnak1's proximal C-terminus (ahnak1(4889-5535), ahnak1(5462-5535)). In this study, we mapped the ahnak1-interacting regions in Cavβ(2) and investigated whether Cavβ(2) phosphorylation affects its binding behavior. In vitro binding assays with Cavβ(2) truncation mutants and ahnak1(4889-5535) revealed that the core region of Cavβ(2) consisting of Src-homology 3 (SH3), HOOK, and guanylate kinase (GK) domains was important for ahnak1 interaction while the C- and N-terminal regions were dispensable. Furthermore, Ser-296 in the GK domain of Cavβ(2) was identified as novel PKA phosphorylation site by mass spectrometry. Surface plasmon resonance (SPR) binding analysis showed that Ser-296 phosphorylation did not affect the high affinity interaction (K(D)≈35 nM) between Cavβ(2) and the α(1C) I-II linker, but affected ahnak1 interaction in a complex manner. SPR experiments with ahnak1(5462-5535) revealed that PKA phosphorylation of Cavβ(2) significantly increased the binding affinity and, in parallel, it reduced the binding capacity. Intriguingly, the phosphorylation mimic substitution Glu-296 fully reproduced both effects, increased the affinity by ≈2.4-fold and reduced the capacity by ≈60%. Our results are indicative for the release of a population of low affinity interaction sites following Cavβ(2) phosphorylation on Ser-296. We propose that this phosphorylation event is one mechanism underlying ahnak1's modulator function on Cav1.2 channel activity.
Collapse
Affiliation(s)
- Ines Pankonien
- Max Delbrück Center for Molecular Medicine, Department of Molecular Muscle Physiology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | |
Collapse
|