1
|
Guo X, Wang H, Liu M, Xu JM, Liu YN, Zhang H, He XX, Wang JX, Wei W, Ren DL, Jiang RS. Weighted gene co-expression network analysis identifies important modules and hub genes involved in the regulation of breast muscle yield in broilers. Anim Biosci 2024; 37:1673-1682. [PMID: 38665081 PMCID: PMC11366510 DOI: 10.5713/ab.23.0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE Increasing breast meat production is one of the primary goals of the broiler industry. Over the past few decades, tremendous progress has been made in genetic selection and the identification of candidate genes for improving the breast muscle mass. However, the molecular network contributing to muscle production traits in chickens still needs to be further illuminated. METHODS A total of 150 1-day-old male 817 broilers were reared in a floor litter system. At the market age of 50 d, eighteen healthy 817 broilers were slaughtered and the left pectoralis major muscle sample from each bird was collected for RNA-seq sequencing. The birds were then plucked and eviscerated and the whole breast muscle was removed and weighed. Breast muscle yield was calculated as the ratio of the breast muscle weight to the eviscerated weight. To identify the co-expression networks and hub genes contributing to breast muscle yield in chickens, we performed weighted gene co-expression network analysis (WGCNA) based on the 18 transcriptome datasets of pectoralis major muscle from eighteen 817 broilers. RESULTS The WGCNA analysis classified all co-expressed genes in the pectoral muscle of 817 broilers into 44 modules. Among these modules, the turquoise and skyblue3 modules were found to be most significantly positively (r = 0.78, p = 1e-04) and negatively (r = -0.57, p = 0.01) associated with breast meat yield, respectively. Further analysis identified several hub genes (e.g., DLX3, SH3RF2, TPM1, CAV3, MYF6, and CFL2) that involved in muscle structure and muscle development were identified as potential regulators of breast meat production. CONCLUSION The present study has advanced our understanding of the molecular regulatory networks contributing to muscle growth and breast muscle production and will contribute to the molecular breeding of chickens in the future.
Collapse
Affiliation(s)
- Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Hao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Meng Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jin-Mei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Ya-Nan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Hong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Xin-Xin He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jiang-Xian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Wei Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Run-Shen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| |
Collapse
|
2
|
Chen A, Li S, Gui J, Zhou H, Zhu L, Mi Y. Mechanisms of tropomyosin 3 in the development of malignant tumors. Heliyon 2024; 10:e35723. [PMID: 39170461 PMCID: PMC11336884 DOI: 10.1016/j.heliyon.2024.e35723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Tropomyosin (TPM) is an important regulatory protein that binds to actin in fine myofilaments, playing a crucial role in the regulation of muscle contraction. TPM3, as one of four tropomyosin genes, is notably prevalent in eukaryotic cells. Traditionally, abnormal gene expression of TPM3 has been exclusively associated with myopathy. However, recent years have witnessed a surge in studies highlighting the close correlation between abnormal expression of TPM3 and the onset, progression, metastasis, and prognosis of various malignant tumors. In light of this, investigating the mechanisms underlying the pathogenetic role of TPM3 holds significant promise for early diagnosis and more effective treatment strategies. This article aims to provide an insightful review of the structural characteristics of TPM3 and its intricate role in the occurrence and development of malignant tumors.
Collapse
Affiliation(s)
- Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
3
|
Huang K, Yang W, Shi M, Wang S, Li Y, Xu Z. The Role of TPM3 in Protecting Cardiomyocyte from Hypoxia-Induced Injury via Cytoskeleton Stabilization. Int J Mol Sci 2024; 25:6797. [PMID: 38928503 PMCID: PMC11203979 DOI: 10.3390/ijms25126797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic heart disease (IHD) remains a major global health concern, with ischemia-reperfusion injury exacerbating myocardial damage despite therapeutic interventions. In this study, we investigated the role of tropomyosin 3 (TPM3) in protecting cardiomyocytes against hypoxia-induced injury and oxidative stress. Using the AC16 and H9c2 cell lines, we established a chemical hypoxia model by treating cells with cobalt chloride (CoCl2) to simulate low-oxygen conditions. We found that CoCl2 treatment significantly upregulated the expression of hypoxia-inducible factor 1 alpha (HIF-1α) in cardiomyocytes, indicating the successful induction of hypoxia. Subsequent morphological and biochemical analyses revealed that hypoxia altered cardiomyocyte morphology disrupted the cytoskeleton, and caused cellular damage, accompanied by increased lactate dehydrogenase (LDH) release and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity, indicative of oxidative stress. Lentivirus-mediated TPM3 overexpression attenuated hypoxia-induced morphological changes, cellular damage, and oxidative stress imbalance, while TPM3 knockdown exacerbated these effects. Furthermore, treatment with the HDAC1 inhibitor MGCD0103 partially reversed the exacerbation of hypoxia-induced injury caused by TPM3 knockdown. Protein-protein interaction (PPI) network and functional enrichment analysis suggested that TPM3 may modulate cardiac muscle development, contraction, and adrenergic signaling pathways. In conclusion, our findings highlight the therapeutic potential of TPM3 modulation in mitigating hypoxia-associated cardiac injury, suggesting a promising avenue for the treatment of ischemic heart disease and other hypoxia-related cardiac pathologies.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China;
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Weijia Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Shiqi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China;
| |
Collapse
|
4
|
Wang L, Liu C, Li L, Wei H, Wei W, Zhou Q, Chen Y, Meng T, Jiao R, Wang Z, Sun Q, Li W. RNF20 Regulates Oocyte Meiotic Spindle Assembly by Recruiting TPM3 to Centromeres and Spindle Poles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306986. [PMID: 38240347 PMCID: PMC10987117 DOI: 10.1002/advs.202306986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/02/2023] [Indexed: 04/04/2024]
Abstract
Previously a ring finger protein 20 (RNF20) is found to be essential for meiotic recombination and mediates H2B ubiquitination during spermatogenesis. However, its role in meiotic division is still unknown. Here, it is shown that RNF20 is localized at both centromeres and spindle poles, and it is required for oocyte acentrosomal spindle organization and female fertility. RNF20-depleted oocytes exhibit severely abnormal spindle and chromosome misalignment caused by defective bipolar organization. Notably, it is found that the function of RNF20 in spindle assembly is not dependent on its E3 ligase activity. Instead, RNF20 regulates spindle assembly by recruiting tropomyosin3 (TPM3) to both centromeres and spindle poles with its coiled-coil motif. The RNF20-TPM3 interaction is essential for acentrosomal meiotic spindle assembly. Together, the studies uncover a novel function for RNF20 in mediating TPM3 recruitment to both centromeres and spindle poles during oocyte spindle assembly.
Collapse
Affiliation(s)
- Liying Wang
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Chao Liu
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Li
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Huafang Wei
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Wei Wei
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Qiuxing Zhou
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Tie‐Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Renjie Jiao
- The State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qing‐Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Wei Li
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Gonchar AD, Koubassova NA, Kopylova GV, Kochurova AM, Nefedova VV, Yampolskaya DS, Shchepkin DV, Bershitsky SY, Tsaturyan AK, Matyushenko AM, Levitsky DI. Myopathy-causing mutation R91P in the TPM3 gene drastically impairs structural and functional properties of slow skeletal muscle tropomyosin γβ-heterodimer. Arch Biochem Biophys 2024; 752:109881. [PMID: 38185233 DOI: 10.1016/j.abb.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Tropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca2+ activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and β, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γβ-heterodimers, or ββ-homodimers, and a majority of the molecules are present as γβ-Tpm heterodimers. Point mutation R91P within the TPM3 gene encoding γ-Tpm is linked to the condition known as congenital fiber-type disproportion (CFTD), which is characterized by severe muscle weakness. Here, we investigated the influence of the R91P mutation in the γ-chain on the properties of the γβ-Tpm heterodimer. We found that the R91P mutation impairs the functional properties of γβ-Tpm heterodimer more severely than those of earlier studied γγ-Tpm homodimer carrying this mutation in both γ-chains. Since a significant part of Tpm molecules in slow skeletal muscle is present as γβ-heterodimers, our results explain why this mutation leads to muscle weakness in CFTD.
Collapse
Affiliation(s)
- Anastasiia D Gonchar
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | - Galina V Kopylova
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Anastasia M Kochurova
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Victoria V Nefedova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Daria S Yampolskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Andrey K Tsaturyan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander M Matyushenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Dmitrii I Levitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
6
|
Küçükdogru R, Franz P, Worch R, Robaszkiewicz K, Siatkowska M, Tsiavaliaris G, Moraczewska J. Mechanochemical consequences of myopathy-linked mutations in Tpm2.2 on striated muscle contractility. FASEB J 2024; 38:e23400. [PMID: 38156416 DOI: 10.1096/fj.202301604r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Tropomyosin (Tpm) is an actin-binding protein central to muscle contraction regulation. The Tpm sequence consists of periodic repeats corresponding to seven actin-binding sites, further divided in two functionally distinct halves. To clarify the importance of the first and second halves of the actin-binding periods in regulating the interaction of myosin with actin, we introduced hypercontractile mutations D20H, E181K located in the N-terminal halves of periods 1 and 5 and hypocontractile mutations E41K, N202K located in the C-terminal halves of periods 1 and 5 of the skeletal muscle Tpm isoform Tpm2.2. Wild-type and mutant Tpms displayed similar actin-binding properties, however, as revealed by FRET experiments, the hypercontractile mutations affected the binding geometry and orientation of Tpm2.2 on actin, causing a stimulation of myosin motor performance. Contrary, the hypocontractile mutations led to an inhibition of both, actin activation of the myosin ATPase and motor activity, that was more pronounced than with wild-type Tpm2.2. Single ATP turnover kinetic experiments indicate that the introduced mutations have opposite effects on product release kinetics. While the hypercontractile Tpm2.2 mutants accelerated product release, the hypocontractile mutants decelerated product release from myosin, thus having either an activating or inhibitory influence on myosin motor performance, which agrees with the muscle disease phenotypes caused by these mutations.
Collapse
Affiliation(s)
- Recep Küçükdogru
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Peter Franz
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Remigiusz Worch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Małgorzata Siatkowska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| |
Collapse
|
7
|
Robaszkiewicz K, Wróbel J, Moraczewska J. Troponin and a Myopathy-Linked Mutation in TPM3 Inhibit Cofilin-2-Induced Thin Filament Depolymerization. Int J Mol Sci 2023; 24:16457. [PMID: 38003645 PMCID: PMC10671271 DOI: 10.3390/ijms242216457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Uniform actin filament length is required for synchronized contraction of skeletal muscle. In myopathies linked to mutations in tropomyosin (Tpm) genes, irregular thin filaments are a common feature, which may result from defects in length maintenance mechanisms. The current work investigated the effects of the myopathy-causing p.R91C variant in Tpm3.12, a tropomyosin isoform expressed in slow-twitch muscle fibers, on the regulation of actin severing and depolymerization by cofilin-2. The affinity of cofilin-2 for F-actin was not significantly changed by either Tpm3.12 or Tpm3.12-R91C, though it increased two-fold in the presence of troponin (without Ca2+). Saturation of the filament with cofilin-2 removed both Tpm variants from the filament, although Tpm3.12-R91C was more resistant. In the presence of troponin (±Ca2+), Tpm remained on the filament, even at high cofilin-2 concentrations. Both Tpm3.12 variants inhibited filament severing and depolymerization by cofilin-2. However, the inhibition was more efficient in the presence of Tpm3.12-R91C, indicating that the pathogenic variant impaired cofilin-2-dependent actin filament turnover. Troponin (±Ca2+) further inhibited but did not completely stop cofilin-2-dependent actin severing and depolymerization.
Collapse
Affiliation(s)
| | | | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University in Bydgoszcz, 85-671 Bydgoszcz, Poland; (K.R.); (J.W.)
| |
Collapse
|
8
|
Robaszkiewicz K, Siatkowska M, Wadman RI, Kamsteeg EJ, Chen Z, Merve A, Parton M, Bugiardini E, de Bie C, Moraczewska J. A Novel Variant in TPM3 Causing Muscle Weakness and Concomitant Hypercontractile Phenotype. Int J Mol Sci 2023; 24:16147. [PMID: 38003336 PMCID: PMC10671854 DOI: 10.3390/ijms242216147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.
Collapse
Affiliation(s)
- Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Małgorzata Siatkowska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Renske I. Wadman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Erik-Jan Kamsteeg
- Department of Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Zhiyong Chen
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
- Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore
| | - Ashirwad Merve
- Department of Neuropathology, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK;
| | - Matthew Parton
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Enrico Bugiardini
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Charlotte de Bie
- Department of Genetics, University Medical Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| |
Collapse
|
9
|
Lambert MR, Gussoni E. Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy. Skelet Muscle 2023; 13:18. [PMID: 37936227 PMCID: PMC10629095 DOI: 10.1186/s13395-023-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Matyushenko AM, Nefedova VV, Kochurova AM, Kopylova GV, Koubassova NA, Shestak AG, Yampolskaya DS, Shchepkin DV, Kleymenov SY, Ryabkova NS, Katrukha IA, Bershitsky SY, Zaklyazminskaya EV, Tsaturyan AK, Levitsky DI. Novel Mutation Glu98Lys in Cardiac Tropomyosin Alters Its Structure and Impairs Myocardial Relaxation. Int J Mol Sci 2023; 24:12359. [PMID: 37569730 PMCID: PMC10419091 DOI: 10.3390/ijms241512359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
We characterized a novel genetic variant c.292G > A (p.E98K) in the TPM1 gene encoding cardiac tropomyosin 1.1 isoform (Tpm1.1), found in a proband with a phenotype of complex cardiomyopathy with conduction dysfunction and slow progressive neuromuscular involvement. To understand the molecular mechanism by which this mutation impairs cardiac function, we produced recombinant Tpm1.1 carrying an E98K substitution and studied how this substitution affects the structure of the Tpm1.1 molecule and its functional properties. The results showed that the E98K substitution in the N-terminal part of the Tpm molecule significantly destabilizes the C-terminal part of Tpm, thus indicating a long-distance destabilizing effect of the substitution on the Tpm coiled-coil structure. The E98K substitution did not noticeably affect Tpm's affinity for F-actin but significantly impaired Tpm's regulatory properties. It increased the Ca2+ sensitivity of the sliding velocity of regulated thin filaments over cardiac myosin in an in vitro motility assay and caused an incomplete block of the thin filament sliding at low Ca2+ concentrations. The incomplete motility block in the absence of Ca2+ can be explained by the loosening of the Tpm interaction with troponin I (TnI), thus increasing Tpm mobility on the surface of an actin filament that partially unlocks the myosin binding sites. This hypothesis is supported by the molecular dynamics (MD) simulation that showed that the E98 Tpm residue is involved in hydrogen bonding with the C-terminal part of TnI. Thus, the results allowed us to explain the mechanism by which the E98K Tpm mutation impairs sarcomeric function and myocardial relaxation.
Collapse
Affiliation(s)
- Alexander M. Matyushenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| | - Victoria V. Nefedova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Natalia A. Koubassova
- Institute of Mechanics, Moscow State University, Moscow 119192, Russia; (N.A.K.); (A.K.T.)
| | - Anna G. Shestak
- Petrovsky National Research Centre of Surgery, Moscow 119991, Russia; (A.G.S.); (E.V.Z.)
| | - Daria S. Yampolskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Sergey Y. Kleymenov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (N.S.R.); (I.A.K.)
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (N.S.R.); (I.A.K.)
- HyTest Ltd., 20520 Turku, Finland
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Elena V. Zaklyazminskaya
- Petrovsky National Research Centre of Surgery, Moscow 119991, Russia; (A.G.S.); (E.V.Z.)
- N.P. Bochkov Research Centre for Medical Genetics, Moscow 20520, Russia
| | - Andrey K. Tsaturyan
- Institute of Mechanics, Moscow State University, Moscow 119192, Russia; (N.A.K.); (A.K.T.)
| | - Dmitrii I. Levitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| |
Collapse
|
11
|
Karpicheva OE, Avrova SV, Bogdanov AL, Sirenko VV, Redwood CS, Borovikov YS. Molecular Mechanisms of Deregulation of Muscle Contractility Caused by the R168H Mutation in TPM3 and Its Attenuation by Therapeutic Agents. Int J Mol Sci 2023; 24:ijms24065829. [PMID: 36982903 PMCID: PMC10051413 DOI: 10.3390/ijms24065829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The substitution for Arg168His (R168H) in γ-tropomyosin (TPM3 gene, Tpm3.12 isoform) is associated with congenital muscle fiber type disproportion (CFTD) and muscle weakness. It is still unclear what molecular mechanisms underlie the muscle dysfunction seen in CFTD. The aim of this work was to study the effect of the R168H mutation in Tpm3.12 on the critical conformational changes that myosin, actin, troponin, and tropomyosin undergo during the ATPase cycle. We used polarized fluorescence microscopy and ghost muscle fibers containing regulated thin filaments and myosin heads (myosin subfragment-1) modified with the 1,5-IAEDANS fluorescent probe. Analysis of the data obtained revealed that a sequential interdependent conformational-functional rearrangement of tropomyosin, actin and myosin heads takes place when modeling the ATPase cycle in the presence of wild-type tropomyosin. A multistep shift of the tropomyosin strands from the outer to the inner domain of actin occurs during the transition from weak to strong binding of myosin to actin. Each tropomyosin position determines the corresponding balance between switched-on and switched-off actin monomers and between the strongly and weakly bound myosin heads. At low Ca2+, the R168H mutation was shown to switch some extra actin monomers on and increase the persistence length of tropomyosin, demonstrating the freezing of the R168HTpm strands close to the open position and disruption of the regulatory function of troponin. Instead of reducing the formation of strong bonds between myosin heads and F-actin, troponin activated it. However, at high Ca2+, troponin decreased the amount of strongly bound myosin heads instead of promoting their formation. Abnormally high sensitivity of thin filaments to Ca2+, inhibition of muscle fiber relaxation due to the appearance of the myosin heads strongly associated with F-actin, and distinct activation of the contractile system at submaximal concentrations of Ca2+ can lead to muscle inefficiency and weakness. Modulators of troponin (tirasemtiv and epigallocatechin-3-gallate) and myosin (omecamtiv mecarbil and 2,3-butanedione monoxime) have been shown to more or less attenuate the negative effects of the tropomyosin R168H mutant. Tirasemtiv and epigallocatechin-3-gallate may be used to prevent muscle dysfunction.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., St. Petersburg 194064, Russia
| | - Stanislava V Avrova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., St. Petersburg 194064, Russia
| | - Andrey L Bogdanov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., St. Petersburg 194064, Russia
| | - Vladimir V Sirenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., St. Petersburg 194064, Russia
| | - Charles S Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Yurii S Borovikov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., St. Petersburg 194064, Russia
| |
Collapse
|
12
|
Kudryavtseva MM, Kiseleva AV, Myasnikov RP, Kulikova OV, Meshkov AN, Mershina EA, Angarsky RK, Sotnikova ЕA, Divashuk MG, Zharikova AA, Koretsky SN, Filatova DA, Sinitsyn VE, Sdvigova NA, Barsky VI, Basargina EN, Drapkina OM. Nucleotide sequence variant of the TPM1 gene in a family with different phenotypes of left ventricular non-compaction. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2023. [DOI: 10.15829/1728-8800-2022-3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Left ventricular non-compaction (LVNC) is a rare, genetically and phenotypically heterogeneous disease, which is often accompanied by diagnostic difficulties.Aim. To demonstrate several generations of a family with LVNC with various clinical and phenotypic manifestations of the disease (dilated and isolated types of LVNC) with an identified rs397516387 variant of the TPM1 gene.Material and methods. Based on the multicenter registry "Myocardial Non-compaction", a family with a familial form of LVNC was selected. Next generation sequencing (NGS) was performed on an Ion S5 system (Thermo Fisher Scientific, USA) using Ampliseq technology. Variant was verified using Sanger sequencing on an Applied Biosystem 3500 Genetic Analyzer (Thermo Fisher Scientific, USA). For clinical interpretation, variants in the genes associated with LVNC with a minor allele frequency <0,1% were selected in the gnomAD database (v2.1.1). Results. Variant rs397516387 was found in 5 family members, including the proband. Further examination revealed LVNC in 2 additional family members. The proband and the proband’s uncle had a dilated type of LVNC, and the proband’s mother had an isolated type.Conclusion. The paper presents several generations of a family with different phenotypic manifestations of LVNC and rs397516387 variant in the TPM1 gene. The beginning of genetic screening from a proband, a thorough collection of a family history and further detailed genetic screening of relatives led to the identification of rs397516387 variant in 4 more family members, which in turn made it possible to conduct an additional examination to confirm the diagnosis and prescribe timely drug therapy.
Collapse
Affiliation(s)
| | - A. V. Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine
| | - R. P. Myasnikov
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. V. Kulikova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine
| | - E. A. Mershina
- Medical Scientific and Educational Center, Lomonosov Moscow State University
| | - R. K. Angarsky
- National Medical Research Center for Therapy and Preventive Medicine
| | - Е. A. Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. G. Divashuk
- National Medical Research Center for Therapy and Preventive Medicine; 3 All-Russia Research Institute of Agricultural Biotechnology
| | - A. A. Zharikova
- National Medical Research Center for Therapy and Preventive Medicine; Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics
| | - S. N. Koretsky
- National Medical Research Center for Therapy and Preventive Medicine
| | - D. A. Filatova
- Medical Scientific and Educational Center, Lomonosov Moscow State University
| | - V. E. Sinitsyn
- Medical Scientific and Educational Center, Lomonosov Moscow State University
| | | | - V. I. Barsky
- National Medical Research Center for Children’s Health
| | | | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
13
|
De Novo Asp219Val Mutation in Cardiac Tropomyosin Associated with Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 24:ijms24010018. [PMID: 36613463 PMCID: PMC9820293 DOI: 10.3390/ijms24010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM), caused by mutations in thin filament proteins, manifests as moderate cardiac hypertrophy and is associated with sudden cardiac death (SCD). We identified a new de novo variant, c.656A>T (p.D219V), in the TPM1 gene encoding cardiac tropomyosin 1.1 (Tpm) in a young SCD victim with post-mortem-diagnosed HCM. We produced recombinant D219V Tpm1.1 and studied its structural and functional properties using various biochemical and biophysical methods. The D219V mutation did not affect the Tpm affinity for F-actin but increased the thermal stability of the Tpm molecule and Tpm-F-actin complex. The D219V mutation significantly increased the Ca2+ sensitivity of the sliding velocity of thin filaments over cardiac myosin in an in vitro motility assay and impaired the inhibition of the filament sliding at low Ca2+ concentration. The molecular dynamics (MD) simulation provided insight into a possible molecular mechanism of the effect of the mutation that is most likely a cause of the weakening of the Tpm interaction with actin in the "closed" state and so makes it an easier transition to the “open” state. The changes in the Ca2+ regulation of the actin-myosin interaction characteristic of genetic HCM suggest that the mutation is likely pathogenic.
Collapse
|
14
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
Ono S, Lewis M, Ono K. Mutual dependence between tropomodulin and tropomyosin in the regulation of sarcomeric actin assembly in Caenorhabditis elegans striated muscle. Eur J Cell Biol 2022; 101:151215. [PMID: 35306452 PMCID: PMC9081161 DOI: 10.1016/j.ejcb.2022.151215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mario Lewis
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kanako Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Kuruba B, Kaczmarek M, Kęsik-Brodacka M, Fojutowska M, Śliwinska M, Kostyukova AS, Moraczewska J. Structural Effects of Disease-Related Mutations in Actin-Binding Period 3 of Tropomyosin. Molecules 2021; 26:6980. [PMID: 34834072 PMCID: PMC8622905 DOI: 10.3390/molecules26226980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Tropomyosin (Tpm) is an actin-binding coiled-coil protein. In muscle, it regulates contractions in a troponin/Ca2+-dependent manner and controls the thin filament lengths at the pointed end. Due to its size and periodic structure, it is difficult to observe small local structural changes in the coiled coil caused by disease-related mutations. In this study, we designed 97-residue peptides, Tpm1.164-154 and Tpm3.1265-155, focusing on the actin-binding period 3 of two muscle isoforms. Using these peptides, we evaluated the effects of cardiomyopathy mutations: I92T and V95A in Tpm1.1, and congenital myopathy mutations R91P and R91C in Tpm3.12. We introduced a cysteine at the N-terminus of each fragment to promote the formation of the coiled-coil structure by disulfide bonds. Dimerization of the designed peptides was confirmed by gel electrophoresis in the presence and absence of dithiothreitol. Using circular dichroism, we showed that all mutations decreased coiled coil stability, with Tpm3.1265-155R91P and Tpm1.164-154I92T having the most drastic effects. Our experiments also indicated that adding the N-terminal cysteine increased coiled coil stability demonstrating that our design can serve as an effective tool in studying the coiled-coil fragments of various proteins.
Collapse
Affiliation(s)
- Balaganesh Kuruba
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA; (B.K.); (A.S.K.)
| | - Marta Kaczmarek
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| | | | - Magdalena Fojutowska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| | - Małgorzata Śliwinska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| | - Alla S. Kostyukova
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA; (B.K.); (A.S.K.)
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (M.K.); (M.F.); (M.Ś.)
| |
Collapse
|
17
|
Molecular Mechanisms of the Deregulation of Muscle Contraction Induced by the R90P Mutation in Tpm3.12 and the Weakening of This Effect by BDM and W7. Int J Mol Sci 2021; 22:ijms22126318. [PMID: 34204776 PMCID: PMC8231546 DOI: 10.3390/ijms22126318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Point mutations in the genes encoding the skeletal muscle isoforms of tropomyosin can cause a range of muscle diseases. The amino acid substitution of Arg for Pro residue in the 90th position (R90P) in γ-tropomyosin (Tpm3.12) is associated with congenital fiber type disproportion and muscle weakness. The molecular mechanisms underlying muscle dysfunction in this disease remain unclear. Here, we observed that this mutation causes an abnormally high Ca2+-sensitivity of myofilaments in vitro and in muscle fibers. To determine the critical conformational changes that myosin, actin, and tropomyosin undergo during the ATPase cycle and the alterations in these changes caused by R90P replacement in Tpm3.12, we used polarized fluorimetry. It was shown that the R90P mutation inhibits the ability of tropomyosin to shift towards the outer domains of actin, which is accompanied by the almost complete depression of troponin’s ability to switch actin monomers off and to reduce the amount of the myosin heads weakly bound to F-actin at a low Ca2+. These changes in the behavior of tropomyosin and the troponin–tropomyosin complex, as well as in the balance of strongly and weakly bound myosin heads in the ATPase cycle may underlie the occurrence of both abnormally high Ca2+-sensitivity and muscle weakness. BDM, an inhibitor of myosin ATPase activity, and W7, a troponin C antagonist, restore the ability of tropomyosin for Ca2+-dependent movement and the ability of the troponin–tropomyosin complex to switch actin monomers off, demonstrating a weakening of the damaging effect of the R90P mutation on muscle contractility.
Collapse
|
18
|
Karpicheva OE. Hallmark Features of the Tropomyosin
Regulatory Function in Several Variants of Congenital Myopathy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Mutations Q93H and E97K in TPM2 Disrupt Ca-Dependent Regulation of Actin Filaments. Int J Mol Sci 2021; 22:ijms22084036. [PMID: 33919826 PMCID: PMC8070786 DOI: 10.3390/ijms22084036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tropomyosin is a two-chain coiled coil protein, which together with the troponin complex controls interactions of actin with myosin in a Ca2+-dependent manner. In fast skeletal muscle, the contractile actin filaments are regulated by tropomyosin isoforms Tpm1.1 and Tpm2.2, which form homo- and heterodimers. Mutations in the TPM2 gene encoding isoform Tpm2.2 are linked to distal arthrogryposis and congenital myopathy-skeletal muscle diseases characterized by hyper- and hypocontractile phenotypes, respectively. In this work, in vitro functional assays were used to elucidate the molecular mechanisms of mutations Q93H and E97K in TPM2. Both mutations tended to decrease actin affinity of homo-and heterodimers in the absence and presence of troponin and Ca2+, although the effect of Q93H was stronger. Changes in susceptibility of tropomyosin to trypsin digestion suggested that the mutations diversified dynamics of tropomyosin homo- and heterodimers on the filament. The presence of Q93H in homo- and heterodimers strongly decreased activation of the actomyosin ATPase and reduced sensitivity of the thin filament to [Ca2+]. In contrast, the presence of E97K caused hyperactivation of the ATPase and increased sensitivity to [Ca2+]. In conclusion, the hypo- and hypercontractile phenotypes associated with mutations Q93H and E97K in Tpm2.2 are caused by defects in Ca2+-dependent regulation of actin-myosin interactions.
Collapse
|
20
|
Wang F, Li Z, Song T, Jia Y, Qi L, Ren L, Chen S. Proteomics study on the effect of silybin on cardiomyopathy in obese mice. Sci Rep 2021; 11:7136. [PMID: 33785854 PMCID: PMC8009917 DOI: 10.1038/s41598-021-86717-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Due to the increase in the number of obese individuals, the incidence of obesity-related complications such as cardiovascular disease and type 2 diabetes is higher. The aim of the present study was to explore the effects of silybin on protein expression in obese mice. Firstly, serum was collected, and it was used to detect serum lipids and other serological indicators. Secondly, total protein from epididymal adipose tissue was extracted for differential expression analysis by quantitative tandem mass tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by bioinformatics and protein-protein interaction (PPI) network analyses of these proteins. Lastly, real-time polymerase chain reaction (RT-PCR) and parallel reaction monitoring (PRM) were used to further validate the expression of identified differentially expressed proteins (DEPs) at the mRNA and protein level, respectively. The results revealed that silybin could improve abnormal lipid metabolism caused by the high fat diet in obese mice. A total of 341, 538 and 243 DEPs were found in the high fat/control (WF/WC), silybin/high fat (WS/WF) and WS/WC groups, respectively. These DEPs mainly participated in lipid metabolism and energy metabolism. Notably, tropomyosin 1 (TPM1), myosin light chain 2 (MYL2), myosin heavy chain 11 (MYH11) and other DEPs were involved in hypertrophic cardiomyopathy, dilated cardiomyopathy and other pathways. Silybin could protect cardiac function by inducing the protein expression of TPM1, MYL2 and MYH11 in the adipose tissue of obese mice.
Collapse
Affiliation(s)
- Fei Wang
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Tiantian Song
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Yujiao Jia
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Licui Qi
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei North University, Shijiazhaung, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhaung, 050000, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei North University, No. 348 Heping West Road, Shijiazhaung, 050000, Hebei, China.
| |
Collapse
|
21
|
Gonchar AD, Kopylova GV, Kochurova AM, Berg VY, Shchepkin DV, Koubasova NA, Tsaturyan AK, Kleymenov SY, Matyushenko AM, Levitsky DI. Effects of myopathy-causing mutations R91P and R245G in the TPM3 gene on structural and functional properties of slow skeletal muscle tropomyosin. Biochem Biophys Res Commun 2020; 534:8-13. [PMID: 33307294 DOI: 10.1016/j.bbrc.2020.11.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Tropomyosin (Tpm) is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Numerous point mutations in the TPM3 gene encoding Tpm of slow skeletal muscles (Tpm 3.12 or γ-Tpm) are associated with the genesis of various congenital myopathies. Two of these mutations, R91P and R245G, are associated with congenital fiber-type disproportion (CFTD) characterized by hypotonia and generalized muscle weakness. We applied various methods to investigate how these mutations affect the structural and functional properties of γγ-Tpm homodimers. The results show that both these mutations lead to strong structural changes in the γγ-Tpm molecule and significantly impaired its functional properties. These changes in the Tpm properties caused by R91P and R245G mutations give insight into the molecular mechanism of the CFTD development and the weakness of slow skeletal muscles observed in this inherited disease.
Collapse
Affiliation(s)
- Anastasiia D Gonchar
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia; Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119234, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Anastasia M Kochurova
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Valentina Y Berg
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, The Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | | | | | - Sergey Y Kleymenov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334, Moscow, Russia
| | - Alexander M Matyushenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Dmitrii I Levitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
22
|
Looking for Targets to Restore the Contractile Function in Congenital Myopathy Caused by Gln 147Pro Tropomyosin. Int J Mol Sci 2020; 21:ijms21207590. [PMID: 33066566 PMCID: PMC7589864 DOI: 10.3390/ijms21207590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
We have used the technique of polarized microfluorimetry to obtain new insight into the pathogenesis of skeletal muscle disease caused by the Gln147Pro substitution in β-tropomyosin (Tpm2.2). The spatial rearrangements of actin, myosin and tropomyosin in the single muscle fiber containing reconstituted thin filaments were studied during simulation of several stages of ATP hydrolysis cycle. The angular orientation of the fluorescence probes bound to tropomyosin was found to be changed by the substitution and was characteristic for a shift of tropomyosin strands closer to the inner actin domains. It was observed both in the absence and in the presence of troponin, Ca2+ and myosin heads at all simulated stages of the ATPase cycle. The mutant showed higher flexibility. Moreover, the Gln147Pro substitution disrupted the myosin-induced displacement of tropomyosin over actin. The irregular positioning of the mutant tropomyosin caused premature activation of actin monomers and a tendency to increase the number of myosin cross-bridges in a state of strong binding with actin at low Ca2+.
Collapse
|
23
|
Matyushenko AM, Nefedova VV, Shchepkin DV, Kopylova GV, Berg VY, Pivovarova AV, Kleymenov SY, Bershitsky SY, Levitsky DI. Mechanisms of disturbance of the contractile function of slow skeletal muscles induced by myopathic mutations in the tropomyosin TPM3 gene. FASEB J 2020; 34:13507-13520. [PMID: 32797717 DOI: 10.1096/fj.202001318r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Several congenital myopathies of slow skeletal muscles are associated with mutations in the tropomyosin (Tpm) TPM3 gene. Tropomyosin is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Two Tpm isoforms, γ (Tpm3.12) and β (Tpm2.2) are expressed in human slow skeletal muscles forming γγ-homodimers and γβ-heterodimers of Tpm molecules. We applied various methods to investigate how myopathy-causing mutations M9R, E151A, and K169E in the Tpm γ-chain modify the structure-functional properties of Tpm dimers, and how this affects the muscle functioning. The results show that the features of γγ-Tpm and γβ-Tpm with substitutions in the Tpm γ-chain vary significantly. The characteristics of the γγ-Tpm depend on whether these mutations located in only one or both γ-chains. The mechanism of the development of nemaline myopathy associated with the M9R mutation was revealed. At the molecular level, a cause-and-effect relationship has been established for the development of myopathy by the K169E mutation. Also, we described the structure-functional properties of the Tpm dimers with the E151A mutation, which explain muscle weakness linked to this substitution. The results demonstrate a diversity of the molecular mechanisms of myopathy pathogenesis induced by studied Tpm mutations.
Collapse
Affiliation(s)
- Alexander M Matyushenko
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria V Nefedova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Valentina Y Berg
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Anastasia V Pivovarova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Dmitrii I Levitsky
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Molecular Mechanisms of Muscle Weakness Associated with E173A Mutation in Tpm3.12. Troponin Ca 2+ Sensitivity Inhibitor W7 Can Reduce the Damaging Effect of This Mutation. Int J Mol Sci 2020; 21:ijms21124421. [PMID: 32580284 PMCID: PMC7352912 DOI: 10.3390/ijms21124421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Substitution of Ala for Glu residue in position 173 of γ-tropomyosin (Tpm3.12) is associated with muscle weakness. Here we observe that this mutation increases myofilament Ca2+-sensitivity and inhibits in vitro actin-activated ATPase activity of myosin subfragment-1 at high Ca2+. In order to determine the critical conformational changes in myosin, actin and tropomyosin caused by the mutation, we used the technique of polarized fluorimetry. It was found that this mutation changes the spatial arrangement of actin monomers and myosin heads, and the position of the mutant tropomyosin on the thin filaments in muscle fibres at various mimicked stages of the ATPase cycle. At low Ca2+ the E173A mutant tropomyosin shifts towards the inner domains of actin at all stages of the cycle, and this is accompanied by an increase in the number of switched-on actin monomers and myosin heads strongly bound to F-actin even at relaxation. Contrarily, at high Ca2+ the amount of the strongly bound myosin heads slightly decreases. These changes in the balance of the strongly bound myosin heads in the ATPase cycle may underlie the occurrence of muscle weakness. W7, an inhibitor of troponin Ca2+-sensitivity, restores the increase in the number of myosin heads strongly bound to F-actin at high Ca2+ and stops their strong binding at relaxation, suggesting the possibility of using Ca2+-desensitizers to reduce the damaging effect of the E173A mutation on muscle fibre contractility.
Collapse
|
25
|
Regulation of Actin Filament Length by Muscle Isoforms of Tropomyosin and Cofilin. Int J Mol Sci 2020; 21:ijms21124285. [PMID: 32560136 PMCID: PMC7352323 DOI: 10.3390/ijms21124285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
In striated muscle the extent of the overlap between actin and myosin filaments contributes to the development of force. In slow twitch muscle fibers actin filaments are longer than in fast twitch fibers, but the mechanism which determines this difference is not well understood. We hypothesized that tropomyosin isoforms Tpm1.1 and Tpm3.12, the actin regulatory proteins, which are specific respectively for fast and slow muscle fibers, differently stabilize actin filaments and regulate severing of the filaments by cofilin-2. Using in vitro assays, we showed that Tpm3.12 bound to F-actin with almost 2-fold higher apparent binding constant (Kapp) than Tpm1.1. Cofilin2 reduced Kapp of both tropomyosin isoforms. In the presence of Tpm1.1 and Tpm3.12 the filaments were longer than unregulated F-actin by 25% and 40%, respectively. None of the tropomyosins affected the affinity of cofilin-2 for F-actin, but according to the linear lattice model both isoforms increased cofilin-2 binding to an isolated site and reduced binding cooperativity. The filaments decorated with Tpm1.1 and Tpm3.12 were severed by cofilin-2 more often than unregulated filaments, but depolymerization of the severed filaments was inhibited. The stabilization of the filaments by Tpm3.12 was more efficient, which can be attributed to lower dynamics of Tpm3.12 binding to actin.
Collapse
|