1
|
Prato M, Tiberti N, Mazzi C, Gobbi F, Piubelli C, Longoni SS. The Renin-Angiotensin System (RAS) in COVID-19 Disease: Where We Are 3 Years after the Beginning of the Pandemic. Microorganisms 2024; 12:583. [PMID: 38543635 PMCID: PMC10975343 DOI: 10.3390/microorganisms12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.
Collapse
Affiliation(s)
- Marco Prato
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Federico Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
2
|
Kurdi A, Mueller T, Weir N. An umbrella review and meta-analysis of renin-angiotensin system drugs use and COVID-19 outcomes. Eur J Clin Invest 2023; 53:e13888. [PMID: 36205627 PMCID: PMC9874890 DOI: 10.1111/eci.13888] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Despite the availability of extensive literature on the effect of angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin-receptor blockers (ARBs) on COVID-19 outcomes, the evidence is still controversial. We aimed to provide a comprehensive assessment of the effect of ACEIs/ARBs on COVID-19-related outcomes by summarising the currently available evidence. METHODS An umbrella review was conducted using Medline (OVID), Embase, Scopus, Cochrane library and medRxiv from inception to 1 February 2021. Systematic reviews with meta-analysis that evaluated the effect of ACEIs/ARBs on COVID-19-related clinical outcomes were eligible. Studies' quality was appraised using the AMSTAR 2 Critical Appraisal Tool. Data were analysed using the random-effects modelling including several subgroup analyses. Heterogenicity was assessed using I2 statistic. The study protocol was registered in PROSPERO (CRD42021233398) and reported using PRISMA guidelines. RESULTS Overall, 47 reviews were eligible for inclusion. Out of the nine COVID-19 outcomes evaluated, there was significant associations between ACEIs/ARBs use and each of death (OR = 0.80, 95%CI = 0.75-0.86; I2 = 51.9%), death/ICU admission as composite outcome (OR = 0.86, 95%CI = 0.80-0.92; I2 = 43.9%), severe COVID-19 (OR = 0.86, 95%CI = 0.78-0.95; I2 = 68%) and hospitalisation (OR = 1.23, 95%CI = 1.04-1.46; I2 = 76.4%). The significant reduction in death/ICU admission, however, was higher among studies which presented adjusted measure of effects (OR = 0.63, 95%CI = 0.47-0.84) and were of moderate quality (OR = 0.74, 95%CI = 0.63-0.85). CONCLUSIONS Collective evidence from observational studies indicate a good quality evidence on the significant association between ACEIs/ARBs use and reduction in death and death/ICU admission, but poor-quality evidence on both reducing severe COVID-19 and increasing hospitalisation. Our findings further support the current recommendations of not discontinuing ACEIs/ARBs therapy in patients with COVID-19.
Collapse
Affiliation(s)
- Amanj Kurdi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of StrathclydeGlasgowScotlandUK
- Department of Pharmacology and ToxicologyCollege of Pharmacy, Kurdistan Region Government, Hawler Medical UniversityErbilIraq
- Division of Public Health Pharmacy and ManagementSchool of Pharmacy, Sefako Makgatho Health Sciences UniversityPretoriaSouth Africa
| | - Tanja Mueller
- Strathclyde Institute of Pharmacy and Biomedical Science, University of StrathclydeGlasgowScotlandUK
| | - Natalie Weir
- Strathclyde Institute of Pharmacy and Biomedical Science, University of StrathclydeGlasgowScotlandUK
| |
Collapse
|
3
|
Kamthe DD, Sarangkar SD, Dalvi MS, Gosavi NA, Nikam VS. Angiotensin converting enzyme 2 level and its significance in COVID-19 and other diseases patients. Eur J Clin Invest 2023; 53:e13891. [PMID: 36222740 PMCID: PMC9874405 DOI: 10.1111/eci.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) expressions and its modulation are of great interest as being a key receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) and the protective arm of the rennin-angiotensin axis, maintaining cardiovascular homeostasis. However, ACE2 expressions and their modulation in the healthy and disease background are yet to be explored. METHOD We performed a meta-analysis, extracting the data for ACE2 expression in human subjects with various diseases, including SARS-CoV2 infection without or with co-morbidity. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Out of 203 studies, 39 met the inclusion criteria with SARS-CoV2 patients without co-morbidity, SARS-CoV2 patients with co-morbidity, cardiovascular (CVD) patients, diabetes patients, kidney disorders patients, pulmonary disease patients, and other viral infections patients. RESULTS Angiotensin-converting enzyme 2 expression was significantly increased in all diseases. There was an elevated level of ACE2, especially membrane-bound ACE2, in COVID-19 patients compared to healthy controls. A statistically significant increase in ACE2 expression was observed in CVD patients and patients with other viral diseases compared to healthy subjects. Moreover, subgroup analysis of ACE2 expression as soluble and membrane-bound ACE2 revealed a remarkable increase in membrane-bound ACE2 in CVD patients, patients with viral infection compared to soluble ACE2 and pooled standard mean difference (SMD) with the random-effects model was 0.37 and 2.23 respectively. CONCLUSION It was observed that utilizing the ACE2 by SARS-CoV2 for its entry and its consequence leads to several complications. So there is a need to investigate the underlying mechanism along with novel therapeutic strategies.
Collapse
Affiliation(s)
- Dipanjali Dhananjay Kamthe
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Swapnil Dilip Sarangkar
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Manali Suresh Dalvi
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Netra Arun Gosavi
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Vandana Sandeep Nikam
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| |
Collapse
|
4
|
Guerra-Ojeda S, Marchio P, Rueda C, Suarez A, Garcia H, Victor VM, Juez M, Martin-Gonzalez I, Vila JM, Mauricio MD. Cerium dioxide nanoparticles modulate antioxidant defences and change vascular response in the human saphenous vein. Free Radic Biol Med 2022; 193:694-701. [PMID: 36402438 DOI: 10.1016/j.freeradbiomed.2022.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Nanoparticles have a promising future in biomedical applications and knowing whether they affect ex vivo vascular reactivity is a necessary step before their use in patients. In this study, we have evaluated the vascular effect of cerium dioxide nanoparticles (CeO2NPs) on the human saphenous vein in response to relaxing and contractile agonists. In addition, we have measured the protein expression of key enzymes related to vascular homeostasis and oxidative stress. We found that CeO2NPs increased expression of both SOD isoforms, and the consequent reduction of superoxide anion would enhance the bioavailability of NO explaining the increased vascular sensitivity to sodium nitroprusside in the presence of CeO2NPs. The NOX4 reduction induced by CeO2NPs may lead to lower H2O2 synthesis associated with vasodilation through potassium channels explaining the lower vasodilation to bradykinin. In addition, we showed for the first time, that CeO2NPs increase the expression of ACE2 in human saphenous vein, and it may be the cause of the reduced contraction to angiotensin II. Moreover, we ruled out that CeO2NPs have effect on the protein expression of eNOS, sGC, BKca channels and angiotensin II receptors or modify the vascular response to noradrenaline, endothelin-1 and TXA2 analogue. In conclusion, CeO2NPs show antioxidant properties, and together with their vascular effect, they could be postulated as adjuvants for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Cristina Rueda
- Department of Cardiovascular Surgery, University General Hospital, Valencia, Spain
| | - Andrea Suarez
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Valencia, Spain
| | - Victor M Victor
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain; Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), CIBEREHD. Spain
| | - Marina Juez
- Department of Cardiovascular Surgery, University General Hospital, Valencia, Spain
| | - Ivan Martin-Gonzalez
- Cardiovascular Surgery Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Jose M Vila
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
5
|
Virtual Screening in Search for a Chemical Probe for Angiotensin-Converting Enzyme 2 (ACE2). Molecules 2021; 26:molecules26247584. [PMID: 34946667 PMCID: PMC8707431 DOI: 10.3390/molecules26247584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023] Open
Abstract
We elaborate new models for ACE and ACE2 receptors with an excellent prediction power compared to previous models. We propose promising workflows for working with huge compound collections, thereby enabling us to discover optimized protocols for virtual screening management. The efficacy of elaborated roadmaps is demonstrated through the cost-effective molecular docking of 1.4 billion compounds. Savings of up to 10-fold in CPU time are demonstrated. These developments allowed us to evaluate ACE2/ACE selectivity in silico, which is a crucial checkpoint for developing chemical probes for ACE2.
Collapse
|
6
|
Countering the classical renin-angiotensin system. Clin Sci (Lond) 2021; 135:2619-2623. [PMID: 34878506 DOI: 10.1042/cs20211043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
It is well-established that Ang-(1-7) counteracts the effects of Ang II in the periphery, while stimulating vasopressin release and mimicking the activity of Ang II in the brain, through interactions with various receptors. The rapid metabolic inactivation of Ang-(1-7) has proven to be a limitation to therapeutic administration of the peptide. To circumvent this problem, Alves et al. (Clinical Science (2021) 135(18), https://doi.org/10.1042/CS20210599) developed a new transgenic rat model that overexpresses an Ang-(1-7)-producing fusion protein. In this commentary, we discuss potential concerns with this model while also highlighting advances that can ensue from this significant technical feat.
Collapse
|
7
|
Liu LP, Zhang XL, Li J. New perspectives on angiotensin-converting enzyme 2 and its related diseases. World J Diabetes 2021; 12:839-854. [PMID: 34168732 PMCID: PMC8192247 DOI: 10.4239/wjd.v12.i6.839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Since the worldwide outbreak of coronavirus disease 2019, angiotensin-converting enzyme 2 (ACE2) has received widespread attention as the cell receptor of the severe acute respiratory syndrome coronavirus 2 virus. At the same time, as a key enzyme in the renin-angiotensin-system, ACE2 is considered to be an endogenous negative regulator of vasoconstriction, proliferation, fibrosis, and proinflammation caused by the ACE-angiotensin II-angiotensin type 1 receptor axis. ACE2 is now implicated as being closely connected to diabetes, cardiovascular, kidney, and lung diseases, and so on. This review covers the available information on the host factors regulating ACE2 and discusses its role in a variety of pathophysiological conditions in animal models and humans.
Collapse
Affiliation(s)
- Li-Ping Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Xiao-Li Zhang
- TheFifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg 68135, Baden-Württemberg, Germany
| | - Jian Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Olaleye OA, Kaur M, Onyenaka C, Adebusuyi T. Discovery of Clioquinol and analogues as novel inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 infection, ACE2 and ACE2 - Spike protein interaction in vitro. Heliyon 2021; 7:e06426. [PMID: 33732940 PMCID: PMC7951571 DOI: 10.1016/j.heliyon.2021.e06426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 05/02/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease 2019 (COVID-19), has resulted in an ongoing pandemic. Presently, there are no clinically approved drugs for COVID-19. Hence, there is an urgent need to accelerate the development of effective antivirals. Herein, we discovered Clioquinol (5-chloro-7-iodo-8-quinolinol (CLQ)), a Food and Drug Administration (FDA) approved drug, and two of its analogues (7-bromo-5-chloro-8-hydroxyquinoline (CLBQ14); and 5, 7-Dichloro-8-hydroxyquinoline (CLCQ)) as potent inhibitors of SARS-CoV-2 infection-induced cytopathic effect in vitro. In addition, all three compounds showed potent anti-exopeptidase activity against recombinant human angiotensin-converting enzyme 2 (rhACE2) and inhibited the binding of rhACE2 with SARS-CoV-2 Spike (RBD) protein. CLQ displayed the highest potency in the low micromolar range, with its antiviral activity showing a strong correlation with inhibition of rhACE2 and rhACE2-RBD interaction. Altogether, our findings provide a new mode of action and molecular target for CLQ and validates this pharmacophore as a promising lead series for the clinical development of potential therapeutics for COVID-19.
Collapse
Affiliation(s)
- Omonike A. Olaleye
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA
| | - Manvir Kaur
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA
| | - Collins Onyenaka
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA
| | - Tolulope Adebusuyi
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA
| |
Collapse
|
9
|
Peymani P, Dehesh T, Aligolighasemabadi F, Sadeghdoust M, Kotfis K, Ahmadi M, Mehrbod P, Iranpour P, Dastghaib S, Nasimian A, Ravandi A, Kidane B, Ahmed N, Sharma P, Shojaei S, Bagheri Lankarani K, Madej A, Rezaei N, Madrakian T, Los MJ, Labouta HI, Mokarram P, Ghavami S. Statins in patients with COVID-19: a retrospective cohort study in Iranian COVID-19 patients. TRANSLATIONAL MEDICINE COMMUNICATIONS 2021; 6:3. [PMID: 33521322 PMCID: PMC7829327 DOI: 10.1186/s41231-021-00082-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/08/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has profoundly affected the lives of millions of people. To date, there is no approved vaccine or specific drug to prevent or treat COVID-19, while the infection is globally spreading at an alarming rate. Because the development of effective vaccines or novel drugs could take several months (if not years), repurposing existing drugs is considered a more efficient strategy that could save lives now. Statins constitute a class of lipid-lowering drugs with proven safety profiles and various known beneficial pleiotropic effects. Our previous investigations showed that statins have antiviral effects and are involved in the process of wound healing in the lung. This triggered us to evaluate if statin use reduces mortality in COVID-19 patients. RESULTS After initial recruitment of 459 patients with COVID-19 (Shiraz province, Iran) and careful consideration of the exclusion criteria, a total of 150 patients, of which 75 received statins, were included in our retrospective study. Cox proportional-hazards regression models were used to estimate the association between statin use and rate of death. After propensity score matching, we found that statin use appeared to be associated with a lower risk of morbidity [HR = 0.85, 95% CI = (0.02, 3.93), P = 0.762] and lower risk of death [(HR = 0.76; 95% CI = (0.16, 3.72), P = 0.735)]; however, these associations did not reach statistical significance. Furthermore, statin use reduced the chance of being subjected to mechanical ventilation [OR = 0.96, 95% CI = (0.61-2.99), P = 0.942] and patients on statins showed a more normal computed tomography (CT) scan result [OR = 0.41, 95% CI = (0.07-2.33), P = 0.312]. CONCLUSIONS Although we could not demonstrate a significant association between statin use and a reduction in mortality in patients with COVID19, we do feel that our results are promising and of clinical relevance and warrant the need for prospective randomized controlled trials and extensive retrospective studies to further evaluate and validate the potential beneficial effects of statin treatment on clinical symptoms and mortality rates associated with COVID-19.
Collapse
Affiliation(s)
- Payam Peymani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tania Dehesh
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Aligolighasemabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammadamin Sadeghdoust
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Shiraz Endocrine and Metabolism Research Center, Namazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Nasimian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Ravandi
- Section of Cardiology, St. Boniface Hospital, University of Manitoba, Winnipeg, MB Canada
| | - Biniam Kidane
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba Canada
| | - Naseer Ahmed
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Pawan Sharma
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA USA
| | - Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba Canada
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Andrzej Madej
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hagar Ibrahim Labouta
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba Canada
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba Canada
| |
Collapse
|
10
|
Pan HE, Shi XY, Zheng ZD, Tang Q, Zhong QY, Cao HH, Chen S, Zhu HP. Clinical characteristics of 100 cases of coronavirus disease 2019 in Dongguan, China. Infect Dis (Lond) 2021; 53:303-307. [PMID: 33406958 DOI: 10.1080/23744235.2020.1866773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hai-En Pan
- Dongguan Ninth People's Hospital, Dongguan, China
| | - Xiao-Yi Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Qin Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-Peng Zhu
- Dongguan Ninth People's Hospital, Dongguan, China
| |
Collapse
|
11
|
Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol 2020; 51:613-628. [PMID: 33011887 PMCID: PMC7533045 DOI: 10.1007/s10735-020-09915-3] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) in December 2019 form Wuhan, China leads to coronavirus disease 2019 (COVID-19) pandemic. While the common cold symptoms are observed in mild cases, COVID-19 is accompanied by multiorgan failure in severe patients. The involvement of different organs in severe patients results in lengthening the hospitalization duration and increasing the mortality rate. In this review, we aimed to investigate the involvement of different organs in COVID-19 patients, particularly in severe cases. Also, we tried to define the potential underlying mechanisms of SARS-CoV2 induced multiorgan failure. The multi-organ dysfunction is characterized by acute lung failure, acute liver failure, acute kidney injury, cardiovascular disease, and as well as a wide spectrum of hematological abnormalities and neurological disorders. The most important mechanisms are related to the direct and indirect pathogenic features of SARS-CoV2. Although the presence of angiotensin-converting enzyme 2, a receptor of SARS-CoV2 in the lung, heart, kidney, testis, liver, lymphocytes, and nervous system was confirmed, there are controversial findings to about the observation of SARS-CoV2 RNA in these organs. Moreover, the organ failure may be induced by the cytokine storm, a result of increased levels of inflammatory mediators, endothelial dysfunction, coagulation abnormalities, and infiltration of inflammatory cells into the organs. Therefore, further investigations are needed to detect the exact mechanisms of pathogenesis. Since the involvement of several organs in COVID-19 patients is important for clinicians, increasing their knowledge may help to improve the outcomes and decrease the rate of mortality and morbidity.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Neda Ghaffari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atousa Yarahmadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghomareza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| |
Collapse
|
12
|
Deshmukh V, Motwani R, Kumar A, Kumari C, Raza K. Histopathological observations in COVID-19: a systematic review. J Clin Pathol 2020; 74:76-83. [PMID: 32817204 DOI: 10.1136/jclinpath-2020-206995] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Coronavirus disease-2019 (COVID-19) has caused a great global threat to public health. The World Health Organization (WHO) has declared COVID-19 disease as a pandemic, affecting the human respiratory and other body systems, which urgently demands for better understanding of COVID-19 histopathogenesis. OBJECTIVE Data on pathological changes in different organs are still scarce, thus we aim to review and summarise the latest histopathological changes in different organs observed after autopsy of COVID-19 cases. MATERIALS AND METHODS Over the period of 3 months, authors performed vast review of the articles. The search engines included were PubMed, Medline (EBSCO & Ovid), Google Scholar, Science Direct, Scopus and Bio-Medical. Search terms used were 'Histopathology in COVID-19', 'COVID-19', 'Pathological changes in different organs in COVID-19' or 'SARS-CoV-2'. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guidelines were used for review writing. RESULT We identified various articles related to the histopathology of various organs in COVID-19 positive patients. Overall, 45 articles were identified as full articles to be included in our study. Histopathological findings observed are summarised according to the systems involved. CONCLUSION Although COVID-19 mainly affects respiratory and immune systems, but other systems like cardiovascular, urinary, gastrointestinal tract, reproductive system, nervous system and integumentary system are not spared, especially in elderly cases and those with comorbidity. This review would help clinicians and researchers to understand the tissue pathology, which can help in better planning of the management and avoiding future risks.
Collapse
Affiliation(s)
- Vishwajit Deshmukh
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Nagpur, Maharashra, India
| | - Rohini Motwani
- Department of Anatomy, ESIC Medical College and Hospital, Sanathnagar, Hyderabad, Telangana, India
| | - Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, Bihar, India
| | - Chiman Kumari
- Department of Anatomy, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| |
Collapse
|
13
|
Shchelkanov MY, Kolobukhina LV, Burgasova OA, Kruzhkova IS, Maleev VV. COVID-19: etiology, clinical picture, treatment. ACTA ACUST UNITED AC 2020. [DOI: 10.15789/2220-7619-cec-1473] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whereas the XX century marked the history of acute respiratory disease investigation as a period for generating in-depth system of combating influenza viruses (Articulavirales: Orthomyxoviridae, Alpha-/Betainfluenzavirus) (based on environmental and virological monitoring of influenza A virus in its natural reservoir — aquatic and semi-aquatic birds — to supervising epidemic influenza), a similar system is necessary to build up in the XXI century with regard to especially dangerous betacoronaviruses (Nidovirales: Coronaviridae, Betacoronavirus): Severe acute respiratory syndrome-related coronavirus (SARS-CoV) (subgenus Sarbecovirus), Severe acute respiratory syndrome-related coronavirus 2 (SARSCoV-2) (Sarbecovirus), Middle East respiratory syndrome-related coronavirus (MERS-CoV) (Merbecovirus). This became particularly evident after pandemic potential has been revealed in 2020 by the SARS-CoV-2. This review provides an insight into the historic timeline of discovering this virus, its current taxonomy, ecology, virion morphology, life cycle, molecular biology, pathogenesis and clinical picture of the etiologically related COVID-19 (Coronavirus disease 2019) as well as data available in the scientific literature on the anti-SARS-CoV-2-effectiveness of passive immunotherapy and most debated drugs used to treat COVID-19: Chloroquine, Hydroxychloroquine, Nitazoxanide, Ivermectin, Lopinavir and Ritonavir, Camostat mesilate, Remdesivir, Ribavirin, Tocilizumab, Anakinra, corticosteroids, and type I interferons. The pathogenesis of SARS-CoV-2 infection implicates decreased efficacy of artificial respiration, which, in this case might be replaced by more efficient extracorporeal membrane blood oxygenation supplemented with nitrogen oxide and/or Heliox inhalations.
Collapse
Affiliation(s)
- M. Yu. Shchelkanov
- International Scientific and Educational Center for Biological Security of Rospotrebnadzor;
Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of RAS;
Center of Hygiene and Epidemiology in the Primorsky Territory
| | - L. V. Kolobukhina
- D.I. Ivanovsky Institute of Virology of the N.F. Gamaleya National Scientific Center of Epidemiology and Microbiology, Russian Ministry of Public Health
| | | | - I. S. Kruzhkova
- D.I. Ivanovsky Institute of Virology of the N.F. Gamaleya National Scientific Center of Epidemiology and Microbiology, Russian Ministry of Public Health
| | - V. V. Maleev
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| |
Collapse
|
14
|
Snyder EM, Johnson BD. ACE2 and COVID-19: using antihypertensive medications and pharmacogenetic considerations. Pharmacogenomics 2020; 21:695-703. [PMID: 32501190 PMCID: PMC7373206 DOI: 10.2217/pgs-2020-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 utilizes the ACE2 pathway as a means of infection. Early data on COVID-19 suggest heterogeneity in the severity of symptoms during transmission and infection ranging from no symptoms to death. The source of this heterogeneity is likely multifaceted and may have a genetic component. Demographic and clinical comorbidities associated with the severity of infection suggest that possible variants known to influence the renin–angiotensin–aldosterone (RAAS) system pathway (particularly those that influence ACE2) may contribute to the heterogenous infection response. ACE2 and Ang(1–7) (the product of ACE2) seem to have a protective effect on the pulmonary and cardiac systems. Hypertension medication modulation, may alter ACE2 and Ang(1–7), particularly in variants that have been shown to influence RAAS system function, which could be clinically useful in patients with COVID-19.
Collapse
Affiliation(s)
- Eric M Snyder
- Geneticure, Inc., Four 3rd St. SW, Rochester, MN 55902, USA
| | - Bruce D Johnson
- Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55902, USA
| |
Collapse
|