1
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Wang P, Lin Z, Lin S, Zheng B, Zhang Y, Hu J. Prokaryotic Expression, Purification, and Antibacterial Activity of the Hepcidin Peptide of Crescent Sweetlips ( Plectorhinchus cinctus). Curr Issues Mol Biol 2023; 45:7212-7227. [PMID: 37754240 PMCID: PMC10528233 DOI: 10.3390/cimb45090456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The hepcidin peptide of crescent sweetlips (Plectorhinchus cinctus) is a cysteine-rich, cationic antimicrobial peptide that plays a crucial role in the innate immune system's defense against invading microbes. The aim of this study was to identify the optimal parameters for prokaryotic expression and purification of this hepcidin peptide and characterize its antibacterial activity. The recombinant hepcidin peptides were expressed in Escherichia coli strain Arctic Express (DE3), with culture and induction conditions optimized using response surface methodology (RSM). The obtained hepcidin peptides were then purified before tag cleavage, and their antibacterial activity was determined. The obtained results revealed that induction temperature had the most significant impact on the production of soluble recombinant peptides. The optimum induction conditions were determined to be an isopropylthio-β-galactoside (IPTG) concentration of 0.21 mmol/L, induction temperature of 18.81 °C, and an induction time of 16.01 h. Subsequently, the recombinant hepcidin peptide was successfully purified using Ni-IDA affinity chromatography followed by SUMO protease cleavage. The obtained hepcidin peptide (without His-SUMO tag) demonstrated strong antimicrobial activity in vitro against V. parahaemolyticus, E. coli, and S. aureus. The results showed prokaryotic (E. coli) expression is a feasible way to produce the hepcidin peptide of crescent sweetlips in a cost-effective way, which has great potential to be used as an antimicrobial agent in aquaculture.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjing Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
3
|
Lefin N, Miranda J, Beltrán JF, Belén LH, Effer B, Pessoa A, Farias JG, Zamorano M. Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Front Pharmacol 2023; 14:1208277. [PMID: 37426818 PMCID: PMC10323146 DOI: 10.3389/fphar.2023.1208277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Heterologous expression of L-asparaginase (L-ASNase) has become an important area of research due to its clinical and food industry applications. This review provides a comprehensive overview of the molecular and metabolic strategies that can be used to optimize the expression of L-ASNase in heterologous systems. This article describes various approaches that have been employed to increase enzyme production, including the use of molecular tools, strain engineering, and in silico optimization. The review article highlights the critical role that rational design plays in achieving successful heterologous expression and underscores the challenges of large-scale production of L-ASNase, such as inadequate protein folding and the metabolic burden on host cells. Improved gene expression is shown to be achievable through the optimization of codon usage, synthetic promoters, transcription and translation regulation, and host strain improvement, among others. Additionally, this review provides a deep understanding of the enzymatic properties of L-ASNase and how this knowledge has been employed to enhance its properties and production. Finally, future trends in L-ASNase production, including the integration of CRISPR and machine learning tools are discussed. This work serves as a valuable resource for researchers looking to design effective heterologous expression systems for L-ASNase production as well as for enzymes production in general.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Brian Effer
- Center of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge G. Farias
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Zamorano
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Gladilina YA, Shishparenok AN, Zhdanov DD. [Approaches for improving L-asparaginase expression in heterologous systems]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:19-38. [PMID: 36857424 DOI: 10.18097/pbmc20236901019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.
Collapse
Affiliation(s)
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Hashemzaei M, Nezafat N, Ghoshoon MB, Negahdaripour M. In-silico selection of appropriate signal peptides for romiplostim secretory production in Escherichia coli. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Freitas M, Souza P, Homem-de-Mello M, Fonseca-Bazzo YM, Silveira D, Ferreira Filho EX, Pessoa Junior A, Sarker D, Timson D, Inácio J, Magalhães PO. L-Asparaginase from Penicillium sizovae Produced by a Recombinant Komagataella phaffii Strain. Pharmaceuticals (Basel) 2022; 15:ph15060746. [PMID: 35745665 PMCID: PMC9227789 DOI: 10.3390/ph15060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
L-asparaginase is an important enzyme in the pharmaceutical field used as treatment for acute lymphoblastic leukemia due to its ability to hydrolyze L-asparagine, an essential amino acid synthesized by normal cells, but not by neoplastic cells. Adverse effects of L-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of L-asparaginase produced by eukaryotic microorganisms with low glutaminase activity. This work aimed to identify the L-asparaginase gene sequence from Penicillium sizovae, a filamentous fungus isolated from the Brazilian Savanna (Cerrado) soil with low glutaminase activity, and to biosynthesize higher yields of this enzyme in the yeast Komagataella phaffii. The L-asparaginase gene sequence of P. sizovae was identified by homology to L-asparaginases from species of Penicillium of the section Citrina: P. citrinum and P. steckii. Partial L-asparaginase from P. sizovae, lacking the periplasmic signaling sequence, was cloned, and expressed intracellularly with highest enzymatic activity achieved by a MUT+ clone cultured in BMM expression medium; a value 5-fold greater than that obtained by native L-asparaginase in P. sizovae cells. To the best of our knowledge, this is the first literature report of the heterologous production of an L-asparaginase from a filamentous fungus by a yeast.
Collapse
Affiliation(s)
- Marcela Freitas
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Paula Souza
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Mauricio Homem-de-Mello
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Yris M. Fonseca-Bazzo
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Damaris Silveira
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | | | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Dipak Sarker
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - David Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - João Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - Pérola O. Magalhães
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
- Correspondence:
| |
Collapse
|
7
|
Bioprospection of l-asparaginase producing microorganisms and cloning of the l-asparaginase type II gene from a Pseudomonas putida species group isolate. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Synergic effect of phytase, amylase, galactosidase, and asparaginase activity on the mitigation of acrylamide and hydroxymethylfurfural in roll bread by co-culture fermentation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Khalilvand AB, Aminzadeh S, Sanati MH, Mahboudi F. Media optimization for SHuffle T7 Escherichia coli expressing SUMO-Lispro proinsulin by response surface methodology. BMC Biotechnol 2022; 22:1. [PMID: 34980082 PMCID: PMC8722112 DOI: 10.1186/s12896-021-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SHuffle is a suitable Escherichia coli (E. coli) strain for high yield cytoplasmic soluble expression of disulfide-bonded proteins such as Insulin due to its oxidative cytoplasmic condition and the ability to correct the arrangement of disulfide bonds. Lispro is an Insulin analog that is conventionally produced in E. coli as inclusion bodies (IBs) with prolonged production time and low recovery. Here in this study, we aimed to optimize cultivation media composition for high cell density fermentation of SHuffle T7 E. coli expressing soluble Lispro proinsulin fused to SUMO tag (SU-INS construct) to obtain high cell density fermentation. RESULTS Factors including carbon and nitrogen sources, salts, metal ions, and pH were screened via Plackett-Burman design for their effectiveness on cell dry weight (CDW) as a measure of cell growth. The most significant variables of the screening experiment were Yeast extract and MgCl2 concentration, as well as pH. Succeedingly, The Central Composite Design was utilized to further evaluate and optimize the level of significant variables. The Optimized media (OM-I) enhanced biomass by 2.3 fold in the shake flask (2.5 g/L CDW) that reached 6.45 g/L (2.6 fold increase) when applied in batch culture fermentation. The efficacy of OM-I media for soluble expression was confirmed in both shake flask and fermentor. CONCLUSION The proposed media was suitable for high cell density fermentation of E. coli SHuffle T7 and was applicable for high yield soluble expression of Lispro proinsulin.
Collapse
Affiliation(s)
- Aida Bakhshi Khalilvand
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammad Hossein Sanati
- Medical Genetics Group, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
10
|
Ghoshoon MB, Raee MJ, Shabanpoor MR, Dehghani Z, Ebrahimi N, Berenjian A, Negahdaripour M, Hemmati S, Sadeghian I, Ghasemi Y. Whole cell immobilization of recombinant E. coli cells by calcium alginate beads; evaluation of plasmid stability and production of extracellular L-asparaginase. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1962910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohammad Bagher Ghoshoon
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery,Shiraz University of Medical SciencesShiraz,Iran
| | - Mohammad Reza Shabanpoor
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Zahra Dehghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Narjes Ebrahimi
- Allergy Research Center,Shiraz University of Medical Sciences, Shiraz,Iran
| | - Aydin Berenjian
- School of Engineering Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Shiva Hemmati
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz,Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz,Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| |
Collapse
|
11
|
Wang Y, Xu W, Wu H, Zhang W, Guang C, Mu W. Microbial production, molecular modification, and practical application of l-Asparaginase: A review. Int J Biol Macromol 2021; 186:975-983. [PMID: 34293360 DOI: 10.1016/j.ijbiomac.2021.07.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
L-Asparaginase (L-ASNase, EC 3.5.1.1), an antitumor drug for acute lymphoblastic leukemia (ALL) therapy, is widely used in the clinical field. Similarly, L-ASNase is also a powerful and significant biological tool in the food industry to inhibit acrylamide (AA) formation. This review comprehensively summarizes the latest achievements and improvements in the production, modification, and application of microbial L-ASNase. To date, the expression levels and optimization of expression hosts such as Escherichia coli, Bacillus subtilis, and Pichia pastoris, have made significant progress. In addition, examples of successful modification of L-ASNase such as decreasing glutaminase activity, increasing the in vivo stability, and enhancing thermostability have been presented. Impressively, the application of L-ASNase as a food addition aid, as well as its commercialization in the pharmaceutical field, and cutting-edge biosensor application developments have been summarized. The presented results and proposed ideas could be a good guide for other L-ASNase researchers in both scientific and practical fields.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Najjari A, Shahbazmohammadi H, Omidinia E. Lactose inducible fermentation in Escherichia coli for improved production of recombinant urate oxidase: Optimization by statistical experimental designs. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Ghasemi Y, Ghoshoon MB, Taheri M, Negahdaripour M, Nouri F. Cloning, expression and purification of human PDGF-BB gene in Escherichia coli: New approach in PDGF-BB protein production. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Negahdaripour M, Nezafat N, Heidari R, Erfani N, Hajighahramani N, Ghoshoon MB, Shoolian E, Rahbar MR, Najafipour S, Dehshahri A, Morowvat MH, Ghasemi Y. Production and Preliminary In Vivo Evaluations of a Novel in silico-designed L2-based Potential HPV Vaccine. Curr Pharm Biotechnol 2020; 21:316-324. [PMID: 31729940 DOI: 10.2174/1389201020666191114104850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND L2-based Human Papillomavirus (HPV) prophylactic vaccines, containing epitopes from HPV minor capsid proteins, are under investigation as second-generation HPV vaccines. No such vaccine has passed clinical trials yet, mainly due to the low immunogenicity of peptide vaccines; so efforts are being continued. A candidate vaccine composed of two HPV16 L2 epitopes, flagellin and a Toll-Like Receptor (TLR) 4 agonist (RS09) as adjuvants, and two universal T-helper epitopes was designed in silico in our previous researches. METHODS The designed vaccine construct was expressed in E. coli BL21 (DE3) and purified through metal affinity chromatography. Following mice vaccination, blood samples underwent ELISA and flow cytometry analyses for the detection of IgG and seven Th1 and Th2 cytokines. RESULTS Following immunization, Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-5, IL-10) type cytokines, as well as IgG, were induced significantly compared with the PBS group. Significant increases in IFN-γ, IL-2, and IL-5 levels were observed in the vaccinated group versus Freund's adjuvant group. CONCLUSION The obtained cytokine induction profile implied both cellular and humoral responses, with a more Th-1 favored trend. However, an analysis of specific antibodies against L2 is required to confirm humoral responses. No significant elevation in inflammatory cytokines, (IL-6 and TNF-α), suggested a lack of unwanted inflammatory side effects despite using a combination of two TLR agonists. The designed construct might be capable of inducing adaptive and innate immunity; nevertheless, comprehensive immune tests were not conducted at this stage and will be a matter of future work.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Nasrollah Erfani
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad B Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Eskandar Shoolian
- Charité University of Medicine, Campus Research House of Clinical Chemistry and Biochemistry, Augustenburger Platz 1, 13353 Berlin, Germany.,Biotechnology incubator center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad R Rahbar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sohrab Najafipour
- Microbiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad H Morowvat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
15
|
Sharma D, Singh K, Singh K, Mishra A. Insights into the Microbial L-Asparaginases: from Production to Practical Applications. Curr Protein Pept Sci 2019; 20:452-464. [PMID: 30426897 DOI: 10.2174/1389203720666181114111035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 01/10/2023]
Abstract
L-asparaginase is a valuable protein therapeutic drug utilized for the treatment of leukemia and lymphomas. Administration of asparaginase leads to asparagine starvation causing inhibition of protein synthesis, growth, and proliferation of tumor cells. Besides its clinical significance, the enzyme also finds application in the food sector for mitigation of a cancer-causing agent acrylamide. The numerous applications ensue huge market demands and create a continued interest in the production of costeffective, more specific, less immunogenic and stable formulations which can cater both the clinical and food processing requirements. The current review article approaches the process parameters of submerged and solid-state fermentation strategies for the microbial production of the L-asparaginase from diverse sources, genetic engineering approaches used for the production of L-asparaginase enzyme and major applications in clinical and food sectors. The review also addresses the immunological issues associated with the L-asparaginase usage and the immobilization strategies, drug delivery systems employed to circumvent the toxicity complications are also discussed. The future prospects for microbial Lasparaginase production are discussed at the end of the review article.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kushagri Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Kavita Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
16
|
Raee MJ, Ebrahiminezhad A, Ghoshoon MB, Gholami A, Ghasemi Y. Synthesis and Characterization of L-Lysin Coated Iron Oxide Nanoparticles as Appropriate Choices for Cell Immobilization and Magnetic Separation. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210681208666180518084730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:Cell separation is one of the important steps of purification in downstream processes. Some separation techniques such as centrifugation and filtration are expensive and would affect cell viability. Magnetic separation can be a good alternative for laboratory and industrial cell separation processes.Methods:For this purpose, L-lysine coated Iron Oxide Nanoparticles (IONs) were synthesized and used for magnetic separation of Escherichia coli as the most applied microbial cell in biotechnological processes.Results:IONs have successfully decorated the bacterial cells and cells were completely separated by applying an external magnetic field.Conclusion:This study showed that coating of E. coli cells with IONs could help to isolate cells from culture media without using expensive instruments.
Collapse
Affiliation(s)
- Mohammad Javad Raee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ebrahiminezhad
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Bagher Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Experimental Evaluation of In Silico Selected Signal Peptides for Secretory Expression of Erwinia Asparaginase in Escherichia coli. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09961-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kheshtzar R, Berenjian A, Ganji N, Taghizadeh SM, Maleki M, Taghizadeh S, Ghasemi Y, Ebrahiminezhad A. Response surface methodology and reaction optimization to product zero-valent iron nanoparticles for organic pollutant remediation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Zarei M, Rahbar MR, Morowvat MH, Nezafat N, Negahdaripour M, Berenjian A, Ghasemi Y. Arginine Deiminase: Current Understanding and Applications. Recent Pat Biotechnol 2019; 13:124-136. [PMID: 30569861 DOI: 10.2174/1872208313666181220121400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Arginine deiminase (ADI), an arginine catabolizing enzyme, is considered as an anti-tumor agent for the treatment of arginine auxotrophic cancers. However, some obstacles limit its clinical applications. OBJECTIVE This review will summarize the clinical applications of ADI, from a brief history to its limitations, and will discuss the different ways to deal with the clinical limitations. METHOD The structure analysis, cloning, expression, protein engineering and applications of arginine deiminase enzyme have been explained in this review. CONCLUSION Recent patents on ADI are related to ADI engineering to increase its efficacy for clinical application. The intracellular delivery of ADI and combination therapy seem to be the future strategies in the treatment of arginine auxotrophic cancers. Applying ADIs with optimum features from different sources and or ADI engineering, are promising strategies to improve the clinical application of ADI.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science & Engineering, The University of Waikato, Hamilton, New Zealand
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Rahmatabadi SS, Sadeghian I, Ghasemi Y, Sakhteman A, Hemmati S. Identification and characterization of a sterically robust phenylalanine ammonia-lyase among 481 natural isoforms through association of in silico and in vitro studies. Enzyme Microb Technol 2018; 122:36-54. [PMID: 30638507 DOI: 10.1016/j.enzmictec.2018.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/14/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
The enzyme phenylalanine ammonia lyase (PAL) is of special importance for the treatment of phenylketonuria patients. The aim of this study was to find a stable recombinant PAL with suitable kinetic properties among all natural PAL producing species using in silico and experimental approaches. To find such a stable PAL among 481 natural isoforms, 48,000 of 3-D models were predicted using the Modeller 9.10 program and evaluated by Ramachandran plot. Correlation analysis between Ramachandran plot and the energy of different thermodynamic components indicated that this plot could be an appropriate tool to predict protein stability. Hence, PAL6 from Lotus japonicus (LjPAL6) was selected as a stable isoform. Molecular dynamic (MD) simulation for 50 ns and docking has been conducted for LjPAL6-phenylalanine complex. The best PAL-phenylalanine frame was selected by re-docking with l-phenylalanine (L-Phe) and root-mean-square deviation (RMSD) value. MD simulation showed that the complex has a good stability, depicted by the low RMSD value, binding free energy and hydrogen bindings. Docking results showed that LjPAL6 has a high affinity toward l-Phe according to the low level of binding free energy. By overexpressing Ljpal6 in E. coli BL21, a total of 33.5 mg/l of protein was obtained, which has been increased to 83.7 mg/l via the optimization of LjPAL6 production using response surface methodology. The optimal pH and temperature were 8.5 and 50 °C, respectively. LjPAL6 showed a specific activity of 42 nkat/mg protein, with Km, Kcat and Kcat/Km values of 0.483 mM, 7 S-1 and 14.5 S-1 mM-1 for l-phe, respectively. In conclusion, finding models with the most reasonable stereo-chemical quality and lowest numbers of steric clashes would result in easier folding. Hence, in silico analyses of bulk data from natural origin will lead one to find an optimal model for in vitro studies and drug design.
Collapse
Affiliation(s)
- Seyyed Soheil Rahmatabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Issa Sadeghian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ. The Goldilocks Approach: A Review of Employing Design of Experiments in Prokaryotic Recombinant Protein Production. Bioengineering (Basel) 2018; 5:E89. [PMID: 30347746 PMCID: PMC6316313 DOI: 10.3390/bioengineering5040089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
The production of high yields of soluble recombinant protein is one of the main objectives of protein biotechnology. Several factors, such as expression system, vector, host, media composition and induction conditions can influence recombinant protein yield. Identifying the most important factors for optimum protein expression may involve significant investment of time and considerable cost. To address this problem, statistical models such as Design of Experiments (DoE) have been used to optimise recombinant protein production. This review examines the application of DoE in the production of recombinant proteins in prokaryotic expression systems with specific emphasis on media composition and culture conditions. The review examines the most commonly used DoE screening and optimisation designs. It provides examples of DoE applied to optimisation of media and culture conditions.
Collapse
Affiliation(s)
| | | | - Gary T Henehan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| | - Barry J Ryan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| |
Collapse
|
22
|
Raee MJ, Ebrahiminezhad A, Gholami A, Ghoshoon MB, Ghasemi Y. Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: An effective way to intensify downstream process. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1445110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mohammad Javad Raee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ebrahiminezhad
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Medicine and Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Bagher Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Vidya J, Sajitha S, Ushasree MV, Sindhu R, Binod P, Madhavan A, Pandey A. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. BIORESOURCE TECHNOLOGY 2017; 245:1775-1781. [PMID: 28596071 DOI: 10.1016/j.biortech.2017.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
L-asparaginase is one of the protein drugs for countering leukemia and lymphoma. A major challenge in the therapeutic potential of the enzyme is its immunogenicity, low-plasma half-life and glutaminase activity that are found to be the reasons for toxicities attributed to asparaginase therapy. For addressing these challenges, several research and developmental activities are going on throughout the world for an effective drug delivery for treatment of cancer. Hence there is an urgent need for the development of asparaginase with improved properties for efficient drug delivery. The strategies selected should be economically viable to ensure the availability of the drug at low cost. The current review addresses various strategies adopted for the production of asparaginase from different sources, approaches for increasing the therapeutic efficiency of the protein and new drug delivery systems for L-asparaginase.
Collapse
Affiliation(s)
- Jalaja Vidya
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| | - Syed Sajitha
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Mrudula Vasudevan Ushasree
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, Punjab, India
| |
Collapse
|
24
|
Sushma C, Anand AP, Veeranki VD. Enhanced production of glutaminase free L-asparaginase II by Bacillus subtilis WB800N through media optimization. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0211-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Appl Microbiol Biotechnol 2016; 101:1509-1520. [DOI: 10.1007/s00253-016-7816-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 11/27/2022]
|