1
|
Zhang Y, Chu T, Sun L, Chen X, Zhang W, Zhang H, Han B, Chang J, Feng Y, Song F. Study on the transfection efficiency of chitosan-based gene vectors modified with poly-l-arginine peptides. J Biomed Mater Res A 2020; 108:2409-2420. [PMID: 32363745 DOI: 10.1002/jbm.a.36992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/28/2020] [Accepted: 04/19/2020] [Indexed: 02/05/2023]
Abstract
Although in a series of studies, arginine peptides had shown the ability to promote the targeting delivery efficacy, the relationship between the transfection efficiency and the length of the poly-l-arginine chain had seldom been reported. This study was aimed to explore whether the chain length of poly-l-arginine grafted on chitosan had a great significance on the transfection efficiency of entering the cells. Herein, arginine and arginine peptide modified chitosan were synthesized as gene vectors (CS-Arg and CS-5Arg) and then the chemical structures were characterized by using 1 H NMR. The CS-Arg and CS-5Arg were combined with plasmids by electrostatic interactions to form stable particles. The morphology features, Zeta potentials, and buffering capacity of the complex particles were analyzed. Afterward, the combination ability with DNA and the protection ability to DNase I were studied, and the gene transfection efficiency and cellular uptake were investigated in vitro. The results showed that the gene transfection efficiency of the chitosan was significantly enhanced by arginine-graft modification. However, there were no significant differences between the CS-Arg and the CS-5Arg. The molecular simulation results indicated that the guanidine groups of grafted arginine were shielded by chitosan molecule and the guanidine groups contributed little to the gene transfection efficiency. The results demonstrated that the increased chain length of grafted arginine had no significantly enhanced effect on the transfection efficiency, which could provide convincing evidence for the construction and application of arginine and chitosan derivatives as gene vectors, and could promote the development of gene delivery system.
Collapse
Affiliation(s)
- Yan Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Tianjiao Chu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Le Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xiaotong Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Wangwang Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Haibin Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yilin Feng
- Qingdao Biotemed Biomaterials Co., Ltd., Qingdao, China
| | - Fulai Song
- Qingdao Biotemed Biomaterials Co., Ltd., Qingdao, China
| |
Collapse
|
2
|
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in Targeted Gene Delivery. Curr Drug Deliv 2020; 16:588-608. [PMID: 31142250 DOI: 10.2174/1567201816666190529072914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| |
Collapse
|
3
|
Begum AA, Toth I, Moyle PM. Gastrin-releasing peptide receptor-targeted hybrid peptide/phospholipid pDNA/siRNA delivery systems. Nanomedicine (Lond) 2019; 14:1153-1171. [PMID: 31050581 DOI: 10.2217/nnm-2018-0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To develop a peptide/phospholipid hybrid system for gastrin-releasing peptide receptor (GRPR)-targeted delivery of pDNA or siRNA. Materials & methods: A multifunctional GRPR-targeted peptide R9-K(GALA)-BBN(6-14) was combined with a phospholipid oligonucleotide delivery system (1:1 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and 1,2-dioleoyl-3-trimethylammonium-propane) and evaluated for pDNA and siRNA delivery in terms of complex size, toxicity, receptor-targeted delivery and gene expression or knockdown efficiency. Results: By combining peptide and phospholipid delivery systems, synergistic improvements in gene expression and knockdown were observed when compared with either system alone. The optimized formulation demonstrated high levels of EGFP expression and EGFP knockdown, GRPR-targeted delivery, enhanced endosomal release and minimal toxicity. Conclusion: The peptide/phospholipid hybrid system provides efficient GRPR-targeted DNA/siRNA delivery.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry & Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| |
Collapse
|
4
|
Martínez-Negro M, Blanco-Fernández L, Tentori PM, Pérez L, Pinazo A, Tros de Ilarduya C, Aicart E, Junquera E. A Gemini Cationic Lipid with Histidine Residues as a Novel Lipid-Based Gene Nanocarrier: A Biophysical and Biochemical Study. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1061. [PMID: 30558369 PMCID: PMC6316511 DOI: 10.3390/nano8121061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
Abstract
This work reports the synthesis of a novel gemini cationic lipid that incorporates two histidine-type head groups (C₃(C16His)₂). Mixed with a helper lipid 1,2-dioleoyl-sn-glycero-3-phosphatidyl ethanol amine (DOPE), it was used to transfect three different types of plasmid DNA: one encoding the green fluorescence protein (pEGFP-C3), one encoding a luciferase (pCMV-Luc), and a therapeutic anti-tumoral agent encoding interleukin-12 (pCMV-IL12). Complementary biophysical experiments (zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and fluorescence anisotropy) and biological studies (FACS, luminometry, and cytotoxicity) of these C₃(C16His)₂/DOPE-pDNA lipoplexes provided vast insight into their outcomes as gene carriers. They were found to efficiently compact and protect pDNA against DNase I degradation by forming nanoaggregates of 120⁻290 nm in size, which were further characterized as very fluidic lamellar structures based in a sandwich-type phase, with alternating layers of mixed lipids and an aqueous monolayer where the pDNA and counterions are located. The optimum formulations of these nanoaggregates were able to transfect the pDNAs into COS-7 and HeLa cells with high cell viability, comparable or superior to that of the standard Lipo2000*. The vast amount of information collected from the in vitro studies points to this histidine-based lipid nanocarrier as a potentially interesting candidate for future in vivo studies investigating specific gene therapies.
Collapse
Affiliation(s)
- María Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Laura Blanco-Fernández
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Paolo M Tentori
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Lourdes Pérez
- Dpto. Tecnología Química y Tensioactivos, IQAC-CSIC, 08034 Barcelona, Spain.
| | - Aurora Pinazo
- Dpto. Tecnología Química y Tensioactivos, IQAC-CSIC, 08034 Barcelona, Spain.
| | - Conchita Tros de Ilarduya
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Wan Y, Dai W, Nevagi RJ, Toth I, Moyle PM. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater 2017; 59:257-268. [PMID: 28655658 DOI: 10.1016/j.actbio.2017.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
The development of carriers for the delivery of oligonucleotide therapeutics is essential for the successful translation of gene therapies to the clinic. In the present study, a delivery system, which combines the fusogenic lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with a well-defined synthetic multifunctional peptide, was produced and optimized for gene delivery, with the aim to develop an efficient gene delivery platform for breast cancer cells. For this purpose, a breast cancer-specific cell targeting peptide (CTP) was incorporated into our leading peptide-based gene delivery system (to generate DEN-K(GALA)-TAT-K(STR)-CTP) to improve its cell-specific internalization, and investigated in combination with a formulation approach (DOPE/1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)). DEN-K(GALA)-TAT-K(STR)-CTP alone efficiently complexed with DNA or siRNA, and promoted efficient cellular uptake, but low levels of gene expression. By adding the formulation approach, synergistic improvements in gene expression and silencing were observed compared to the peptide or formulation approaches alone. Of significance, this current system demonstrated more efficient gene knockdown when compared to the leading commercial siRNA delivery agent Lipofectamine® RNAiMAX. The utility of this system was demonstrated through the delivery of BCL2 (B-cell lymphoma 2) siRNA to MCF-7 cells, which led to near complete knockdown of the Bcl-2 protein, and inhibition of MCF-7 cell migration in a wound healing assay. The present peptide/lipid hybrid system is an excellent candidate for the delivery of DNA or siRNA into breast cancer cells. STATEMENT OF SIGNIFICANCE The identification of safe and effective delivery systems for DNA and siRNA is of great importance. Herein, we developed a well-defined, multifunctional and cell-specific lipidic peptide DEN-K(GALA)-TAT-K(STR)-CTP as a breast cancer cell targeted gene delivery vector. When combined with a lipid component (DOTAP/DOPE), the peptide/lipid hybrid system demonstrated higher gene expression or knockdown levels compared to the peptide or lipid approach alone when used to deliver pDNA or siRNA respectively, indicating synergistic enhancement of gene delivery efficiency. Importantly, this delivery strategy achieved greater knockdown of the Bcl-2 protein when compared to the leading commercial siRNA delivery system Lipofectamine® RNAiMAX, suggesting its potential utility for the targeted treatment of Bcl-2 overexpressing breast cancers.
Collapse
Affiliation(s)
- Yu Wan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Wei Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Reshma J Nevagi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia.
| |
Collapse
|