1
|
Pashaie F, Hoornweg TE, Bikker FJ, Veenendaal T, Broere F, Veldhuizen EJA. Antiviral activity of cathelicidins against porcine epidemic diarrhea virus (PEDV): Mechanisms, and efficacy. Virus Res 2024; 350:199496. [PMID: 39528011 PMCID: PMC11607671 DOI: 10.1016/j.virusres.2024.199496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a harmful coronavirus infecting pigs, which is resulting in substantial financial losses in the global pig industry. The lack of effective vaccines or treatments underscores the pressing need for new antiviral strategies. Antimicrobial peptides (AMPs), specifically cathelicidins such as LL-37, have demonstrated promising activity against a range of viruses. This study aims to elucidate the antiviral mechanisms of cathelicidins by examining their inhibitory capabilities against PEDV in vitro. Four pig-derived antimicrobial peptides (PMAP-36, PMAP-23, PR-39, and PG-1), together with chicken-derived CATH-B1 and human-derived LL-37 were analyzed for their anti-PEDV activity. Flow cytometry and fluorescent microscopy confirmed that LL-37 and CATH-B1 had strong inhibitory effects at non-toxic concentrations of 5 and 10 µM, significantly reducing GFP-PEDV infection of Vero cells both in co- and pre-incubation setups. In contrast, none of the porcine peptides exhibited any inhibitory effects, even at higher doses. Fluorogenic LL-37 was shown to enter VERO cells, indicative of a possible immunomodulatory antiviral mode of action. However, transmission electron microscopy clearly indicated that both LL-37 and CATH-B1 affected virus morphology and caused aggregation of viral particles, showing that peptide-virus interaction caused reduced virus infectivity. In conclusion, this analysis highlights the potential of LL-37 and CATH-B1 as inhibitors against PEDV, suggesting promising directions for innovative therapeutic antiviral strategies.
Collapse
Affiliation(s)
- Fatemeh Pashaie
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Tabitha E Hoornweg
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam 1081 LA, the Netherlands
| | - Tineke Veenendaal
- Cell Microscopy Core, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CX, the Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands.
| |
Collapse
|
2
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
3
|
Charoenkwan P, Chumnanpuen P, Schaduangrat N, Shoombuatong W. Stack-AVP: A Stacked Ensemble Predictor Based on Multi-view Information for Fast and Accurate Discovery of Antiviral Peptides. J Mol Biol 2024:168853. [PMID: 39510347 DOI: 10.1016/j.jmb.2024.168853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
AVPs, or antiviral peptides, are short chains of amino acids capable of inhibiting viral replication, preventing viral entry, or disrupting viral membranes. They represent a promising area of research for developing new antiviral therapies due to their potential to target a broad spectrum of viruses, incorporating those resistant to traditional antiviral drugs. However, traditional experimental methods for identifying AVPs are often costly and labour-intensive. Thus far, multiple computational methods have been introduced for the in silico identification of AVPs, but these methods still have certain shortcomings. In this study, we propose a novel stacked ensemble learning framework, termed Stack-AVP, for fast and accurate AVP identification. In Stack-AVP, we investigated heterogeneous prediction models, which were trained with 12 commonly used machine learning algorithms coupled with a wide range of multiple feature encoding schemes. Subsequently, these prediction models were adopted to generate multi-view features providing class information and probability information. Finally, we applied our feature selection method to determine the best feature subset for the construction of the final stacked model. Comparative assessments on the independent test dataset revealed that Stack-AVP surpassed the performance of current state-of-the-art methods, with an accuracy of 0.930, MCC of 0.860, and AUC of 0.975. Furthermore, it was found that our multi-view features exhibited a crucial mechanism to improve the prediction performance of AVPs. To facilitate experimental scientists in performing high-throughput identification of AVPs, the prediction sever Stack-AVP is publicly accessible at https://pmlabqsar.pythonanywhere.com/Stack-AVP.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Ziu T, Sambur E, Ruzsics Z, Hengel H, Grabherr R, Höfinger S, Harant H. In Vitro Profiling of the Antiviral Peptide TAT-I24. Int J Mol Sci 2024; 25:10463. [PMID: 39408791 PMCID: PMC11477294 DOI: 10.3390/ijms251910463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The synthetic peptide TAT-I24 (GRKKRRQRRRPPQCLAFYACFC) exerts antiviral activity against several double-stranded (ds) DNA viruses, including herpes simplex viruses, cytomegalovirus, some adenoviruses, vaccinia virus and SV40 polyomavirus. In the present study, in vitro profiling of this peptide was performed with the aim of characterizing and improving its properties for further development. As TAT-I24 contains three free cysteine residues, a potential disadvantageous feature, peptide variants with replacements or deletions of specific residues were generated and tested in various cell systems and by biochemical analyses. Some cysteine replacements had no impact on the antiviral activity, such as the deletion of cysteine 14, which also showed improved biochemical properties, while the cyclization of cysteines 14 and 20 had the most detrimental effect on antiviral activity. At concentrations below 20 µM, TAT-I24 and selected variants did not induce hemolysis in red blood cells (RBCs) nor modulated lipopolysaccharide (LPS)-induced release of cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), in human peripheral blood mononuclear cells (PBMCs). These data indicate that TAT-I24 or its peptide variants are not expected to cause unwanted effects on blood cells.
Collapse
Affiliation(s)
- Theodhora Ziu
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| | - Ezgi Sambur
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Reingard Grabherr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria;
| | - Siegfried Höfinger
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | - Hanna Harant
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| |
Collapse
|
5
|
Ge R, Xia Y, Jiang M, Jia G, Jing X, Li Y, Cai Y. HybAVPnet: A Novel Hybrid Network Architecture for Antiviral Peptides Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1358-1365. [PMID: 38587961 DOI: 10.1109/tcbb.2024.3385635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly. However, due to limited data, accurate prediction of antiviral peptides is still challenging and extracting effective feature representations from sequences is crucial for creating accurate models. This study introduces a novel two-step approach, named HybAVPnet, to predict antiviral peptides with a hybrid network architecture based on neural networks and traditional machine learning methods. We adopted a stacking-like structure to capture both the long-term dependencies and local evolution information to achieve a comprehensive and diverse prediction using the predicted labels and probabilities. Using an ensemble technique with the different kinds of features can reduce the variance without increasing the bias. The experimental result shows HybAVPnet can achieve better and more robust performance compared with the state-of-the-art methods, which makes it useful for the research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide recognition problems because of its generalization ability.
Collapse
|
6
|
Zeitvogel J, Döhner K, Klug I, Richardo T, Sodeik B, Werfel T. Short-form thymic stromal lymphopoietin (sfTSLP) restricts herpes simplex virus infection of human primary keratinocytes. J Med Virol 2024; 96:e29865. [PMID: 39233492 DOI: 10.1002/jmv.29865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Eczema herpeticum (EH) is a disseminated severe herpes simplex virus type 1 (HSV-1) infection that mainly occurs in a subset of patients suffering from atopic dermatitis (AD). EH is complex and multifaceted, involving immunological changes, environmental influences, and genetic aberrations. Certain genetic variants of the thymic stromal lymphopoietin (TSLP) may predispose to develop severe HSV-1-induced eczema. Therefore, we investigated the impact of TSLP on HSV-1 infection. TSLP encodes for two distinct forms: a long-form (lfTSLP), primarily associated with type 2 immunity, and a short-form (sfTSLP) with anti-inflammatory and antimicrobial properties. While sfTSLP reduced HSV-1 infectibility in human primary keratinocytes (HPK), lfTSLP did not. In HPK treated with sfTSLP, HSV-1 gene expression, and replication decreased, while virion binding to cells and targeting of incoming capsids to the nucleus were not diminished compared to untreated cells. sfTSLP caused only minor changes in the expression of innate immunity cytokines, and its inhibition of HSV-1 infection did not require de novo protein synthesis. Time window experiments indicated a different antiviral mechanism than LL-37. sfTSLP showed the strongest antiviral effect when administered to HPK before or after inoculation with HSV-1, and outperformed the inhibitory potential of LL-37 under these conditions. Our data show that sfTSLP has antiviral functions and promotes repression of the HSV-1 infection in HPK.
Collapse
Affiliation(s)
- Jana Zeitvogel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Katinka Döhner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ilona Klug
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Timmy Richardo
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institut of Immunology, Department of Innate Immunity, Tübingen University, Tübingen, Germany
| | - Beate Sodeik
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- DZIF - German Centre for Infection Research, Hannover- Braunschweig, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Li Y, Shao K, Li Z, Zhu K, Gan BK, Shi J, Xiao Y, Luo M. Mechanistic insights into lanthipeptide modification by a distinct subclass of LanKC enzyme that forms dimers. Nat Commun 2024; 15:7090. [PMID: 39154050 PMCID: PMC11330476 DOI: 10.1038/s41467-024-51600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Naturally occurring lanthipeptides, peptides post-translationally modified by various enzymes, hold significant promise as antibiotics. Despite extensive biochemical and structural studies, the events preceding peptide modification remain poorly understood. Here, we identify a distinct subclass of lanthionine synthetase KC (LanKC) enzymes with distinct structural and functional characteristics. We show that PneKC, a member of this subclass, forms a dimer and possesses GTPase activity. Through three cryo-EM structures of PneKC, we illustrate different stages of peptide PneA binding, from initial recognition to full binding. Our structures show the kinase domain complexed with the PneA core peptide and GTPγS, a phosphate-bound lyase domain, and an unconventional cyclase domain. The leader peptide of PneA interact with a gate loop, transitioning from an extended to a helical conformation. We identify a dimerization hot spot and propose a "negative cooperativity" mechanism toggling the enzyme between tense and relaxed conformation. Additionally, we identify an important salt bridge in the cyclase domain, differing from those in in conventional cyclase domains. These residues are highly conserved in the LanKC subclass and are part of two signature motifs. These results unveil potential differences in lanthipeptide modification enzymes assembly and deepen our understanding of allostery in these multifunctional enzymes.
Collapse
Affiliation(s)
- Yifan Li
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kai Shao
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhaoxing Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kongfu Zhu
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Bee Koon Gan
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jian Shi
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Min Luo
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Lefin N, Herrera-Belén L, Farias JG, Beltrán JF. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Mol Divers 2024; 28:2365-2374. [PMID: 37626205 DOI: 10.1007/s11030-023-10718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Viruses constitute a constant threat to global health and have caused millions of human and animal deaths throughout human history. Despite advances in the discovery of antiviral compounds that help fight these pathogens, finding a solution to this problem continues to be a task that consumes time and financial resources. Currently, artificial intelligence (AI) has revolutionized many areas of the biological sciences, making it possible to decipher patterns in amino acid sequences that encode different functions and activities. Within the field of AI, machine learning, and deep learning algorithms have been used to discover antimicrobial peptides. Due to their effectiveness and specificity, antimicrobial peptides (AMPs) hold excellent promise for treating various infections caused by pathogens. Antiviral peptides (AVPs) are a specific type of AMPs that have activity against certain viruses. Unlike the research focused on the development of tools and methods for the prediction of antimicrobial peptides, those related to the prediction of AVPs are still scarce. Given the significance of AVPs as potential pharmaceutical options for human and animal health and the ongoing AI revolution, we have reviewed and summarized the current machine learning and deep learning-based tools and methods available for predicting these types of peptides.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Temuco, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
9
|
Guan J, Yao L, Xie P, Chung CR, Huang Y, Chiang YC, Lee TY. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Brief Bioinform 2024; 25:bbae208. [PMID: 38706321 PMCID: PMC11070730 DOI: 10.1093/bib/bbae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Antiviral peptides (AVPs) have shown potential in inhibiting viral attachment, preventing viral fusion with host cells and disrupting viral replication due to their unique action mechanisms. They have now become a broad-spectrum, promising antiviral therapy. However, identifying effective AVPs is traditionally slow and costly. This study proposed a new two-stage computational framework for AVP identification. The first stage identifies AVPs from a wide range of peptides, and the second stage recognizes AVPs targeting specific families or viruses. This method integrates contrastive learning and multi-feature fusion strategy, focusing on sequence information and peptide characteristics, significantly enhancing predictive ability and interpretability. The evaluation results of the model show excellent performance, with accuracy of 0.9240 and Matthews correlation coefficient (MCC) score of 0.8482 on the non-AVP independent dataset, and accuracy of 0.9934 and MCC score of 0.9869 on the non-AMP independent dataset. Furthermore, our model can predict antiviral activities of AVPs against six key viral families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight viruses (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). Finally, to facilitate user accessibility, we built a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼dbAMP/AVP/.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Lantian Yao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, 320317 Taoyuan, Taiwan
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
10
|
Zhao C, Yan S, Luo Y, Song Y, Xia X. Analyzing resistome in soil and Human gut: a study on the characterization and risk evaluation of antimicrobial peptide resistance. Front Microbiol 2024; 15:1352531. [PMID: 38591036 PMCID: PMC10999558 DOI: 10.3389/fmicb.2024.1352531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Objective The limited existing knowledge regarding resistance to antimicrobial peptides (AMPs) is hindering their broad utilization. The aim of this study is to enhance the understanding of AMP resistance, a pivotal factor in the exploration of alternative drug development in response to the escalating challenge of antibiotic resistance. Methods We utilized metagenomic functional selection to analyze genes resistant to AMPs, with a specific focus on the microbiota in soil and the human gut. Through a combination of experimental methods and bioinformatics analyses, our investigation delved into the possibilities of the evolution of resistance to AMPs, as well as the transfer or interchange of resistance genes among the environment, the human body, and pathogens. Additionally, we examined the cross-resistance between AMPs and evaluated interactions among AMPs and conventional antibiotics. Results The presence of AMP resistance, including various resistance mechanisms, was observed in both soil and the human gut microbiota, as indicated by our findings. Significantly, the study underscored the facile evolution of AMP resistance and the potential for gene sharing or exchange among different environments. Notably, cross-resistance among AMPs was identified as a phenomenon, while cross-resistance between AMPs and antibiotics was found to be relatively infrequent. Conclusion The results of our study highlight the significance of taking a cautious stance when considering the extensive application of AMPs. It is imperative to thoroughly assess potential resistance risks, with a particular focus on the development of resistance to AMPs across diverse domains. A comprehensive grasp of these aspects is essential for making well-informed decisions and ensuring the responsible utilization of AMPs in the ongoing fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Hiago Bellaver E, Eliza Redin E, Militão da Costa I, Schittler Moroni L, Pinto Kempka A. Food peptidomic analysis of bovine milk fermented by Lacticaseibacillus casei LBC 237: In silico prediction of bioactive peptides and anticancer potential. Food Res Int 2024; 180:114060. [PMID: 38395580 DOI: 10.1016/j.foodres.2024.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Bioactive peptides, which exhibited diverse biological activities such as anti-cancer, anti-inflammatory, bactericidal, antiviral, and quorum sensing properties, were considered promising alternative therapeutic agents. Sourced from various raw materials, particularly foods, these peptides garnered significant interest. In this context, the study focused on exploring bioactive peptides derived from bovine whole milk fermentation by Lacticaseibacillus casei LBC 237. Comprehensive peptidomic analysis and in silico predictions, with a specific emphasis on anti-cancer properties, were conducted. The study categorized peptides into BP-LBC, originating from the metabolism of L. casei LBC 237 and not matching any sequence in the Bos taurus database, and BP-MILK, matching a sequence in the Bos taurus database. Among the 143 identified peptides with potential biological activity, 33.56% were attributed to BP-LBC, while 66.43% originated from BP-MILK, demonstrating the important contribution of proteins in bovine milk in the generation of bioactive peptides. Hydrophobic peptides, enriched in Leucine, Lysine, and Proline, dominated both fractions, significantly influencing their functional properties. Pearson correlation analysis revealed inverse relationships between bioactive peptides, molecular weight, and anti-tumor activity in BP-MILK. The DGKVWEESLK peptide exhibited in silico activity against 10 different cancer cell lines. Studying the bioactive properties of peptides from familiar sources enhances the connection between food science and human health. In addition, in silico studies have been crucial in deepening our understanding of the bioactive potential of these peptides and their mode of action.
Collapse
Affiliation(s)
- Emyr Hiago Bellaver
- Santa Catarina State University. Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology. Lages, SC, Brazil
| | - Eduarda Eliza Redin
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | - Ingrid Militão da Costa
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | - Liziane Schittler Moroni
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | - Aniela Pinto Kempka
- Santa Catarina State University. Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology. Lages, SC, Brazil; Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| |
Collapse
|
12
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
13
|
Bharadwaj A, Kaur R, Gupta S. Emerging Treatment Approaches for COVID-19 Infection: A Critical Review. Curr Mol Med 2024; 24:435-448. [PMID: 37070448 DOI: 10.2174/1566524023666230417112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 04/19/2023]
Abstract
In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV- 2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| |
Collapse
|
14
|
Bess A, Berglind F, Mukhopadhyay S, Brylinski M, Alvin C, Fattah F, Wasan KM. Identification of oral therapeutics using an AI platform against the virus responsible for COVID-19, SARS-CoV-2. Front Pharmacol 2023; 14:1297924. [PMID: 38186640 PMCID: PMC10770831 DOI: 10.3389/fphar.2023.1297924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose: This study introduces a sophisticated computational pipeline, eVir, designed for the discovery of antiviral drugs based on their interactions within the human protein network. There is a pressing need for cost-effective therapeutics for infectious diseases (e.g., COVID-19), particularly in resource-limited countries. Therefore, our team devised an Artificial Intelligence (AI) system to explore repurposing opportunities for currently used oral therapies. The eVir system operates by identifying pharmaceutical compounds that mirror the effects of antiviral peptides (AVPs)-fragments of human proteins known to interfere with fundamental phases of the viral life cycle: entry, fusion, and replication. eVir extrapolates the probable antiviral efficacy of a given compound by analyzing its established and predicted impacts on the human protein-protein interaction network. This innovative approach provides a promising platform for drug repurposing against SARS-CoV-2 or any virus for which peptide data is available. Methods: The eVir AI software pipeline processes drug-protein and protein-protein interaction networks generated from open-source datasets. eVir uses Node2Vec, a graph embedding technique, to understand the nuanced connections among drugs and proteins. The embeddings are input a Siamese Network (SNet) and MLPs, each tailored for the specific mechanisms of entry, fusion, and replication, to evaluate the similarity between drugs and AVPs. Scores generated from the SNet and MLPs undergo a Platt probability calibration and are combined into a unified score that gauges the potential antiviral efficacy of a drug. This integrated approach seeks to boost drug identification confidence, offering a potential solution for detecting therapeutic candidates with pronounced antiviral potency. Once identified a number of compounds were tested for efficacy and toxicity in lung carcinoma cells (Calu-3) infected with SARS-CoV-2. A lead compound was further identified to determine its efficacy and toxicity in K18-hACE2 mice infected with SARS-CoV-2. Computational Predictions: The SNet confidently differentiated between similar and dissimilar drug pairs with an accuracy of 97.28% and AUC of 99.47%. Key compounds identified through these networks included Zinc, Mebendazole, Levomenol, Gefitinib, Niclosamide, and Imatinib. Notably, Mebendazole and Zinc showcased the highest similarity scores, while Imatinib, Levemenol, and Gefitinib also ranked within the top 20, suggesting their significant pharmacological potentials. Further examination of protein binding analysis using explainable AI focused on reverse engineering the causality of the networks. Protein interaction scores for Mebendazole and Imatinib revealed their effects on notable proteins such as CDPK1, VEGF2, ABL1, and several tyrosine protein kinases. Laboratory Studies: This study determined that Mebendazole, Gefitinib, Topotecan and to some extent Carfilzomib showed conventional drug-response curves, with IC50 values near or below that of Remdesivir with excellent confidence all above R2>0.91, and no cytotoxicity at the IC50 concentration in Calu-3 cells. Cyclosporine A showed antiviral activity, but also unconventional drug-response curves and low R2 which are explained by the non-dose dependent toxicity of the compound. Additionally, Niclosamide demonstrated a conventional drug-response curve with high confidence; however, its inherent cytotoxicity may be a confounding element that misrepresents true antiviral efficacy, by reflecting cellular damage rather than a genuine antiviral action. Remdesivir was used as a control compound and was evaluated in parallel with the submitted test article and had conventional drug-response curves validating the overall results of the assay. Mebendazole was identified from the cell studies to have efficacy at non-toxic concentrations and were further evaluated in mice infected with SARS-CoV-2. Mebendazole administered to K18-hACE2 mice infected with SARS-CoV-2, resulted in a 44.2% reduction in lung viral load compared to non-treated placebo control respectively. There were no significant differences in body weight and all clinical chemistry determinations evaluated (i.e., kidney and liver enzymes) between the different treatment groups. Conclusion: This research underscores the potential of repurposing existing compounds for treating COVID-19. Our preliminary findings underscore the therapeutic promise of several compounds, notably Mebendazole, in both in vitro and in vivo settings against SARS-CoV-2. Several of the drugs explored, especially Mebendazole, are off-label medication; their cost-effectiveness position them as economical therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Adam Bess
- Department of Computer Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Frej Berglind
- Department of Computer Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Supratik Mukhopadhyay
- Department of Environmental Sciences, Center for Computation & Technology, Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, United States
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Chris Alvin
- Department of Computer Science, Furman University, Greenville, SC, United States
| | - Fanan Fattah
- Department of Urologic Sciences, Faculty of Medicine and the Neglected Global Diseases Initiative, University of British Columbia, Vancouver, BC, Canada
| | - Kishor M. Wasan
- Department of Urologic Sciences, Faculty of Medicine and the Neglected Global Diseases Initiative, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Ma X, Liang Y, Zhang S. iAVPs-ResBi: Identifying antiviral peptides by using deep residual network and bidirectional gated recurrent unit. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:21563-21587. [PMID: 38124610 DOI: 10.3934/mbe.2023954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Human history is also the history of the fight against viral diseases. From the eradication of viruses to coexistence, advances in biomedicine have led to a more objective understanding of viruses and a corresponding increase in the tools and methods to combat them. More recently, antiviral peptides (AVPs) have been discovered, which due to their superior advantages, have achieved great impact as antiviral drugs. Therefore, it is very necessary to develop a prediction model to accurately identify AVPs. In this paper, we develop the iAVPs-ResBi model using k-spaced amino acid pairs (KSAAP), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition (EGAAC) based on the N5C5 sequence, composition, transition and distribution (CTD) based on physicochemical properties for multi-feature extraction. Then we adopt bidirectional long short-term memory (BiLSTM) to fuse features for obtaining the most differentiated information from multiple original feature sets. Finally, the deep model is built by combining improved residual network and bidirectional gated recurrent unit (BiGRU) to perform classification. The results obtained are better than those of the existing methods, and the accuracies are 95.07, 98.07, 94.29 and 97.50% on the four datasets, which show that iAVPs-ResBi can be used as an effective tool for the identification of antiviral peptides. The datasets and codes are freely available at https://github.com/yunyunliang88/iAVPs-ResBi.
Collapse
Affiliation(s)
- Xinyan Ma
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| |
Collapse
|
16
|
Nath A. Physicochemical and sequence determinants of antiviral peptides. Biol Futur 2023; 74:489-506. [PMID: 37889451 DOI: 10.1007/s42977-023-00188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Antiviral peptides (AVPs) open new possibilities as an effective antiviral therapeutic in the current scenario of evolving drug-resistant viruses. Knowledge about the sequence and structure activity relationship in AVPs is still largely unknown. AVPs and antimicrobial peptides (AMPs) share several common features but as they target different life forms (living organisms and viruses), exploring the differential sequence features may facilitate in designing specific AVPs. The current work developed accurate prediction models for discriminating (a) AVPs from AMPs, (b) Coronaviridae AVPs from other virus family specific AVPs and (c) highly active AVPs (HAA) from lowly active AVPs (LAA). Further explainable machine learning methods (using model agnostic global interpretable methods) are utilized for exploring and interpreting the physicochemical spaces of AVPs, Coronaviridae AVPs and highly active AVPs. To further understand the association of physicochemical space distribution with pIC50 values, regression models were developed and analyzed using accumulated local effects and interaction strength analysis. An independent sample t-test is used to filter out the significant compositional differences between the smaller length HAA and longer length HAA groups. AVPs prefer lower charge/length ratio and basic residues in comparison with AMPs. Coronaviridae family-specific AVPs have lower propensities for basic amino acids, charge and preference for aspartic acid. Further there is prevalence for basic residues in lowly active AVPs as compared to highly active AVPs. Sequence order effects captured in terms of average amino acid pair distances proved to be more constructive in deciphering the sequences of AVPs.
Collapse
Affiliation(s)
- Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, 492001, India.
| |
Collapse
|
17
|
Xu K, Zhao X, Tan Y, Wu J, Cai Y, Zhou J, Wang X. A systematical review on antimicrobial peptides and their food applications. BIOMATERIALS ADVANCES 2023; 155:213684. [PMID: 37976831 DOI: 10.1016/j.bioadv.2023.213684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Food safety issues are a major concern in food processing and packaging industries. Food spoilage is caused by microbial contamination, where antimicrobial peptides (APs) provide solutions by eliminating microorganisms. APs such as nisin have been successfully and commonly used in food processing and preservation. Here, we discuss all aspects of the functionalization of APs in food applications. We briefly review the natural sources of APs and their native functions. Recombinant expression of APs in microorganisms and their yields are described. The molecular mechanisms of AP antibacterial action are explained, and this knowledge can further benefit the design of functional APs. We highlight current utilities and challenges for the application of APs in the food industry, and address rational methods for AP design that may overcome current limitations.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - XinYi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Junheng Wu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yiqing Cai
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China..
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Xu Y, Cai H, Xiong Y, Tang L, Li L, Zhang L, Shen Y, Yang Y, Lin L, Huang J. YAP/TAZ axis was involved in the effects of metformin on breast cancer. J Chemother 2023; 35:627-637. [PMID: 36656142 DOI: 10.1080/1120009x.2022.2162221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is malignant tumours in women. A large amount of data analysis shows that Metformin has been shown to play a significance role in reducing the risk of breast cancer, but the mechanism remains unclear. The hippo signalling pathway can be involved in the formation, metastasis and recurrence of breast cancer. When YAP/TAZ is activated, cells can overcome contact inhibition and enter a state of uncontrolled proliferation. Therefore, YAP/TAZ is considered a potential therapeutic target for breast cancer. Eighty breast cancer patients, forty cases of triple-negative and forty cases of HER-2+, were included in this study. In vitro and in vivo experiments were used to confirm the YAP/TAZ axis was involved in the effects of metformin on breast cancer. EMT plays an important role in breast cancer, including chemoresistance and tumour metastasis. Our results confirmed that YAP could modulate the activity of EMT, which in turn altered tumour resistance. Therefore, MET can inhibit EMT by reducing the expression of YAP, and finally achieve the therapeutic effect of breast cancer. Our findings support metformin as a novel YAP inhibitor and potentially as a novel breast cancer drug.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Hongke Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanfeng Xiong
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jiayi Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Rahangdale R, Tender T, Balireddy S, Goswami K, Pasupuleti M, Hariharapura RC. A critical review on antiviral peptides derived from viral glycoproteins and host receptors to decoy herpes simplex virus. Microb Biotechnol 2023; 16:2036-2052. [PMID: 37740682 PMCID: PMC10616652 DOI: 10.1111/1751-7915.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The health of the human population has been continuously challenged by viral infections. Herpes simplex virus (HSV) is one of the common causes of illness and can lead to death in immunocompromised patients. Existing anti-HSV therapies are not completely successful in eliminating the infection due to anti-viral drug resistance, ineffectiveness against the latent virus and high toxicity over prolonged use. There is a need to update our knowledge of the current challenges faced in anti-HSV therapeutics and realize the necessity of developing alternative treatment approaches. Protein therapeutics are now being explored as a novel approach due to their high specificity and low toxicity. This review highlights the significance of HSV viral glycoproteins and host receptors in the pathogenesis of HSV infection. Proteins or peptides derived from HSV glycoproteins gC, gB, gD, gH and host cell receptors (HSPG, nectin and HVEM) that act as decoys to inhibit HSV attachment, entry, or fusion have been discussed. Few researchers have tried to improve the efficacy and stability of the identified peptides by modifying them using a peptidomimetic approach. With these efforts, we think developing an alternative treatment option for immunocompromised patients and drug-resistant organisms is not far off.
Collapse
Affiliation(s)
- Rakesh Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kamini Goswami
- Microbiology Division, Council of Scientific and Industrial ResearchCentral Drug Research InstituteLucknowUttar PradeshIndia
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial ResearchCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
20
|
Cao R, Hu W, Wei P, Ding Y, Bin Y, Zheng C. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses. Brief Bioinform 2023; 24:bbad353. [PMID: 37861174 DOI: 10.1093/bib/bbad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
Antiviral peptides (AVPs) are widely found in animals and plants, with high specificity and strong sensitivity to drug-resistant viruses. However, due to the great heterogeneity of different viruses, most of the AVPs have specific antiviral activities. Therefore, it is necessary to identify the specific activities of AVPs on virus types. Most existing studies only identify AVPs, with only a few studies identifying subclasses by training multiple binary classifiers. We develop a two-stage prediction tool named FFMAVP that can simultaneously predict AVPs and their subclasses. In the first stage, we identify whether a peptide is AVP or not. In the second stage, we predict the six virus families and eight species specifically targeted by AVPs based on two multiclass tasks. Specifically, the feature extraction module in the two-stage task of FFMAVP adopts the same neural network structure, in which one branch extracts features based on amino acid feature descriptors and the other branch extracts sequence features. Then, the two types of features are fused for the following task. Considering the correlation between the two tasks of the second stage, a multitask learning model is constructed to improve the effectiveness of the two multiclass tasks. In addition, to improve the effectiveness of the second stage, the network parameters trained through the first-stage data are used to initialize the network parameters in the second stage. As a demonstration, the cross-validation results, independent test results and visualization results show that FFMAVP achieves great advantages in both stages.
Collapse
Affiliation(s)
- Ruifen Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Computer Science and Technology, Anhui University
| | - Weiling Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Computer Science and Technology, Anhui University
| | - Pijing Wei
- Institutes of Physical Science and Information Technology, Anhui University
| | - Yun Ding
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University
| |
Collapse
|
21
|
Stincarelli MA, Quagliata M, Di Santo A, Pacini L, Fernandez FR, Arvia R, Rinaldi S, Papini AM, Rovero P, Giannecchini S. SARS-CoV-2 inhibitory activity of a short peptide derived from internal fusion peptide of S2 subunit of spike glycoprotein. Virus Res 2023; 334:199170. [PMID: 37422270 PMCID: PMC10384657 DOI: 10.1016/j.virusres.2023.199170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a great concern in human population. To fight coronavirus emergence, we have dissected the conserved amino acid region of the internal fusion peptide in the S2 subunit of Spike glycoprotein of SARS-CoV-2 to design new inhibitory peptides. Among the 11 overlapping peptides (9-23-mer), PN19, a 19-mer peptide, exhibited a powerful inhibitory activity against different SARS-CoV-2 clinical isolate variants in absence of cytotoxicity. The PN19 inhibitory activity was found to be dependent on conservation of the central Phe and C-terminal Tyr residues in the peptide sequence. Circular dichroism spectra of the active peptide exhibited an alpha-helix propensity, confirmed by secondary structure prediction analysis. The PN19 inhibitory activity, exerted in the first step of virus infection, was reduced after peptide adsorption treatment with virus-cell substrate during fusion interaction. Additionally, PN19 inhibitory activity was reduced by adding S2 membrane-proximal region derived peptides. PN19 showed binding ability to the S2 membrane proximal region derived peptides, confirmed by molecular modelling, playing a role in the mechanism of action. Collectively, these results confirm that the internal fusion peptide region is a good candidate on which develop peptidomimetic anti SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Andrea Di Santo
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Feliciana Real Fernandez
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Silvia Rinaldi
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy.
| |
Collapse
|
22
|
Yang S, Yang Z, Ni X. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information. Anal Biochem 2023; 673:115196. [PMID: 37236434 DOI: 10.1016/j.ab.2023.115196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Antimicrobial peptides (AMPs) called host defense peptides have existed among all classes of life with 5-100 amino acids generally and can kill mycobacteria, envelop viruses, bacteria, fungi, cancerous cells and so on. Owing to the non-drug resistance of AMP, it has been a wonderful agent to find novel therapies. Therefore, it is urgent to identify AMPs and predict their function in a high-throughput way. In this paper, we propose a cascaded computational model to identify AMPs and their functional type based on sequence-derived and life language embedding, called AMPFinder. Compared with other state-of-the-art methods, AMPFinder obtains higher performance both on AMP identification and AMP function prediction. AMPFinder shows better performance with improvement of F1-score (1.45%-6.13%), MCC (2.92%-12.86%) and AUC (5.13%-8.56%) and AP (9.20%-21.07%) on an independent test dataset. And AMPFinder achieve lower bias of R2 on a public dataset by 10-fold cross-validation with an improvement of (18.82%-19.46%). The comparison with other state-of-the-art methods shows that AMP can accurately identify AMP and its function types. The datasets, source code and user-friendly application are available at https://github.com/abcair/AMPFinder.
Collapse
Affiliation(s)
- Sen Yang
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213164, China; School of Computer Science and Artificial Intelligence Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, 213164, China
| | - Zexi Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, 213164, China
| | - Xinye Ni
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213164, China.
| |
Collapse
|
23
|
Castro-Amarante MFD, Pereira SS, Pereira LR, Santos LS, Venceslau-Carvalho AA, Martins EG, Balan A, Souza Ferreira LCD. The Anti-Dengue Virus Peptide DV2 Inhibits Zika Virus Both In Vitro and In Vivo. Viruses 2023; 15:v15040839. [PMID: 37112820 PMCID: PMC10143277 DOI: 10.3390/v15040839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The C-terminal portion of the E protein, known as stem, is conserved among flaviviruses and is an important target to peptide-based antiviral strategies. Since the dengue (DENV) and Zika (ZIKV) viruses share sequences in the stem region, in this study we evaluated the cross-inhibition of ZIKV by the stem-based DV2 peptide (419–447), which was previously described to inhibit all DENV serotypes. Thus, the anti-ZIKV effects induced by treatments with the DV2 peptide were tested in both in vitro and in vivo conditions. Molecular modeling approaches have demonstrated that the DV2 peptide interacts with amino acid residues exposed on the surface of pre- and postfusion forms of the ZIKA envelope (E) protein. The peptide did not have any significant cytotoxic effects on eukaryotic cells but efficiently inhibited ZIKV infectivity in cultivated Vero cells. In addition, the DV2 peptide reduced morbidity and mortality in mice subjected to lethal challenges with a ZIKV strain isolated in Brazil. Taken together, the present results support the therapeutic potential of the DV2 peptide against ZIKV infections and open perspectives for the development and clinical testing of anti-flavivirus treatments based on synthetic stem-based peptides.
Collapse
|
24
|
Liu Y, Zhu Y, Sun X, Ma T, Lao X, Zheng H. DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins. Viruses 2023; 15:v15040820. [PMID: 37112801 PMCID: PMC10141206 DOI: 10.3390/v15040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Viruses with rapid replication and easy mutation can become resistant to antiviral drug treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as defensins, have also been identified as possessing antiviral activities, including direct antiviral effects and the ability to induce indirect immune responses to viruses. To promote the development of antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The database provides general information, antiviral activity, structure information, physicochemical information, and literature information for peptides and proteins. Because most of the proteins and peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral peptide's structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August 2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can be accessed from the web interface. The DRAVP database aims to be a useful resource for developing antiviral drugs.
Collapse
Affiliation(s)
- Yanchao Liu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xin Sun
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
25
|
Pashmforoosh N, Baradaran M. Peptides with Diverse Functions from Scorpion Venom: A Great Opportunity for the Treatment of a Wide Variety of Diseases. IRANIAN BIOMEDICAL JOURNAL 2023; 27:84-99. [PMID: 37070616 PMCID: PMC10314758 DOI: 10.61186/ibj.3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 12/17/2023]
Abstract
Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran The venom glands are a rich source of biologically important peptides with pharmaceutical properties. Scorpion venoms have been identified as a reservoir for components that might be considered as great candidates for drug development. Pharmacological properties of the venom compounds have been confirmed in the treatment of different disorders. Ion channel blockers and AMPs are the main groups of scorpion venom components. Despite the existence of several studies about scorpion peptides, there are still valuable components to be discovered. Additionally, owing to the improvement of proteomics and transcriptomics, the number of peptide drugs is steadily increasing, which reflects the importance of these medications. This review evaluates available literatures on some important scorpion venom peptides with pharmaceutical activities. Given that the last three years have been dominated by the COVID-19 from the medical/pharmaceutical perspective, scorpion compounds with the potential against the coronavirus 2 (SARS-CoV-2) are discussed in this review.
Collapse
Affiliation(s)
| | - Masoumeh Baradaran
- Corresponding Author: Masoumeh Baradaran Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; E-mail:
| |
Collapse
|
26
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
27
|
Aleebrahim-Dehkordi E, Soveyzi F, Saberianpour S, Rafieian-Kopaei M. Are Herbal-peptides Effective as Adjunctive Therapy in Coronavirus Disease COVID-19? Curr Drug Res Rev 2023; 15:29-34. [PMID: 36029074 DOI: 10.2174/2589977514666220826155013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant antiviral peptides (AVP) are macromolecules that can inhibit the pathogenesis of viruses by affecting their pathogenic mechanism, but most of these peptides can bind to cell membranes, inhibit viral receptors, and prevent viruses. Recently, due to the coronavirus pandemic, the availability of appropriate drugs with low side effects is needed. In this article, the importance of plant peptides in viral inhibition, especially viral inhibition of the coronavirus family, will be discussed. METHODS By searching the databases of PubMed, Scopus, Web of Science, the latest articles on plant peptides effective on the COVID-19 virus were collected and reviewed. RESULTS Some proteins can act against the COVID-19 virus by blocking sensitive receptors in COVID-19, such as angiotensin-converting enzyme 2 (ACE2). The 23bp sequence of the ACE2 alpha receptor chain can be considered as a target for therapeutic peptides. Protease and RNAP inhibitors and other important receptors that are active against COVID-19 should also be considered. CONCLUSION Herbal medicines with AVP, especially those with a long history of antiviral effects, might be a good choice in complement therapy against the COVID-19 virus.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Faezeh Soveyzi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Saberianpour
- Department of Molecular Medicine, Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
28
|
Bischetti M, Alaimo N, Nardelli F, Punzi P, Amariei C, Ingenito R, Musco G, Gallo M, Cicero DO. Structural insights on the selective interaction of the histidine-rich piscidin antimicrobial peptide Of-Pis1 with membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184080. [PMID: 36328080 DOI: 10.1016/j.bbamem.2022.184080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Of-Pis1 is a potent piscidin antimicrobial peptide (AMP), recently isolated from rock bream (Oplegnathus fasciatus). This rich in histidines and glycines 24-amino acid peptide displays high and broad antimicrobial activity and no significant hemolytic toxicity against human erythrocytes, suggesting low toxicity. To better understand the mechanism of action of Of-Pis1 and its potential selectivity, using NMR and CD spectroscopies, we studied the interaction with eukaryotic and procaryotic membranes and membrane models. Anionic sodium dodecyl sulfate (SDS) and lipopolysaccharide (LPS) micelles were used to mimic procaryotic membranes, while zwitterionic dodecyl phosphocholine (DPC) was used as eukaryotic membrane surrogate. In an aqueous environment, Of-Pis1 adopts a flexible random coil conformation. In DPC and SDS instead, the N-terminal region of Of-Pis1 forms an amphipathic α-helix with the non-polar face in close contact with the micelles. Slower solvent exchange and higher pKas of the histidine residues in SDS than in DPC suggest that Of-Pis1 interacts more tightly with SDS. Of-Pis1 also binds tightly and structurally perturbs LPS micelles. Of-Pis1 interacts with both Escherichia coli and mammalian cell membranes, but only in the presence of Escherichia coli membranes it populates the helical conformation. Furthermore, ligand-based NMR experiments support a tighter and more specific interaction with bacterial than with eukaryotic membranes. Overall, these data clearly show the selective interaction of this broadly active AMP with bacterial over eukaryotic membranes. The conformational information is discussed in terms of Of-Pis1 amino acid sequence and composition to provide insights useful to design more potent and selective AMPs.
Collapse
Affiliation(s)
- Martina Bischetti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Nadine Alaimo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Francesca Nardelli
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Pasqualina Punzi
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Cristi Amariei
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Raffaele Ingenito
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Giovana Musco
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Mariana Gallo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy.
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
29
|
Abstract
In the design and development of therapeutic agents, macromolecules with restricted structures have stronger competitive edges than linear biological entities since cyclization can overcome the limitations of linear structures. The common issues of linear peptides include susceptibility to degradation of the peptidase enzyme, off-target effects, and necessity of routine dosing, leading to instability and ineffectiveness. The unique conformational constraint of cyclic peptides provides a larger surface area to interact with the target at the same time, improving the membrane permeability and in vivo stability compared to their linear counterparts. Currently, cyclic peptides have been reported to possess various activities, such as antifungal, antiviral and antimicrobial activities. To date, there is emerging interest in cyclic peptide therapeutics, and increasing numbers of clinically approved cyclic peptide drugs are available on the market. In this review, the medical significance of cyclic peptides in the defence against viral infections will be highlighted. Except for chikungunya virus, which lacks specific antiviral treatment, all the viral diseases targeted in this review are those with effective treatments yet with certain limitations to date. Thus, strategies and approaches to optimise the antiviral effect of cyclic peptides will be discussed along with their respective outcomes. Apart from isolated naturally occurring cyclic peptides, chemically synthesized or modified cyclic peptides with antiviral activities targeting coronavirus, herpes simplex viruses, human immunodeficiency virus, Ebola virus, influenza virus, dengue virus, five main hepatitis viruses, termed as type A, B, C, D and E and chikungunya virus will be reviewed herein. Graphical Abstract
Collapse
|
30
|
Miah MM, Tabassum N, Afroj Zinnia M, Islam ABMMK. Drug and Anti-Viral Peptide Design to Inhibit the Monkeypox Virus by Restricting A36R Protein. Bioinform Biol Insights 2022; 16:11779322221141164. [PMID: 36570327 PMCID: PMC9772960 DOI: 10.1177/11779322221141164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022] Open
Abstract
Most recently, monkeypox virus (MPXV) has emanated as a global public health threat. Unavailability of effective medicament against MPXV escalates demand for new therapeutic agent. In this study, in silico strategies were conducted to identify novel drug against the A36R protein of MPXV. The A36R protein of MPXV is responsible for the viral migration, adhesion, and vesicle trafficking to the host cell. To block the A36R protein, 4893 potential antiviral peptides (AVPs) were retrieved from DRAMP and SATPdb databases. Finally, 57 sequences were screened based on peptide filtering criteria, which were then modeled. Likewise, 31 monkeypox virus A36R protein sequences were collected from NCBI protein database to find consensus sequence and to predict 3D protein model. The refined and validated models of the A36R protein and AVP peptides were used to predict receptor-ligand interactions using DINC 2 server. Three peptides that showed best interactions were SATPdb10193, SATPdb21850, and SATPdb26811 with binding energies -6.10, -6.10, and -6.30 kcal/mol, respectively. Small molecules from drug databases were also used to perform virtual screening against the A36R protein. Among databases, Enamine-HTSC showed strong affinity with docking scores ranging from -8.8 to 9.8 kcal/mol. Interaction of target protein A36R with the top 3 peptides and the most probable drug (Z55287118) examined by molecular dynamic (MD) simulation. Trajectory analyses (RMSD, RMSF, SASA, and Rg) confirmed the stable nature of protein-ligand and protein-peptide complexes. This work suggests that identified top AVPs and small molecules might interfere with the function of the A36R protein of MPXV.
Collapse
Affiliation(s)
| | - Nuzhat Tabassum
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | | | - Abul Bashar Mir Md. Khademul Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh,Abul Bashar Mir Md. Khademul Islam, Department of Genetic Engineering and Biotechnology, University of Dhaka, Nilkhet Rd, Dhaka 1000, Bangladesh.
| |
Collapse
|
31
|
Behairy MY, Soltan MA, Eldeen MA, Abdulhakim JA, Alnoman MM, Abdel-Daim MM, Otifi H, Al-Qahtani SM, Zaki MSA, Alsharif G, Albogami S, Jafri I, Fayad E, Darwish KM, Elhady SS, Eid RA. HBD-2 variants and SARS-CoV-2: New insights into inter-individual susceptibility. Front Immunol 2022; 13:1008463. [PMID: 36569842 PMCID: PMC9780532 DOI: 10.3389/fimmu.2022.1008463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Mohamed A. Soltan
- Department of Microbiology and immunology, Faculty of Pharmacy, Sinai University – Kantara Branch, Ismailia, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jawaher A. Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Maryam M. Alnoman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hassan Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
32
|
Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL. Antiviral peptides against SARS-CoV-2: therapeutic targets, mechanistic antiviral activity, and efficient delivery. Pharmacol Rep 2022; 74:1166-1181. [PMID: 36401119 PMCID: PMC9676828 DOI: 10.1007/s43440-022-00432-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
Collapse
Affiliation(s)
- Raahilah Zahir Essa
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Yuan-seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Chit-laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
33
|
Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int J Pept Res Ther 2022; 29:5. [PMID: 36466430 PMCID: PMC9702942 DOI: 10.1007/s10989-022-10477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.
Collapse
Affiliation(s)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Ghandehari Alavijeh
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Lin TT, Sun YY, Wang CT, Cheng WC, Lu IH, Lin CY, Chen SH. AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation. BIOINFORMATICS ADVANCES 2022; 2:vbac080. [PMID: 36699402 PMCID: PMC9710571 DOI: 10.1093/bioadv/vbac080] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Motivation Antiviral peptides (AVPs) from various sources suggest the possibility of developing peptide drugs for treating viral diseases. Because of the increasing number of identified AVPs and the advances in deep learning theory, it is reasonable to experiment with peptide drug design using in silico methods. Results We collected the most up-to-date AVPs and used deep learning to construct a sequence-based binary classifier. A generative adversarial network was employed to augment the number of AVPs in the positive training dataset and enable our deep learning convolutional neural network (CNN) model to learn from the negative dataset. Our classifier outperformed other state-of-the-art classifiers when using the testing dataset. We have placed the trained classifiers on a user-friendly web server, AI4AVP, for the research community. Availability and implementation AI4AVP is freely accessible at http://axp.iis.sinica.edu.tw/AI4AVP/; codes and datasets for the peptide GAN and the AVP predictor CNN are available at https://github.com/lsbnb/amp_gan and https://github.com/LinTzuTang/AI4AVP_predictor. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Tzu-Tang Lin
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Yih-Yun Sun
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Tien Wang
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Chih Cheng
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
35
|
García-Castro A, Román-Gutiérrez AD, Castañeda-Ovando A, Cariño-Cortés R, Acevedo-Sandoval OA, López-Perea P, Guzmán-Ortiz FA. Cereals as a Source of Bioactive Compounds with Anti-Hypertensive Activity and Their Intake in Times of COVID-19. Foods 2022; 11:3231. [PMID: 37430980 PMCID: PMC9601750 DOI: 10.3390/foods11203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2; thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE, and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and COVID-19 has turned into a primary point of control and treatment from the nutritional perspective. The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme that the bioactive compounds present in cereals possess in order to lower blood pressure and how their consumption could be associated with reducing the virulence of COVID-19.
Collapse
Affiliation(s)
- Abigail García-Castro
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Alma Delia Román-Gutiérrez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Raquel Cariño-Cortés
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Elíseo Ramírez Ulloa, 400, Doctores, Pachuca de Soto 42090, Mexico
| | - Otilio Arturo Acevedo-Sandoval
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Patricia López-Perea
- Área de Ingeniería Agroindustrial, Universidad Politécnica Francisco I. Madero, Francisco I. Madero, Hidalgo 42660, Mexico
| | - Fabiola Araceli Guzmán-Ortiz
- CONACYT, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| |
Collapse
|
36
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
37
|
Souza FR, Moura PG, Costa RKM, Silva RS, Pimentel AS. Absolute binding free energies of mucroporin and its analog mucroporin-M1 with the heptad repeat 1 domain and RNA-dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 2022:1-12. [PMID: 35993479 DOI: 10.1080/07391102.2022.2114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The peptide Mucroporin and its analog Mucroporin-M1 were studied using the molecular docking and molecular dynamics simulation of their complexation with two protein targets, the Heptad Repeat 1 (HR1) domain and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The molecular docking of the peptide-protein complexes was performed using the glowworm swarm optimization algorithm. The lowest energy poses were submitted to molecular dynamics simulation. Then, the binding free energies of Mucroporin and its analog Mucroporin-M1 with these two protein targets were calculated using the Multistate Bennett Acceptance Ratio (MBAR) method. It was verified that the peptides/HR1 domain complex showed stability in the interaction site determined by molecular docking. It was also found that Mucroporin-M1 has a much higher affinity than Mucroporin to the HR1 protein target. The peptides showed similar stability and affinity at the NTP binding site in the RdRp protein. Additional experimental studies are needed to confirm the antiviral activity of Mucroporin-M1 and a possible mechanism of action against SARS-CoV-2. However, here we indicate that Mucroporin-M1 may have potential antiviral activity against the HR1 domain with the possibility for further peptide optimization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paloma Guimarães Moura
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Rudielson Santos Silva
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
In vitro evaluation of antiviral activity of Shouchella clausii probiotic strain and bacterial supernatant against herpes simplex virus type 1. Arch Microbiol 2022; 204:522. [PMID: 35879582 DOI: 10.1007/s00203-022-03137-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
Abstract
Herpes simplex virus-1 (HSV-1) is an important human neurotropic virus infecting 70% of the world population. Due to the emergence of viral resistance via mutations in HSV-1 genes and some of the adverse effects of antiviral compounds, there is a growing need for safe, novel, and effective therapeutic and preventive strategies. The aim of the present study was to investigate for the first time the potential antiviral activity of Shouchella clausii probiotic strain and bacterial supernatant against HSV-1. The MTT assay was used to determine the possible cytotoxicity of the S. clausii and bacterial supernatant. Vero cells were treated by S. clausii, bacterial supernatant, and HSV-1 under pre-treatment (incubation of Vero cells with S. clausii then HSV-1 inoculation), pre-incubation (mixture of co-incubated HSV-1/S. clausii added to Vero cell), competition (adding HSV-1 and S. clausii into Vero cells simultaneously) and post-treatment (Vero cells inoculated with HSV-1 then incubated with S. clausii) assays. Viral titer reduction (TCID50) and viral DNA relative quantification by real-time PCR were measured in each experimental condition. The results indicated that S. clausii and its supernatant had the greatest inhibitory activity toward HSV-1 in pre-treatment assay. The HSV-1 titer treated with S. clausii, and bacterial supernatant was 3.6 and 2.2 Log10TCID50/mL lower compared to the control (7.66 Log10TCID50/mL). Results showed an antiviral effect of S. clausii and its supernatant. S. clausii could be considered as a novel inhibitor for HSV-1 infection.
Collapse
|
39
|
Freitas ED, Bataglioli RA, Oshodi J, Beppu MM. Antimicrobial peptides and their potential application in antiviral coating agents. Colloids Surf B Biointerfaces 2022; 217:112693. [PMID: 35853393 PMCID: PMC9262651 DOI: 10.1016/j.colsurfb.2022.112693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus pandemic has evidenced the importance of creating bioactive materials to mitigate viral infections, especially in healthcare settings and public places. Advances in antiviral coatings have led to materials with impressive antiviral performance; however, their application may face health and environmental challenges. Bio-inspired antimicrobial peptides (AMPs) are suitable building blocks for antimicrobial coatings due to their versatile design, scalability, and environmentally friendly features. This review presents the advances and opportunities on the AMPs to create virucidal coatings. The review first describes the fundamental characteristics of peptide structure and synthesis, highlighting the recent findings on AMPs and the role of peptide structure (α-helix, β-sheet, random, and cyclic peptides) on the virucidal mechanism. The following section presents the advances in AMPs coating on medical devices with a detailed description of the materials coated and the targeted pathogens. The use of peptides in vaccine formulations is also reported, emphasizing the molecular interaction of peptides with different viruses and the current clinical stage of each formulation. The role of several materials (metallic particles, inorganic materials, and synthetic polymers) in the design of antiviral coatings is also presented, discussing the advantages and the drawbacks of each material. The final section offers future directions and opportunities for using AMPs on antiviral coatings to prevent viral outbreaks.
Collapse
Affiliation(s)
- Emanuelle D Freitas
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Rogério A Bataglioli
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Josephine Oshodi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Marisa M Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil.
| |
Collapse
|
40
|
de Amaral M, Ienes-Lima J. Anurans against SARS-CoV-2: A review of the potential antiviral action of anurans cutaneous peptides. Virus Res 2022; 315:198769. [PMID: 35430319 PMCID: PMC9008983 DOI: 10.1016/j.virusres.2022.198769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
At the end of 2019, in China, clinical signs and symptoms of unknown etiology have been reported in several patients whose sample sequencing revealed pneumonia caused by the SARS-CoV-2 virus. COVID-19 is a disease triggered by this virus, and in 2020, the World Health Organization declared it a pandemic. Since then, efforts have been made to find effective therapeutic agents against this disease. Identifying novel natural antiviral drugs can be an alternative to treatment. For this reason, antimicrobial peptides secreted by anurans' skin have gained attention for showing a promissory antiviral effect. Hence, this review aimed to elucidate how and which peptides secreted by anurans' skin can be considered therapeutic agents to treat or prevent human viral infectious diseases. Through a literature review, we attempted to identify potential antiviral frogs' peptides to combat COVID-19. As a result, the Magainin-1 and -2 peptides, from the Magainin family, the Dermaseptin-S9, from the Dermaseptin family, and Caerin 1.6 and 1.10, from the Caerin family, are molecules that already showed antiviral effects against SARS-CoV-2 in silico. In addition to these peptides, this review suggests that future studies should use other families that already have antiviral action against other viruses, such as Brevinins, Maculatins, Esculentins, Temporins, and Urumins. To apply these peptides as therapeutic agents, experimental studies with peptides already tested in silico and new studies with other families not tested yet should be considered.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Comparative Metabolism and Endocrinology Laboratory, Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| | - Julia Ienes-Lima
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
41
|
Recalde-Reyes DP, Rodríguez-Salazar CA, Castaño-Osorio JC, Giraldo MI. PD1 CD44 antiviral peptide as an inhibitor of the protein-protein interaction in dengue virus invasion. Peptides 2022; 153:170797. [PMID: 35378215 PMCID: PMC10807690 DOI: 10.1016/j.peptides.2022.170797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
Dengue virus (DENV) infection is mediated by the interaction between the virus envelope protein and cellular receptors of the host cells. In this study, we designed peptides to inhibit protein-protein interaction between dengue virus and CD44 receptor, which is one of the receptors used by DENV for entry. In silico model complexes were designed between domain III of the viral envelope protein of dengue virus 2 and the domain of human CD44 receptor using ClusPro 2.0, (https://cluspro.bu.edu/login.php), and inhibition peptides were designed with Rosetta Online-Server(http://rosie.rosettacommons.org/peptiderive). We identified one linear antiviral peptide of 18 amino acids derived from the human CD44 receptor, PD1 CD44. It did not show hemolysis or toxicity in HepG2 or BHK cell lines, nor did it stimulate the release of IL-1β, IL-6, TNF-α, and IFN-γ, below 100 µM. It had an IC50 of 13.8 µM and maximum effective dose of 54.9 µM evaluated in BHK cells. The decrease in plaque-forming units/mL for DENV1, DENV2, DENV3, and DENV4 was 99.60%, 99.40%, 97.80%, and 70.50%, respectively, and similar results were obtained by RT-qPCR. Non-structural protein 1 release was decreased in pre- and co-treatment but not in post-treatment. Competition assays between the DN59 peptide, envelope protein, and the fragment of domain III "MDKLQLKGMSYSMCTGKF" of the viral envelope of DENV2 and PD1 CD44 showed that our peptide lost its antiviral activity. We demonstrated that our peptide decreased endosome formation, and we propose that it binds to the envelope protein of DENV, inhibiting viral invasion/fusion.
Collapse
Affiliation(s)
- Delia Piedad Recalde-Reyes
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia.
| | - Carlos Andrés Rodríguez-Salazar
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Jhon Carlos Castaño-Osorio
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia.
| | - María Isabel Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555,USA.
| |
Collapse
|
42
|
Harant H. Selective Inhibition of Murine Cytomegalovirus Viral Gene Expression by the Antiviral Peptide TAT-I24. Int J Mol Sci 2022; 23:ijms23137246. [PMID: 35806257 PMCID: PMC9267059 DOI: 10.3390/ijms23137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
The effect of the antiviral peptide TAT-I24 on viral gene expression in cells infected with murine cytomegalovirus (MCMV) was investigated. The expression of immediate-early, early and late genes was highly induced upon infection with MCMV. In the presence of the peptide, the expression of all tested genes was sustainably reduced to a similar extent, independent of whether they were immediate-early, early or late genes. In contrast, the expression of host genes, such as NF-κB inhibitor alpha (Nfkbia), interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), chemokine (C-X-C motif) ligand 10 (Cxcl10), chemokine (C-C motif) ligand 7 (Ccl7) and chemokine (C-C motif) ligand 5 (Ccl5), which are induced early upon virus infection, was only transiently suppressed in peptide-treated cells. The expression of other host genes which are affected by MCMV infection and play a role in endoplasmic reticulum stress or DNA-damage repair was not inhibited by the peptide. A combination of TAT-I24 with the nucleoside analogue cidofovir showed enhancement of the antiviral effect, demonstrating that viral replication can be more efficiently inhibited with a combination of drugs acting at different stages of the viral life-cycle.
Collapse
|
43
|
Parra ALC, Bezerra LP, Shawar DE, Neto NAS, Mesquita FP, da Silva GO, Souza PFN. Synthetic antiviral peptides: a new way to develop targeted antiviral drugs. Future Virol 2022. [DOI: 10.2217/fvl-2021-0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global concern over emerging and re-emerging viral infections has spurred the search for novel antiviral agents. Peptides with antiviral activity stand out, by overcoming limitations of the current drugs utilized, due to their biocompatibility, specificity and effectiveness. Synthetic peptides have been shown to be viable alternatives to natural peptides due to several difficulties of using of the latter in clinical trials. Various platforms have been utilized by researchers to predict the most effective peptide sequences against HIV, influenza, dengue, MERS and SARS. Synthetic peptides are already employed in the treatment of HIV infection. The novelty of this study is to discuss, for the first time, the potential of synthetic peptides as antiviral molecules. We conclude that synthetic peptides can act as new weapons against viral threats to humans.
Collapse
Affiliation(s)
- Aura LC Parra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Leandro P Bezerra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Dur E Shawar
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Nilton AS Neto
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Felipe P Mesquita
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| | - Gabrielly O da Silva
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Pedro FN Souza
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| |
Collapse
|
44
|
Liu R, Liu Z, Peng H, Lv Y, Feng Y, Kang J, Lu N, Ma R, Hou S, Sun W, Ying Q, Wang F, Gao Q, Zhao P, Zhu C, Wang Y, Wu X. Bomidin: An Optimized Antimicrobial Peptide With Broad Antiviral Activity Against Enveloped Viruses. Front Immunol 2022; 13:851642. [PMID: 35663971 PMCID: PMC9160972 DOI: 10.3389/fimmu.2022.851642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
The rapid evolution of highly infectious pathogens is a major threat to global public health. In the front line of defense against bacteria, fungi, and viruses, antimicrobial peptides (AMPs) are naturally produced by all living organisms and offer new possibilities for next-generation antibiotic development. However, the low yields and difficulties in the extraction and purification of AMPs have hindered their industry and scientific research applications. To overcome these barriers, we enabled high expression of bomidin, a commercial recombinant AMP based upon bovine myeloid antimicrobial peptide-27. This novel AMP, which can be expressed in Escherichia coli by adding methionine to the bomidin sequence, can be produced in bulk and is more biologically active than chemically synthesized AMPs. We verified the function of bomidin against a variety of bacteria and enveloped viruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), herpes simplex virus (HSV), dengue virus (DENV), and chikungunya virus (CHIKV). Furthermore, based on the molecular modeling of bomidin and membrane lipids, we elucidated the possible mechanism by which bomidin disrupts bacterial and viral membranes. Thus, we obtained a novel AMP with an optimized, efficient heterologous expression system for potential therapeutic application against a wide range of life-threatening pathogens.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Yunhua Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yunan Feng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Junjun Kang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Naining Lu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ruixue Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenjie Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qikang Gao
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yixing Wang
- Jiangsu Genloci Biotech Inc., Nanjing, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
45
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
46
|
Zhang L, Ghosh SK, Basavarajappa SC, Chen Y, Shrestha P, Penfield J, Brewer A, Ramakrishnan P, Buck M, Weinberg A. HBD-2 binds SARS-CoV-2 RBD and blocks viral entry: Strategy to combat COVID-19. iScience 2022; 25:103856. [PMID: 35128350 PMCID: PMC8808565 DOI: 10.1016/j.isci.2022.103856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 01/28/2022] [Indexed: 12/26/2022] Open
Abstract
New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19-related deaths and medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell-derived host defense peptide that has anti-viral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical measurements confirm that hBD-2 indeed binds to the CoV-2-receptor-binding domain (RBD) (KD ∼ 2μM by surface plasmon resonance), preventing it from binding to ACE2-expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSVG-mediated infection, of ACE2-expressing human cells with an IC50 of 2.8 ± 0.4 μM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as agents to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Santosh K. Ghosh
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Yinghua Chen
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pravesh Shrestha
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jackson Penfield
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Ann Brewer
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aaron Weinberg
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
47
|
Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23052499. [PMID: 35269641 PMCID: PMC8910669 DOI: 10.3390/ijms23052499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.
Collapse
|
48
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 604] [Impact Index Per Article: 302.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
49
|
An albumin scaffold grafted with an alpha-helical motif delivers therapeutic payloads by modular coiled-coil assembly. Int J Biol Macromol 2022; 205:376-384. [PMID: 35157904 DOI: 10.1016/j.ijbiomac.2022.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
A short in vivo half-life of protein-based therapeutics often restricts successful clinical translation despite their promising efficacy in vitro. As a biocompatible half-life extender, human serum albumin (HSA) has proven effective in some cases. While genetic fusion is well-established for interlinking HSA and a protein payload, it is limited to structurally simple proteins, necessitating new strategies to expand the utility of HSA for delivery of therapeutic proteins. Here, we report a novel HSA variant (eHSA) as a modular and long-acting carrier compatible with any protein payload of interest. The assembly between eHSA and a payload was driven by a heterodimeric coiled-coil interaction in which a short α-helix grafted onto HSA specifically bound to a complementary α-helix genetically fused to a payload. We showed various proteins including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), single-chain TRAIL, or green fluorescent protein could piggyback onto eHSA via simple mixing without losing native activity. Additionally, either in presence or absence of a payload, eHSA was found to retain the pH-dependent FcRn-binding behavior - a critical attribute for prolonged survival in the systemic circulation. These results demonstrate eHSA would serve as a modular platform capable of delivering various therapeutic proteins with potentially long in vivo half-lives.
Collapse
|
50
|
Sureram S, Arduino I, Ueoka R, Rittà M, Francese R, Srivibool R, Darshana D, Piel J, Ruchirawat S, Muratori L, Lembo D, Kittakoop P, Donalisio M. The Peptide A-3302-B Isolated from a Marine Bacterium Micromonospora sp. Inhibits HSV-2 Infection by Preventing the Viral Egress from Host Cells. Int J Mol Sci 2022; 23:947. [PMID: 35055133 PMCID: PMC8778767 DOI: 10.3390/ijms23020947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 μM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.
Collapse
Affiliation(s)
- Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
| | - Irene Arduino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Reiko Ueoka
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | | | - Dhanushka Darshana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
| | - Jörn Piel
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, 10043 Orbassano, Italy;
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| |
Collapse
|