1
|
Rouhi A, Falah F, Azghandi M, Alizadeh Behbahani B, Tabatabaei-Yazdi F, Ibrahim SA, Dertli E, Vasiee A. Investigating the Effect of Melittin Peptide in Preventing Biofilm Formation, Adhesion and Expression of Virulence Genes in Listeria monocytogenes. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10318-z. [PMID: 38963508 DOI: 10.1007/s12602-024-10318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Listeria monocytogenes is a notable food-borne pathogen that has the ability to create biofilms on different food processing surfaces, making it more resilient to disinfectants and posing a greater risk to human health. This study assessed melittin peptide's anti-biofilm and anti-pathogenicity effects on L. monocytogenes ATCC 19115. Melittin showed minimum inhibitory concenteration (MIC) of 100 μg/mL against this strain and scanning electron microscopy images confirmed its antimicrobial efficacy. The OD measurement demonstrated that melittin exhibited a strong proficiency in inhibiting biofilms and disrupting pre-formed biofilms at concentrations ranging from 1/8MIC to 2MIC and this amount was 92.59 ± 1.01% to 7.17 ± 0.31% and 100% to 11.50 ± 0.53%, respectively. Peptide also reduced hydrophobicity and self-aggregation of L. monocytogenes by 35.25% and 14.38% at MIC. Melittin also significantly reduced adhesion to HT-29 and Caco-2 cells by 61.33% and 59%, and inhibited invasion of HT-29 and Caco-2 cells by 49.33% and 40.66% for L. monocytogenes at the MIC value. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) revealed melittin's impact on gene expression, notably decreasing inlB (44%) and agrA (45%) gene expression in L. monocytogenes. flaA and hly genes also exhibited reduced expression. Also, significant changes were observed in sigB and prfA gene expression. These results underscore melittin's potential in combating bacterial infections and biofilm-related challenges in the food industry.
Collapse
Affiliation(s)
- Arezou Rouhi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjan Azghandi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Farideh Tabatabaei-Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Salam A Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC, 24711, USA
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul, 34210, Türkiye
| | - Alireza Vasiee
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
2
|
Goki NH, Tehranizadeh ZA, Saberi MR, Khameneh B, Bazzaz BSF. Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides. Curr Pharm Biotechnol 2024; 25:1041-1057. [PMID: 37921126 DOI: 10.2174/0113892010194428231017051836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 11/04/2023]
Abstract
Antimicrobial peptides (AMPs), a class of antimicrobial agents, possess considerable potential to treat various microbial ailments. The broad range of activity and rare complete bacterial resistance to AMPs make them ideal candidates for commercial development. These peptides with widely varying compositions and sources share recurrent structural and functional features in mechanisms of action. Studying the mechanisms of AMP activity against bacteria may lead to the development of new antimicrobial agents that are more potent. Generally, AMPs are effective against bacteria by forming pores or disrupting membrane barriers. The important structural aspects of cytoplasmic membranes of pathogens and host cells will also be outlined to understand the selective antimicrobial actions. The antimicrobial activities of AMPs are related to multiple physicochemical properties, such as length, sequence, helicity, charge, hydrophobicity, amphipathicity, polar angle, and also self-association. These parameters are interrelated and need to be considered in combination. So, gathering the most relevant available information will help to design and choose the most effective AMPs.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Li S, Liu G, Kang J, Li Z, Cao Z. The inhibitory activity of a new scorpion venom-derived antimicrobial peptide Hp1470 against Gram-positive bacteria. Toxicon 2023; 231:107189. [PMID: 37295751 DOI: 10.1016/j.toxicon.2023.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs) are a new type of antibiotic and target a variety of microbes, including antibiotic-resistant strains; thus, AMPs have attracted widespread interest. Scorpion venoms contain many bioactive peptides, including AMPs, and have become an important natural resource of peptide-based drugs. Here, the antibacterial peptide gene Hp1470 from the venom of the scorpion Heterometrus petersii was characterized, and its antibacterial activity was determined. The cDNA sequence of Hp1470 is 300 nt in length and contains an open reading frame (ORF) of 207 nt. The ORF was shown to encode 68 amino acid residues, including a signal peptide (23 aa), a mature peptide (13 aa), a C-terminal posttranslational processing signal (3 aa), and a propeptide (29 aa). Multiple sequence alignment results indicated that Hp1470 is an antibacterial peptide. The mature peptide Hp1470, which has a molecular mass of 1564.09 Da, was further chemically synthesized with a purity of greater than 95%. Antimicrobial assays showed that the synthesized Hp1470 exerted an inhibitory effect on Gram-positive bacteria and clinical drug-resistant strains, including PRSA and MRSA, but not Gram-negative bacteria. Hp1470 was further found to protect mice from MRSA infection, suggesting its potential application as an in vivo antimicrobial agent. Interestingly, Hp1470 only inhibited bacterial growth but did not kill bacteria, which was consistent with scanning electron microscopy results showing that Hp1470 did not lyse the cell membrane of Staphylococcus aureus. Our work provides a new direction for developing antibacterial agents with different modes of action from natural scorpion venoms.
Collapse
Affiliation(s)
- Songryong Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Center for BioDrug Research, Wuhan University, Wuhan, 430072, China; Faculty of Life Science, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Gaomin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jongguk Kang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongjie Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Center for BioDrug Research, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Scieuzo C, Giglio F, Rinaldi R, Lekka ME, Cozzolino F, Monaco V, Monti M, Salvia R, Falabella P. In Vitro Evaluation of the Antibacterial Activity of the Peptide Fractions Extracted from the Hemolymph of Hermetia illucens (Diptera: Stratiomyidae). INSECTS 2023; 14:insects14050464. [PMID: 37233092 DOI: 10.3390/insects14050464] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Antimicrobial peptides (AMPs) are a chemically and structurally heterogeneous family of molecules produced by a large variety of living organisms, whose expression is predominant in the sites most exposed to microbial invasion. One of the richest natural sources of AMPs is insects which, over the course of their very long evolutionary history, have adapted to numerous and different habitats by developing a powerful innate immune system that has allowed them to survive but also to assert themselves in the new environment. Recently, due to the increase in antibiotic-resistant bacterial strains, interest in AMPs has risen. In this work, we detected AMPs in the hemolymph of Hermetia illucens (Diptera, Stratiomyidae) larvae, following infection with Escherichia coli (Gram negative) or Micrococcus flavus (Gram positive) and from uninfected larvae. Peptide component, isolated via organic solvent precipitation, was analyzed by microbiological techniques. Subsequent mass spectrometry analysis allowed us to specifically identify peptides expressed in basal condition and peptides differentially expressed after bacterial challenge. We identified 33 AMPs in all the analyzed samples, of which 13 are specifically stimulated by Gram negative and/or Gram positive bacterial challenge. AMPs mostly expressed after bacterial challenge could be responsible for a more specific activity.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Fabiana Giglio
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Roberta Rinaldi
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145 Naples, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry. Antibiotics (Basel) 2023; 12:antibiotics12030550. [PMID: 36978417 PMCID: PMC10044663 DOI: 10.3390/antibiotics12030550] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Antibiotic resistance (ABR) has direct and indirect repercussions on public health and threatens to decrease the therapeutic effect of antibiotic treatments and lead to more infection-related deaths. There are several mechanisms by which ABR can be transferred from one microorganism to another. The risk of transfer is often related to environmental factors. The food supply chain offers conditions where ABR gene transfer can occur by multiple pathways, which generates concerns regarding food safety. This work reviews mechanisms involved in ABR gene transfer, potential transmission routes in the food supply chain, the prevalence of antibiotic residues in food and ABR organisms in processing lines and final products, and implications for public health. Finally, the paper will elaborate on the application of antimicrobial peptides as new alternatives to antibiotics that might countermeasure ABR and is compatible with current food trends.
Collapse
|
6
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
7
|
Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep 2022; 49:10039-10050. [PMID: 35606604 PMCID: PMC9126628 DOI: 10.1007/s11033-022-07572-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are a diverse class of molecules that represent a vital part of innate immunity. AMPs are evolutionarily conserved molecules that exhibit structural and functional diversity. They provide a possible solution to the antibiotic-resistance crisis. MAIN TEXT These small cationic peptides can target bacteria, fungi, and viruses, as well as cancer cells. Their unique action mechanisms, rare antibiotic-resistant variants, broad-spectrum activity, low toxicity, and high specificity encourage pharmaceutical industries to conduct clinical trials to develop them as therapeutic drugs. The rapid development of computer-assisted strategies accelerated the identification of AMPs. The Antimicrobial Peptide Database (APD) so far contains 3324 AMPs from different sources. In addition to their applications in different fields, some AMPs demonstrated the potential to combat COVID-19, and hinder viral infectivity in diverse ways. CONCLUSIONS This review provides a brief history of AMPs and their features, including classification, evolution, sources and mechanisms of action, biosynthesis pathway, and identification techniques. Furthermore, their different applications, challenges to clinical applications, and their potential use against COVID-19 are presented.
Collapse
Affiliation(s)
- Dalia Mamdouh Mabrouk
- Cell Biology Department, National Research Centre, 33 El Bohouth, St., P.O.12622, Dokki, Giza, Egypt.
| |
Collapse
|
8
|
Akbar N, Kaman WE, Sarink M, Nazmi K, Bikker FJ, Khan NA, Siddiqui R. Novel Antiamoebic Tyrocidine-Derived Peptide against Brain-Eating Amoebae. ACS OMEGA 2022; 7:28797-28805. [PMID: 36033708 PMCID: PMC9404165 DOI: 10.1021/acsomega.2c01614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Acanthamoeba castellanii (A. castellanii) can cause Acanthamoeba keratitis, a sight-threatening infection, as well as a fatal brain infection termed granulomatous amoebic encephalitis, mostly in immunocompromised individuals. In contrast, Naegleria fowleri (N. fowleri) causes a deadly infection involving the central nervous system, recognized as primary amoebic encephalitis, mainly in individuals partaking in recreational water activities or those with nasal exposure to contaminated water. Worryingly, mortality rates due to these infections are more than 90%, suggesting the need to find alternative therapies. In this study, antiamoebic activity of a peptide based on the structure of the antibiotic tyrocidine was evaluated against A. castellanii and N. fowleri. The tyrocidine-derived peptide displayed significant amoebicidal efficacy against A. castellanii and N. fowleri. At 250 μg/mL, the peptide drastically reduced amoebae viability up to 13% and 21% after 2 h of incubation against N. fowleri and A. castellanii., whereas, after 24 h of incubation, the peptide showed 86% and 94% amoebicidal activity against A. castellanii and N. fowleri. Furthermore, amoebae pretreated with 100 μg/mL peptide inhibited 35% and 53% A. castellanii and N. fowleri, while, at 250 μg/mL, 84% and 94% A. castellanii and N. fowleri failed to adhere to human cells. Amoeba-mediated cell cytopathogenicity assays revealed 31% and 42% inhibition at 100 μg/mL, while at 250 μg/mL 75% and 86% A. castellanii and N. fowleri were inhibited. Assays revealed inhibition of encystation in both A. castellanii (58% and 93%) and N. fowleri (73% and 97%) at concentrations of 100 and 250 μg/mL respectively. Importantly, tyrocidine-derived peptide depicted minimal cytotoxicity to human cells and, thus, may be a potential candidate in the rational development of a treatment regimen against free-living amoebae infections. Future studies are necessary to elucidate the in vivo effects of tyrocidine-derived peptide against these and other pathogenic amoebae of importance.
Collapse
Affiliation(s)
- Noor Akbar
- College
of Arts and Sciences, American University
of Sharjah, University
City, Sharjah 26666, United Arab Emirates
| | - Wendy E. Kaman
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Maarten Sarink
- Erasmus MC, University Medical Center
Rotterdam, Department
of Medical Microbiology and Infectious Diseases, Wytemaweg 80, 3015
CE Rotterdam, The Netherlands
| | - Kamran Nazmi
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Floris J. Bikker
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Naveed Ahmed Khan
- Department
of Clinical Sciences, College of Medicine, University of Sharjah, University
City, Sharjah 27272, Unites Arab Emirates
| | - Ruqaiyyah Siddiqui
- College
of Arts and Sciences, American University
of Sharjah, University
City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
9
|
Saeed SI, Mergani A, Aklilu E, Kamaruzzaman NF. Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock. Front Vet Sci 2022; 9:851052. [PMID: 35464355 PMCID: PMC9024325 DOI: 10.3389/fvets.2022.851052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial therapy is the most applied method for treating and preventing bacterial infection in livestock. However, it becomes less effective due to the development of antimicrobial resistance (AMR). Therefore, there is an urgent need to find new antimicrobials to reduce the rising rate of AMR. Recently, antimicrobial peptides (AMPs) have been receiving increasing attention due to their broad-spectrum antimicrobial activity, rapid killing activities, less toxicity, and cell selectivity. These features make them potent and potential alternative antimicrobials to be used in animals. Here, we discuss and summarize the AMPs in animals, classification, structures, mechanisms of action, and their potential use as novel therapeutic alternative antimicrobials to tackle the growing AMR threat.
Collapse
Affiliation(s)
- Shamsaldeen Ibrahim Saeed
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
- Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
- *Correspondence: Shamsaldeen Ibrahim Saeed
| | - AhmedElmontaser Mergani
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Erkihun Aklilu
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
| | - Nor Fadhilah Kamaruzzaman
- Faculty Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa, Malaysia
- Nor Fadhilah Kamaruzzaman
| |
Collapse
|
10
|
Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23052499. [PMID: 35269641 PMCID: PMC8910669 DOI: 10.3390/ijms23052499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.
Collapse
|
11
|
Radwan MH, Alaidaroos BA, Jastaniah SD, Abu el-naga MN, El-Gohary EGE, Barakat EM, ElShafie AM, Abdou MA, Mostafa NG, El-Saadony MT, Momen SA. Evaluation of antibacterial activity induced by Staphylococcus aureus and Ent A in the hemolymph of Spodoptera littoralis. Saudi J Biol Sci 2022; 29:2892-2903. [PMID: 35531219 PMCID: PMC9073143 DOI: 10.1016/j.sjbs.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
The problem of antibiotic resistance considers one of the most dangerous challenges facing the medical field. So, it is necessary to find substitutions to conventional antibiotics. Antimicrobial peptides (AMPs) are a bio-functional derivative that have been observed as one of the important solutions to such upcoming crisis. Owing to their role as the first line of defense against bacteria, fungi, and viruses. This study was conducted to induce the immune response of Spodoptera littoralis larvae by inoculation of sub lethal doses of Staphylococcus aureus and its enterotoxin. Since Staphylococcal enterotoxin A (SEA) considers the major causative agents of Staphylococcal food poisoning, our study oriented to purify and characterize this toxin to provoke its role in yielding AMPs with broad spectrum antimicrobial activity. A great fluctuation was recorded in the biochemical properties of immunized hemolymph not only in the total protein content but also protein banding pattern. Protein bands of ∼22 kDa (attacin-like) and ∼15 kDa (lysozyme-like) were found to be common between the AMPs induced as a result of both treatments. While protein bands of molecular weight ∼70 kDa (phenoloxidase-like) and ∼14 kDa (gloverin-like) were found specific for SEA treatment. Chromatographic analysis using HPLC for the induced AMPs showed different types of amino acids appeared with differences in their quantities and velocities. These peptides exhibited noticeable antimicrobial activity against certain Gram-positive and Gram-negative bacteria. In conclusion, the antimicrobial potential of the antimicrobial peptides (AMP) induced in the larval hemolymph of S. littoralis will be a promising molecule for the development of new therapeutic alternatives.
Collapse
|
12
|
Structural and Functional Characterization of a Novel Recombinant Antimicrobial Peptide from Hermetia illucens. Curr Issues Mol Biol 2021; 44:1-13. [PMID: 35723380 PMCID: PMC8929087 DOI: 10.3390/cimb44010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Antibiotics are commonly used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms raising the challenge to find new alternative drugs. Antimicrobial peptides (AMPs) are small/medium molecules ranging 10–60 residues synthesized by all living organisms and playing important roles in the defense systems. These features, together with the inability of microorganisms to develop resistance against the majority of AMPs, suggest that these molecules might represent effective alternatives to classical antibiotics. Because of their high biodiversity, with over one million described species, and their ability to live in hostile environments, insects represent the largest source of these molecules. However, production of insect AMPs in native forms is challenging. In this work we investigate a defensin-like antimicrobial peptide identified in the Hermetia illucens insect through a combination of transcriptomics and bioinformatics approaches. The C-15867 AMP was produced by recombinant DNA technology as a glutathione S-transferase (GST) fusion peptide and purified by affinity chromatography. The free peptide was then obtained by thrombin proteolysis and structurally characterized by mass spectrometry and circular dichroism analyses. The antibacterial activity of the C-15867 peptide was evaluated in vivo by determination of the minimum inhibitory concentration (MIC). Finally, crystal violet assays and SEM analyses suggested disruption of the cell membrane architecture and pore formation with leaking of cytosolic material.
Collapse
|
13
|
He D, Cao Z, Zhang R, Li W. Molecular Cloning and Functional Identification of the Antimicrobial Peptide Gene Ctri9594 from the Venom of the Scorpion Chaerilus tricostatus. Antibiotics (Basel) 2021; 10:antibiotics10080896. [PMID: 34438946 PMCID: PMC8388681 DOI: 10.3390/antibiotics10080896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Scorpion venom is a mixture of bioactive peptides, among which neurotoxins and antimicrobial peptides serve especially vital functions. Scorpion venom peptides in Buthidae species have been well described, but toxic peptides from non-Buthidae species have been under-investigated. Here, an antimicrobial peptide gene, Ctri9594, was cloned and functionally identified from the venom of the scorpion Chaerilus tricostatus. The precursor nucleotide sequence of Ctri9594 is 199 nt in length, including a 43 nt 5′ UTR, 115 nt 3′ UTR and 210 nt ORF. The ORF encodes 69 amino acid residues, containing a 21 aa signal peptide, 14 aa mature peptide, 3 aa C-terminal posttranslational processing signal and 31 aa propeptide. Multiple sequence alignment and evolutionary analyses show that Ctri9594 is an antimicrobial peptide in scorpion venom. The mature peptide of Ctri9594 was chemically synthesized with a purity greater than 95% and a molecular mass of 1484.4 Da. Minimum inhibitory concentrations (MICs) indicate that the synthesized mature peptide of Ctri9594 has inhibitory activity against Gram-positive bacteria (Bacillus thuringensis, Bacillus subtilis, Staphylococcus aureus and Micrococcus luteus) but not Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) or a fungus (Candida albicans). The antimicrobial mechanism of Ctri9594 is inferred to be related to its amphiphilic α-helix structure.
Collapse
Affiliation(s)
- Dangui He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Ruhong Zhang
- Renmin Hospital of Wuhan University, Wuhan 430200, China
- Correspondence: (R.Z.); (W.L.)
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Correspondence: (R.Z.); (W.L.)
| |
Collapse
|
14
|
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol 2021; 11:668632. [PMID: 34195099 PMCID: PMC8238046 DOI: 10.3389/fcimb.2021.668632] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are essential drugs used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms. Antibiotic resistance is a serious challenge and has led to the need for new alternative molecules less prone to bacterial resistance. Antimicrobial peptides (AMPs) have aroused great interest as potential next-generation antibiotics, since they are bioactive small proteins, naturally produced by all living organisms, and representing the first line of defense against fungi, viruses and bacteria. AMPs are commonly classified according to their sources, which are represented by microorganisms, plants and animals, as well as to their secondary structure, their biosynthesis and their mechanism of action. They find application in different fields such as agriculture, food industry and medicine, on which we focused our attention in this review. Particularly, we examined AMP potential applicability in wound healing, skin infections and metabolic syndrome, considering their ability to act as potential Angiotensin-Converting Enzyme I and pancreatic lipase inhibitory peptides as well as antioxidant peptides. Moreover, we argued about the pharmacokinetic and pharmacodynamic approaches to develop new antibiotics, the drug development strategies and the formulation approaches which need to be taken into account in developing clinically suitable AMP applications.
Collapse
Affiliation(s)
- Antonio Moretta
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Antonio Franco
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Vassallo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| |
Collapse
|
15
|
Optimization of the Endotoxin Removal Performance of Solid-Phase Conjugated S3E3 Antimicrobial Peptide Using Response Surface Methodology. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Talapko J, Škrlec I. The Principles, Mechanisms, and Benefits of Unconventional Agents in the Treatment of Biofilm Infection. Pharmaceuticals (Basel) 2020; 13:E299. [PMID: 33050521 PMCID: PMC7600518 DOI: 10.3390/ph13100299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Today, researchers are looking at new ways to treat severe infections caused by resistance to standard antibiotic therapy. This is quite challenging due to the complex and interdependent relationships involved: the cause of infection-the patient-antimicrobial agents. The sessile biofilm form is essential in research to reduce resistance to very severe infections (such as ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter spp). The purpose of this study is to elucidate the mechanisms of the occurrence, maintenance, and suppression of biofilm infections. One form of biofilm suppression is the efficient action of natural antagonists of bacteria-bacteriophages. Bacteriophages effectively penetrate the biofilm's causative cells. They infect those bacterial cells and either destroy them or prevent the infection spreading. In this process, bacteriophages are specific, relatively easy to apply, and harmless to the patient. Antimicrobial peptides (AMPs) support the mechanisms of bacteriophages' action. AMPs could also attack and destroy infectious agents on their own (even on biofilm). AMPs are simple, universal peptide molecules, mainly cationic peptides. Additional AMP research could help develop even more effective treatments of biofilm (bacteriophages, antibiotics, AMPs, nanoparticles). Here, we review recent unconventional agents, such as bacteriophages and AMPs, used for eradication of biofilm, providing an overview of potentially new biofilm treatment strategies.
Collapse
Affiliation(s)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
| |
Collapse
|